STW81200TR [STMICROELECTRONICS]

Wideband RF PLL fractional/integer frequency synthesizer with integrated VCOs and LDOs;
STW81200TR
型号: STW81200TR
厂家: ST    ST
描述:

Wideband RF PLL fractional/integer frequency synthesizer with integrated VCOs and LDOs

文件: 总58页 (文件大小:3831K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STW81200  
Wideband RF PLL fractional/integer frequency synthesizer  
with integrated VCOs and LDOs  
Datasheet - production data  
Low Power Functional mode  
Supply Voltage: 3.0 V to 5.4 V  
Small size exposed pad VFQFPN36 package  
6 x 6 x 1.0 mm  
VFQFPN36  
Process: BICMOS 0.25 µm SiGe  
Applications  
Features  
Cellular/4G infrastructure equipment  
Instrumentation and test equipment  
Cable TV  
Output frequency range: 46.875 to 6000 MHz  
Very Low Noise  
– Normalized in band phase noise floor:  
-227 dBc/Hz  
Other wireless communication systems  
Table 1. Device summary  
– VCO phase noise: -135 dBc/Hz @ 1 MHz  
offset, 4.0 GHz carrier  
Order Code  
Package  
Packing  
Tray  
Tape and reel  
– Noise floor: -160 dBc/Hz  
Dual architecture frequency synthesizer:  
STW81200T  
VFQFPN36  
VFQFPN36  
Fractional-N and Integer-N  
STW81200TR  
Integrated VCOs with automatic center  
frequency calibration  
Description  
Programmable RF output dividers by  
The STW81200 is a dual architecture frequency  
synthesizer (Fractional-N and Integer-N), that  
features three low phase-noise VCOs with a  
fundamental frequency range of 3.0 GHz to  
6.0 GHz and a programmable dual RF output  
divider stage which allows coverage from  
46.875 MHz to 6 GHz.  
1/2/4/8/16/32/64  
Dual RF Output broadband matched with  
programmable power level and mute function  
External VCO option with 5 V charge pump  
Integrated low noise LDO voltage regulators  
Maximum phase detector frequency: 100 MHz  
Exact frequency mode  
The STW81200 optimizes size and cost of the  
final application thanks to the integration of low-  
noise LDO voltage regulators and internally-  
matched broadband RF outputs.  
Fast lock and cycle slip reduction  
Differential reference clock input (LVDS and  
LVECPL compliant) supporting up to 800 MHz  
The STW81200 is compatible with a wide range  
of supply voltages (from 3.0 V to 5.4 V) providing  
to the end user a very high level of flexibility which  
trades off excellent performance with power  
dissipation requirements. A low-power functional  
mode (software controlled) gives an extra power  
saving.  
13-bit programmable reference frequency  
divider  
Programmable charge pump current  
Digital lock detector  
Integrated reference crystal oscillator core  
R/W SPI interface  
Additional features include crystal oscillator core,  
external VCO mode and output-mute function.  
Logic compatibility/tolerance 1.8 V/3.3 V  
January 2016  
DocID025943 Rev 7  
1/58  
www.st.com  
 
Contents  
STW81200  
Contents  
1
2
3
4
5
6
7
Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.1  
7.2  
7.3  
Reference input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Reference divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
PLL N divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.3.1  
Fractional spurs and compensation mechanism . . . . . . . . . . . . . . . . . . 26  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
Phase frequency detector (PFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Lock detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Fast lock mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Cycle slip reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Voltage controlled oscillators (VCOs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.10 RF output divider stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.11 Low-power functional modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
7.12 LDO voltage regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
7.13 STW81200 register programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
7.14 STW81200 register summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
7.15 STW81200 register descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
7.16 Power ON sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
7.17 Example of Register programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
2/58  
DocID025943 Rev 7  
STW81200  
Contents  
8
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
8.1  
8.2  
Application diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Thermal PCB design considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
9
Evaluation Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
10  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
10.1 VFQFPN36 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
11  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
DocID025943 Rev 7  
3/58  
3
List of figures  
STW81200  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
VCO open-loop phase noise (5 V supply) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Closed-loop phase noise at 4.8 GHz, divided by 1 to 64 (5 V supply) . . . . . . . . . . . . . . . . 19  
VCO open-loop phase noise at 4.4 GHz vs. supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
VCO open-loop phase noise over frequency vs. supply. . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Single sideband integrated phase noise vs. frequency and supply (F  
= 50 MHz) . . . . . 20  
PFD  
Figure of merit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Phase noise and fractional spurs at 2646.96 MHz vs. supply (FPFD = 61.44 MHz) . . . . . 20  
Figure 10. Phase noise and fractional spurs at 2118.24 MHz vs. supply (FPFD = 61.44 MHz) . . . . . 20  
Figure 11. Phase noise and fractional spurs at 2118.24 MHz at 5.0 V supply (FPFD = 61.44 MHz) . 20  
Figure 12. Phase noise and fractional spurs at 2118.24 MHz at 3.6 V supply (FPFD = 61.44 MHz) . 20  
Figure 13. Phase noise and fractional spurs at 2118.24 MHz at 3.0 V supply (FPFD = 61.44 MHz) . 21  
Figure 14. Phase noise at 5.625 GHz and 4.6 GHz (FPFD = 50 MHz) . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 15. Typical VCO control voltage after VCO calibration (3.6 V supply) . . . . . . . . . . . . . . . . . . . 21  
Figure 16. Average K  
over VCO frequency and supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
VCO  
Figure 17. Output power level vs. temperature - single ended (RF_OUT_PWR=7) . . . . . . . . . . . . . . 21  
Figure 18. Output power level – single ended (3 dB more for differential). . . . . . . . . . . . . . . . . . . . . . 21  
Figure 19. Typical spur level at PFD offset over carrier frequency (5.0 V supply). . . . . . . . . . . . . . . . 22  
Figure 20. Typical spur level vs. offset from 4.5 GHz (5.0 V supply, F  
Figure 21. 10 kHz fractional spur (integer boundary) vs. temperature  
=50MHz) . . . . . . . . . . . . . . 22  
PFD  
(5.0 V supply, F  
= 50 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
PFD  
Figure 22. 800 kHz fractional spur (integer boundary) vs. temperature  
(5.0 V supply, F = 50 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
PFD  
Figure 23. Frequency settling with VCO calibration – wideband view . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 24. Frequency settling with VCO calibration – narrowband view . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 25. Overall current consumption vs. temperature (5.0 V supply, F  
= 50 MHz) . . . . . . . . . . 23  
PFD  
Figure 26. Current consumption – standard vs. low power (5.0 V supply, F  
Figure 27. Current consumption – standard vs. low power (3.6 V supply, F  
Figure 28. Current consumption – standard vs. low power (3.0 V supply, F  
= 50 MHz) . . . . . . . . 23  
= 50 MHz) . . . . . . . . 23  
= 50 MHz) . . . . . . . . 23  
PFD  
PFD  
PFD  
Figure 29. Reference clock buffer configurations: single-ended (A), differential (B), crystal mode (C) 24  
Figure 30. PFD diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 31. SPI Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 32. SPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 33. Application diagram (internal VCO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 34. Application diagram (external VCO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 35. VFQFPN36 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
4/58  
DocID025943 Rev 7  
STW81200  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Digital logic levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Electrical specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Phase noise specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Current value vs. selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Blocks with programmable current and related performance . . . . . . . . . . . . . . . . . . . . . . . 31  
SPI timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
SPI Register map (address 12 to 15 not available) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
STW81200 order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
VFQFPN36 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
DocID025943 Rev 7  
5/58  
5
Functional block diagram  
STW81200  
1
Functional block diagram  
Figure 1. Functional block diagram  
6/58  
DocID025943 Rev 7  
 
 
STW81200  
Pin definitions  
2
Pin definitions  
Figure 2. Top view  
1
27 VREG_DIG  
CBYP_4V5  
VREG_4V5  
2
3
4
5
26 VDD_DSM_NDIV  
25 LE  
VCC_VCO_Core  
HW_PD  
24 SCK  
PDRF1  
PDRF2/FL_SW  
CBYP  
23 SDI  
LD_SDO  
6
7
8
9
22  
21  
20  
19  
REF_CLKP  
REF_CLKN  
VREG_REF  
VREG_VCO  
VIN_LDO_VCO  
DocID025943 Rev 7  
7/58  
57  
 
 
Pin definitions  
Pin No  
STW81200  
Table 2. Pin description  
Description  
Name  
Observation  
Connection for 4.5 V regulator  
bypass capacitor  
1
2
3
4
5
CBYP_4V5  
-
Regulated output voltage for 4.5V  
regulator  
Adjustable output voltage: 5.0 V, 4.5 V,  
2.6 V, 3.3 V  
VREG_4V5  
Must be connected to VREG_4V5 or  
VREG_VCO  
VCC_VCO_Core  
HW_PD  
Supply voltage for VCO Core  
HW Power Down  
CMOS Schmitt Triggered Input, 1.8 V  
compatible, 3.3 V tolerant  
RF1 output stage Power Down  
control  
CMOS Schmitt Triggered Input, 1.8 V  
compatible, 3.3 V tolerant  
PD_RF1  
CMOS Schmitt Triggered Input, 1.8 V  
compatible, 3.3V tolerant (with Fast lock  
feature disabled); High impedance/  
GND shorted output (with Fast Lock  
feature enabled)  
RF2 output stage Power Down  
Control / Fast Lock switch  
6
PD_RF2/FL_SW  
Connection for VCO circuitry  
regulator bypass capacitor  
7
8
9
CBYP  
-
-
-
Regulated output voltage for VCO  
circuitry regulator  
VREG_VCO  
VIN_LDO_VCO  
Supply voltage for VCO circuitry  
regulator  
Connection for reference voltage  
filtering capacitor  
10  
11  
12  
VR  
-
-
VCTRL  
VCO control voltage  
This pin must be connected to ground if  
external VCO is not used  
EXTVCO_INP  
External VCO positive input  
This pin must be connected to ground if  
external VCO is not used  
13  
EXTVCO_INN  
External VCO negative input  
Supply voltage for Charge Pump This pin must be connected to  
14  
15  
16  
VDD_CP  
ICP  
bias  
VREG_VCO  
PLL charge pump output  
-
Supply voltage for Charge Pump This pin must be connected to  
VCC_CPOUT  
output stage  
VREG_4V5 or VREG_VCO  
This pin must be connected to  
VREG_REF  
17  
18  
19  
VDD_PFD  
Supply voltage for PFD  
Supply voltage for PLL regulator  
VIN_LDO_REF  
VREG_REF  
-
-
Regulated output voltage for  
Reference Clock regulator  
20  
21  
REF_CLKN  
REF_CLKP  
Reference clock negative input  
Reference clock positive input  
-
-
8/58  
DocID025943 Rev 7  
 
STW81200  
Pin No  
Pin definitions  
Table 2. Pin description (continued)  
Description  
Name  
Observation  
CMOS push-pull Output 2.5V with slew  
rate control or open drain (1.8V to 3.3V  
tolerant)  
22  
LD_SDO  
Lock Detector/SPI Data output  
CMOS Schmitt triggered Input, 1.8 V  
compatible, 3.3 V tolerant  
23  
24  
25  
26  
27  
SDI  
SCK  
LE  
SPI Data input  
SPI clock  
CMOS Schmitt triggered Input, 1.8 V  
compatible, 3.3 V tolerant  
CMOS Schmitt triggered Input, 1.8 V  
compatible, 3.3 V tolerant  
SPI load enable  
Supply voltage for DSM and N  
divider  
This pin must be connected to  
VREG_DIG  
VDD_DSM_NDIV  
VREG_DIG  
Regulated output voltage for  
digital circuitry regulator  
-
-
-
Supply voltage for RF Output  
28  
29  
VIN_LDO_RF_DIG  
VREG_RF  
divider stage and digital regulators  
Regulated output voltage for RF  
Output Divider stage regulator  
30  
31  
RF1_OUTN  
RF1_OUTP  
Main RF negative output  
Main RF positive output  
50 Ω output impedance  
50 Ω output impedance  
Supply voltage for RF Output  
stages  
Connected to VREG_DIV, VREG_4V5  
or external 5V  
32  
VCC_RFOUT  
33  
34  
35  
36  
RF2_OUTN  
RF2_OUTP  
TEST_SE  
Auxiliary RF negative output  
Auxiliary RF positive output  
Test pin  
50 Ω output impedance  
50 Ω output impedance  
This pin must be connected to ground  
-
VIN_LDO_4V5  
Supply voltage for 4.5 V regulator  
DocID025943 Rev 7  
9/58  
57  
Absolute maximum ratings  
STW81200  
3
Absolute maximum ratings  
Table 3. Absolute maximum ratings  
Parameter  
Symbol  
Value  
Unit  
Supply voltage pins #14, #17, #26  
-0.3 to 2.7  
-0.3 to 5.4  
-0.3 to 5  
-0.3 to 5.4  
+150  
V
Supply voltage LDOs pins #9, #18, #28, #36  
Supply voltage pins #3  
V
VCC  
V
Supply voltage pins #16, #32  
Storage temperature  
V
Tstg  
°C  
Electrical Static Discharge  
HBM(1)  
2
ESD  
kV  
CDM-JEDEC Standard  
MM  
0.5  
0.2  
1. The maximum rating of the ESD protection circuitry on pin 21 (REF_CLKP) is 1.5 kV.  
10/58  
DocID025943 Rev 7  
 
 
STW81200  
Operating conditions  
4
Operating conditions  
Table 4. Operating conditions  
Test conditions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Supply voltage pins #14, #17,  
#26  
-
2.5  
-
2.7  
V
VCC  
Supply voltage (LDOs inputs)  
pins #9, #18, #28, #36  
-
-
3.0  
2.5  
-
-
-
5.4  
5
V
Supply voltage pin #3, #16, #32  
V
Current Consumption Pin #3,  
#16 and #32 supplied at 4.5 V  
84  
-
mA  
Current Consumption Pin #3,  
#16 and #32 supplied at 2.6 V  
DIV2 ON, Main Output only,  
4 GHz VCO, max. performance  
ICC  
-
-
50  
-
-
mA  
mA  
Current consumption other  
blocks an supplies at 2.6 V  
110  
TA  
TJ  
Operating ambient temperature  
Maximum junction temperature  
-
-
-40  
-
-
-
85  
°C  
°C  
125  
Junction to ambient package  
thermal resistance(1)  
ΘJA  
ΘJB  
ΘJC  
ΨJB  
ΨJT  
Multilayer JEDEC board  
Multilayer JEDEC board  
Multilayer JEDEC board  
Multilayer JEDEC board  
Multilayer JEDEC board  
-
-
-
-
-
33  
18  
3
-
-
-
-
-
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction to board package  
thermal resistance(1)  
Junction to case package  
thermal resistance(1)  
Thermal characterization  
17  
0.3  
parameter junction to board(1)  
Thermal characterization  
parameter junction to top case(1)  
1. Refer to JEDEC standard JESD 51-12 for a detailed description of the thermal resistances and thermal parameters. Data  
here presented are referring to a Multilayer board according to JEDEC standard.  
TJ = TA + ΘJA * Pdiss (in order to estimate TJ if ambient temperature TA and dissipated power Pdiss are known)  
TJ = TB + ΨJB * Pdiss (in order to estimate TJ if ambient temperature TB and dissipated power Pdiss are known)  
TJ = TT + ΨJT * Pdiss (in order to estimate TJ if ambient temperature TT and dissipated power Pdiss are known)  
DocID025943 Rev 7  
11/58  
57  
 
 
Operating conditions  
Symbol  
STW81200  
Table 5. Digital logic levels  
Test conditions  
Parameter  
Min  
Typ  
Max  
Unit  
Vdd  
Vil  
Internal Supply for digital circuits  
Low level input voltage  
-
-
2.6  
-
V
Schmitt input  
Schmitt input  
0
1.2  
-
-
-
-
0.6  
3.6  
0.2  
-
V
V
V
V
Vih  
Vol  
Voh  
High level input voltage  
Low level output voltage  
High level output voltage  
IOL = 4 mA  
-
IOH = 4 mA  
Vdd-0.2  
12/58  
DocID025943 Rev 7  
 
STW81200  
Electrical specifications  
5
Electrical specifications  
o
All electrical specifications are given at 25 C T  
otherwise stated.  
and in a full-current mode, unless  
AMB  
Table 6. Electrical specifications  
Condition  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Output frequency range  
Direct output  
Divider by 2 output  
3000  
1500  
-
-
-
-
6000  
3000  
MHz  
MHz  
MHz  
MHz  
FOUT  
Output Frequency  
Divider by 64 output  
46.875  
93.75  
VCO dividers  
Integer Mode  
24  
24  
-
-
131071  
510  
-
-
Fractional mode (DSM 1st  
Order)  
Fractional mode (DSM 2nd  
Order)  
25  
27  
31  
-
-
-
509  
507  
503  
-
-
-
N
VCO Divider Ratio  
Fractional mode (DSM 3rd  
Order)  
Fractional mode (DSM 4st  
Order)  
Xtal oscillator  
FXTAL  
XTAL frequency range  
XTAL ESR  
-
-
-
10  
-
-
-
-
50  
50  
5
MHz  
ESRXTAL  
PXTAL  
XTAL Power Dissipation  
-
mW  
XTAL Oscillator Input  
capacitance  
CINXTAL  
Single ended  
50 MHz XTAL  
0.6  
-
-
pF  
XTAL Oscillator Phase  
Noise Floor  
PNXTAL  
-
-
-162  
-
-
dBc/Hz  
ppm  
TOLXTAL  
XTAL Oscillator accuracy @12 MHz, 25 ºC  
10  
Reference clock and phase frequency detector  
Reference input  
-
10  
-
800  
MHz  
frequency(1)  
Fref  
Differential Mode  
0.2  
1
1
1.25  
1.25  
Vp  
Vp  
Reference input sensitivity  
Single Ended Mode  
0.35  
Single Ended Mode @100 MHz,  
sinusoidal signal 1.25 Vp  
-
-
-163  
-159  
-
-
dBc/Hz  
dBc/Hz  
Reference Input Buffer Phase  
Noise Floor  
PNREFIN  
LVDS signal @100 MHz  
400 mVp  
DocID025943 Rev 7  
13/58  
57  
 
 
Electrical specifications  
STW81200  
Table 6. Electrical specifications (continued)  
Symbol  
Parameter  
Condition  
Differential Mode  
Min  
Typ  
Max  
Units  
-
-
10  
-
IREF  
Current consumption(2)  
Single Ended Mode  
3
-
mA  
XTAL oscillator Mode  
-
5
-
-
R
Reference Divider Ratio  
PFD input frequency(3)  
-
1
-
8191  
FPFD  
-
-
100  
MHz  
Hz  
LO direct output  
LO with divider by 2  
-
47.5  
23.75  
-
-
-
-
-
Hz  
FSTEP  
Frequency step(3)  
-
Hz  
LO with divider by 64  
-
0.7422  
Hz  
Charge pump  
VCCCPOUT CP Supply  
Pin # 16 (VCC_CPOUT)  
5-bit programmable  
2.5  
-
-
-
5
V
ICP  
ICP sink/source  
4.9  
mA  
Output voltage range on  
ICP pin (pin#14)  
VCCCPOUT  
-0.4  
VICP  
-
-
-
0.4  
-
V
Comparison frequency  
Spurs (4)  
-
-
-
-85  
-50  
-
-
dBc  
In-Band Fractional Spurs  
-
(5)  
VCOs  
VCCVCOCore VCO Core Supply  
Pin # 3 (VCC_VCO_Core)  
@ 4 GHz and 4.5 V supply  
@ 4 GHz and 3.3 V supply  
@ 4 GHz and 2.6 V supply  
2.5  
-
52  
35  
30  
35  
35-95  
-
5
V
-
-
Oscillator Core current  
IVCOCore  
-
-
-
mA  
consumption  
-
IVCOBUF  
KVCO  
VCO buffer consumption Pin # 3 (VCC_VCO_Core)  
-
-
mA  
MHz/V  
oC  
VCO gain  
-
-
-
Pin #16 @4.5/5 V  
Pin #16 @3.3 V  
Pin #16 @2.6 V  
-125  
-125  
-125  
125  
125  
115  
Maximum temperature  
variation for continuous  
lock(6)(7)  
ΔTLK  
-
oC  
-
oC  
RF output stage  
VCCRFOUT RF Output supply  
Pin # 35 (VCC_RFOUT)  
Differential 3.3 V to 5 V supply  
Differential 2.6 V supply  
Differential  
2.5  
-1  
-1  
-
-
-
5
+7  
+1  
-
V
Output level  
POUT  
dBm  
-
-
100  
50  
ZOUT  
Output impedance  
Return Loss  
Single Ended  
-
-
Matched to 50-ohm Single  
Ended  
RL  
-
15  
-
dB  
14/58  
DocID025943 Rev 7  
STW81200  
Electrical specifications  
Table 6. Electrical specifications (continued)  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Direct output (single/differential)  
-
-30/-40  
-
dBc  
H2  
LO 2nd Harmonic  
Divided output  
(single/differential)  
-
-
-
-30/-35  
-15/-15  
-15/-15  
-
-
-
dBc  
dBc  
dBc  
Direct output (single/differential)  
H3  
LO 3rd Harmonic  
Divided output  
(single/differential)  
Direct output @4 GHz  
(single/diff)  
-
-
-
-
-
-45/-60  
-45/-60  
-35/-40  
-40/-45  
28  
-
-
-
-
-
dBm  
dBm  
dBc  
dBc  
Level of Signal with RF  
Mute Enabled  
PMUTE  
Divided output @2 GHz  
(single/diff)  
Direct output @4 GHz  
(single/diff)  
PISO  
Main/aux port isolation  
Divided output @2 GHz  
(single/diff)  
Direct output (1 differential  
output)  
DIV2 buff (1 differential output)  
DIV4 buff (1 differential output)  
DIV8 buff (1 differential output)  
DIV16 buff (1 differential output)  
DIV32 buff (1 differential output)  
DIV64 buff (1 differential output)  
Auxiliary path enabled  
-
-
-
-
-
-
-
47  
56  
65  
75  
83  
92  
19  
-
-
-
-
RF Divider Current  
Consumption(8)  
IDIV  
mA  
-
-
3.3 V to 5 V supply (1  
differential output; POUT  
+7 dBm)  
=
-
-
25  
25  
-
-
3.3 V to 5 V Auxiliary path  
enabled  
RF Output Buffer Current  
Consumption(8)  
IRFOUTBUF  
mA  
2.6 V supply (1 differential  
output; POUT = +1 dBm)  
-
-
12  
12  
-
-
2.6 V Auxiliary path enabled  
DocID025943 Rev 7  
15/58  
57  
Electrical specifications  
STW81200  
Units  
Table 6. Electrical specifications (continued)  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
PLL miscellaneous  
PLL current  
IPLL  
Prescaler, digital dividers, misc.  
-
-
-
20  
-
-
mA  
mA  
Consumption(8)  
ΔΣ Modulator current  
IDSM  
3.5  
consumption(8)  
1. The maximum frequency of the Reference Divider is 200 MHz; when using higher reference clock frequency (up to the  
max. value of 800 MHz) the internal divider by 2 or divider by 4 must be enabled.  
The fractional mode is allowed in the full frequency range only with reference clock frequency >11.93 MHz  
With reference clock frequency in the range 10 MHz to 11.93 MHz, due to the limits of N value in fractional mode, the full  
VCO frequencies would not be addressed in fractional mode; in this case the frequency doubler in the reference path can  
be enabled.  
2. Reference clock signal @ 100 MHz, R=2  
3. The minimum frequency step is obtained as FPFD / (2^21); these typical values are obtained considering FPFD = 100 MHz.  
4. PFD frequency leakage.  
5. This is the level inside the PLL loop bandwidth due to the contribution of the ΔΣ Modulator. In order to obtain the fractional  
spurs level for a specific frequency offset, the attenuation provided by the loop filter at such offset should be subtracted.  
6. Once a VCO is programmed at the initial temperature T0 inside the operating temperature range (-40 °C to +85 °C), the  
synthesizer is able to maintain the lock status only if the temperature drift (in either direction) is within the limit specified by  
ΔTLK, provided that the final temperature Tf is still inside the nominal range.  
7. In order to guarantee the performance of ΔTLK the bit CAL_TEMP_COMP in register ST6 must be set to ‘1’.  
8. Current consumption measured with PLL locked in following conditions: Reference clock signal @ 100 MHz; PFD  
@50 MHz (R=2); VCO @ 4005 MHz  
16/58  
DocID025943 Rev 7  
STW81200  
Electrical specifications  
Table 7. Phase noise specifications  
Parameter  
Normalized In-Band Phase Noise(1) Floor(2)  
Min  
Typ  
Max  
Units  
-
-227  
-
dBc/Hz  
VCO Open Loop Phase Noise(1) at FOUT @ 4 GHz – VIN=5.0 V, VREG=4.5 V  
Phase Noise @ 1 kHz  
Phase Noise @ 10 kHz  
Phase Noise @ 100 kHz  
Phase Noise @ 1 MHz  
Phase Noise @ 10 MHz  
Phase Noise @ 100 MHz  
-
-
-
-
-
-
-64  
-91  
-
-
-
-
-
-
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
-114  
-135  
-154  
-160  
VCO Open Loop Phase Noise(1) at FOUT @ 4 GHz/2 = 2GHz – VIN=5.0 V, VREG=4.5 V  
Phase Noise @ 1 kHz  
Phase Noise @ 10 kHz  
Phase Noise @ 100 kHz  
Phase Noise @ 1 MHz  
Phase Noise @ 10 MHz  
Phase Noise @ 40 MHz  
-
-
-
-
-
-
-70  
-97  
-
-
-
-
-
-
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
-120  
-141  
-156  
-159  
VCO Open Loop Phase Noise(1) at FOUT @ 4 GHz/4 = 1 GHz – VIN=5.0 V, VREG=4.5 V  
Phase Noise @ 1 kHz  
Phase Noise @ 10 kHz  
Phase Noise @ 100 kHz  
Phase Noise @ 1 MHz  
Phase Noise @ 10 MHz  
Phase Noise Floor  
-
-
-
-
-
-
-76  
-
-
-
-
-
-
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
-103  
-126  
-146  
-159  
-160  
VCO Open Loop Phase Noise(1) at FOUT @ 4 GHz/32 = 125 MHz – VIN=5.0 V, VREG=4.5 V  
Phase Noise @ 1 kHz  
Phase Noise @ 10 kHz  
Phase Noise @ 100 kHz  
Phase Noise @ 1 MHz  
Phase Noise @ 10 MHz  
Phase Noise Floor  
-
-
-
-
-
-
-92  
-
-
-
-
-
-
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
-121  
-144  
-161  
-163  
-164  
DocID025943 Rev 7  
17/58  
57  
 
Electrical specifications  
STW81200  
Units  
Table 7. Phase noise specifications  
Parameter Min  
Typ  
Max  
VCO Open Loop Phase Noise(1) at FOUT @ 4 GHz – VIN=3.6V , VREG=3.3 V  
Phase Noise @ 1 kHz  
Phase Noise @ 10 kHz  
Phase Noise @ 100 kHz  
Phase Noise @ 1 MHz  
Phase Noise @ 10 MHz  
Phase Noise @ 100 MHz  
-
-
-
-
-
-
-62  
-
-
-
-
-
-
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
-89  
-113.2  
-133.6  
-152.4  
-158.5  
VCO Open Loop Phase Noise(1) at FOUT @ 4 GHz – VIN=3.0 V, VREG=2.6 V  
Phase Noise @ 1 kHz  
Phase Noise @ 10 kHz  
Phase Noise @ 100 kHz  
Phase Noise @ 1 MHz  
Phase Noise @ 10 MHz  
Phase Noise @ 100 MHz  
-
-
-
-
-
-
-60.5  
-88  
-
-
-
-
-
-
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
-110.3  
-131  
-150  
-157  
1. Phase Noise SSB unless otherwise specified. The VCO Open loop figures are specified at 4.5/5 V on VCC_VCO_Core  
(pin #3).  
2. Normalized PN = Measured PN – 20log(N) – 10log(FPFD) where N is the VCO divider ratio and FPFD is the comparison  
frequency at the PFD input.  
18/58  
DocID025943 Rev 7  
 
STW81200  
Typical Performance Characteristics  
6
Typical Performance Characteristics  
Figure 3. VCO open-loop phase noise  
Figure 4. Closed-loop phase noise at 4.8 GHz,  
divided by 1 to 64 (5 V supply)  
(5 V supply)  
Figure 5. VCO open-loop phase noise at  
4.4 GHz vs. supply  
Figure 6. VCO open-loop phase noise over  
frequency vs. supply  
DocID025943 Rev 7  
19/58  
57  
 
 
 
 
 
Typical Performance Characteristics  
STW81200  
Figure 7. Single sideband integrated phase  
Figure 8. Figure of merit  
noise vs. frequency and supply (F  
= 50 MHz)  
PFD  
Figure 9. Phase noise and fractional spurs at Figure 10. Phase noise and fractional spurs at  
2646.96 MHz vs. supply (F = 61.44 MHz) 2118.24 MHz vs. supply (F = 61.44 MHz)  
PFD  
PFD  
Figure 11. Phase noise and fractional spurs at Figure 12. Phase noise and fractional spurs at  
2118.24 MHz at 5.0 V supply (F  
= 61.44 MHz) 2118.24 MHz at 3.6 V supply (F  
= 61.44 MHz)  
PFD  
PFD  
20/58  
DocID025943 Rev 7  
 
 
 
 
 
 
STW81200  
Typical Performance Characteristics  
Figure 13. Phase noise and fractional spurs at  
Figure 14. Phase noise at 5.625 GHz and  
2118.24 MHz at 3.0 V supply (F  
= 61.44 MHz)  
4.6 GHz (F  
= 50 MHz)  
PFD  
PFD  
Figure 15. Typical VCO control voltage  
after VCO calibration (3.6 V supply)  
Figure 16. Average K  
over VCO frequency  
VCO  
and supply  
Figure 17. Output power level vs. temperature - Figure 18. Output power level – single ended  
single ended (RF_OUT_PWR=7) (3 dB more for differential)  
DocID025943 Rev 7  
21/58  
57  
 
 
 
 
 
 
Typical Performance Characteristics  
STW81200  
Figure 19. Typical spur level at PFD offset over  
carrier frequency (5.0 V supply)  
Figure 20. Typical spur level vs. offset from  
4.5 GHz (5.0 V supply, F =50MHz)  
PFD  
Figure 21. 10 kHz fractional spur (integer  
boundary) vs. temperature  
Figure 22. 800 kHz fractional spur (integer  
boundary) vs. temperature  
(5.0 V supply, F  
= 50 MHz)  
(5.0 V supply, F  
= 50 MHz)  
PFD  
PFD  
Figure 23. Frequency settling with VCO  
calibration – wideband view  
Figure 24. Frequency settling with VCO  
calibration – narrowband view  
22/58  
DocID025943 Rev 7  
 
 
 
 
 
 
STW81200  
Typical Performance Characteristics  
Figure 25. Overall current consumption vs.  
temperature (5.0 V supply, F = 50 MHz)  
Figure 26. Current consumption – standard vs.  
low power (5.0 V supply, F  
= 50 MHz)  
PFD  
PFD  
Figure 27. Current consumption – standard vs. Figure 28. Current consumption – standard vs.  
low power (3.6 V supply, F = 50 MHz) low power (3.0 V supply, F = 50 MHz)  
PFD  
PFD  
DocID025943 Rev 7  
23/58  
57  
 
 
 
 
Circuit description  
STW81200  
7
Circuit description  
7.1  
Reference input stage  
The reference input stage provides different modes for the reference clock signal.  
Both single-ended and differential modes (LVDS, LVECPL) are supported; a crystal mode is  
also provided in order to build a Pierce type crystal oscillator. Figure 29 shows the  
connections required for the different configurations supported.  
In single-ended and differential modes the inputs must be AC coupled as the REF_CLKP  
and REF_CLKN pins are internally biased to an optimal DC operating point. The input  
resistance is 100 ohms differential and the best performance for phase noise is obtained for  
signals with a higher slew rate, such as a square wave.  
Figure 29. Reference clock buffer configurations: single-ended (A), differential (B),  
crystal mode (C)  
REF_CLKP  
REF_CLKP  
REF_CLKN  
REF_CLKP  
REF_CLKN  
100 Ω  
REF_CLKN  
A)  
B)  
C)  
7.2  
Reference divider  
The 13-bit programmable reference counter is used to divide the input reference frequency  
to the desired PFD frequency. The division ratio is programmable from 1 to 8191.  
The maximum allowed input frequency of the R-Counter is 200 MHz.  
The reference clock can be extended up to 400 MHz enabling the divide-by-2 stage or up to  
800 MHz enabling the divide-by-4 stage.  
A frequency doubler is provided in order to double low reference frequencies and increase  
the PFD operating frequency thus allowing an easier filtering of the out-of-band noise of the  
Delta-Sigma Modulator; the doubler is introducing a noise degradation in the in-band PLL  
noise thus this feature should be carefully used.  
When the doubler is enabled, the maximum reference frequency is limited to 25 MHz.  
24/58  
DocID025943 Rev 7  
 
 
 
 
STW81200  
Circuit description  
7.3  
PLL N divider  
The N divider sets the division ratio in the PLL feedback path.  
Both Integer-N and Fractional-N PLL architectures are implemented in order to ensure the  
best overall performance of the synthesizer.  
The Fractional-N division is achieved combining the integer divider section with a Delta-  
Sigma modulator (DSM) which sets the fractional part of the overall division ratio.  
st nd rd  
The DSM is implemented as a MASH structure with programmable order (2 bit; 1 , 2 , 3  
th  
and 4 order), programmable MODULUS (21 bit).  
It includes also a DITHERING function (1 bit) which can be used to reduce fractional spur  
tones by spreading the DSM sequence and consequently the energy of the spurs over a  
wider bandwidth.  
The overall division ratio N is given by:  
N = NINT + NFRAC  
The integer part N  
is 17-bit programmable and can range from 24 to 131071 in Integer  
INT  
Mode. For N  
512 the fractional mode is not allowed and the setting used for DSM does  
INT  
not have any effect.  
Based upon the selected order of the Delta-Sigma Modulator the allowed range of N  
values changes as follows:  
INT  
24 to 510 - 1st Order DSM  
25 to 509 - 2nd Order DSM  
27 to 507 - 3rd Order DSM  
31 to 503 - 4th Order DSM  
The fractional part N  
of the division ratio is controlled by setting the values FRAC and  
FRAC  
MOD (21 bits each) and it depends also on the value of DITHERING (1 bit):  
FRAC DITHERING  
NFRAC = ---------------- + -----------------------------------  
MOD  
2 MOD  
The MOD value can range from 2 to 2097151, while the range of FRAC is from 0 to MOD-1.  
If the DITHERING function is not used (DITHERING=0) the fractional part of N is simply  
achieved as ratio of FRAC over MOD.  
DocID025943 Rev 7  
25/58  
57  
 
Circuit description  
STW81200  
The resulting VCO frequency is:  
Fref  
Fref  
FRAC DITHERING  
FVCO = --------- N = --------- NINT + ---------------- + -----------------------------------  
R
R
MOD  
2 MOD  
where:  
F
F
is the output frequency of VCO  
VCO  
is the input reference frequency  
ref  
R is the division ratio of reference chain  
N is the overall division ratio of the PLL  
The implementation with programmable modulus allows the user to select easily the desired  
fraction and the exact synthesized frequency without any approximation.  
The MOD value can be set to very high values thus the frequency resolution of the  
synthesizer can reach very fine steps (down to a few hertz).  
A ‘low spur mode’ could be configured by maximizing both FRAC and MOD values, keeping  
the same desired FRAC/MOD ratio, and setting the DITHERING bit to ‘1’. The drawback is a  
small frequency error, equal to F  
/(2*MOD), on the synthesized frequency which is in the  
PFD  
range of a few hertz, usually tolerated by most applications.  
7.3.1  
Fractional spurs and compensation mechanism  
The fractional PLL operation generates unwanted fractional spurs around the synthesized  
frequency.  
The integer boundary spurs occur when the carrier frequency is close to an integer multiple  
of the PFD frequency. If the frequency difference between the carrier and the N*F  
falls  
PFD  
inside the PLL loop bandwidth, the integer boundary spur is unfiltered and represents the  
worst case situation giving the highest spur level.  
The channel spurs are generated by the delta-sigma modulator operations and depend on  
its settings (they are mainly related to the MOD value). The channel spurs appear at a  
frequency offset from the carrier, equal to F  
/MOD and its harmonics, and they are not  
PFD  
21  
integer boundary. If the MOD value is extremely high (close to the maximum value of 2 -1)  
the channel spur offset is of the order of a tenth of a Hertz and it appears as ‘granular noise’  
shaped by the PLL around the carrier.  
The STW81200 provides the user with three different mechanisms to compensate fractional  
spurs: PFD delay mode, charge pump leakage current and down-split current. These  
features should be adopted case-by-case as they give different results spur-level results  
depending on setup conditions (reference clock frequency, PFD frequency, DSM setup,  
VCO frequency, carrier frequency, charge pump current, VCO/charge pump supply voltage).  
PFD delay mode  
The STW81200 implements two programmable differentiated delay lines in the reset path of  
the main flip-flop of the PFD. This allow different delay reset values to be set for VCO  
divided path and reference-clock divided path, allowing an offset value to be forced on the  
PFD and charge-pump characteristics, far enough from the zero in order to guarantee that  
the whole circuit works in a more linear region.  
26/58  
DocID025943 Rev 7  
 
STW81200  
Circuit description  
It is possible to set the sign of the delay through the PFD_DEL_MODE bit in the ST3  
Register (no delay, VCO_DIV_delayed or REF_DIV_delayed). The delay value can be set  
through the PFD_DEL bit in the ST0 Register (2 bit; 0=1.2 ns, 1=1.9 ns, 2=2.5 ns,  
3=3.0 ns). Even though the for spur-compensation settings are best optimized case-by-  
case, the setup ‘VCO_DIV_delayed + 1.2 ns delay’ is strongly recommended for most  
conditions.  
Charge pump leakage current  
A different way to force an offset value on the PFD+CP characteristics is provided within the  
STW81200 by sourcing or sinking a DC leakage current from the charge pump (settings  
available in the ST3 Register). The leakage current is 5-bit programmable starting from a  
base DC current of 10 µA (it can be doubled to 20 uA by setting bit CP_LEAK_x2 = 1b). The  
sign is set by CP_LEAK_DIR bit: 0b = down-leakage (sink), 1b = up-leakage (source).  
The resulting delay offset can be calculated as follows:  
ILEAK  
delay = --------------------------  
FPFD ICP  
Experimental results show that down-leakage currents are more effective than up-leakage.  
The user must be aware that the use of the leakage current mechanism might impact the  
overall phase noise performance by increasing the charge pump noise contribution.  
Down-split current  
This mechanism is enabled through the DNSPLIT_EN bit (ST3 Register), is the injection of  
a down-split current pulse from the charge pump circuit. The current pulse is 16 VCO cycles  
wide while the current level is set by the PFD_DEL bit (ST0 Register) among 4 different  
possible values: 0, 0.25*ICP, 0.5*ICP or 0.75*ICP.  
7.4  
Phase frequency detector (PFD)  
The PFD takes inputs from the reference and the VCO dividers and produces an output  
proportional to the phase error. The PFD includes a delay gate that controls the width of the  
anti-backlash pulse (1.2 to 3 ns). This pulse ensures that there is no dead zone in the PFD  
transfer function.  
Figure 30 shows a simplified schematic of the PFD.  
DocID025943 Rev 7  
27/58  
57  
 
Circuit description  
STW81200  
Figure 30. PFD diagram  
VDD  
Fref  
Up  
DFF  
R
Delay  
R
Fref  
VDD  
DFF  
Down  
ABL  
7.5  
Lock detect  
The lock detector indicates the lock state for the PLL. The lock condition is detected by  
comparing the UP and DOWN outputs of the digital Phase Frequency Detector  
A CMOS logic output signal indicates the lock state; the polarity of the output signal can be  
inverted using the LD_ACTIVELOW bit.  
The lock condition occurs when the delay between the edges of UP and DOWN signals is  
lower than a specific value (3-bit programmable from 2 ns to 16 ns) and this condition is  
stable for a specific number of consecutive PFD cycles (3-bit programmable counter from 4  
to 4096 cycles).  
This flexibility is needed by the lock detector circuitry to work properly with all the possible  
different PLL setups (Integer-N, Fractional-N, different PFD frequencies and so on).  
7.6  
Charge pump  
This block drives two matched current sources, Iup and Idown, which are controlled  
respectively by the UP and DOWN PFD outputs. The nominal value of the output current  
(I ) can be set by a 5-bit word.  
CP  
The minimum value of the output current (I ) is 158 µA.  
CP  
The charge pump also includes a compensation circuit to take into account the K  
VCO  
variation versus VCO control voltage, which changes with temperature and process for a  
specified frequency. The K compensation block adjusts the nominal ICP value,  
VCO  
minimizing the variation of the product I x K  
to keep the PLL bandwidth constant for  
CP  
VCO  
the specified frequency.  
In order to compensate the change of K  
over frequency, the user should manually adjust  
VCO  
the I value to keep the PLL bandwidth constant.  
CP  
In addition, the charge-pump output stage can operate with a 2.5 V to 5.0 V supply voltage.  
The LDO_4V5 regulator, programmable at 2.6 V, 3.3 V and 4.5 V, can be used for this  
purpose. The CP_SUPPLY_MODE[1:0] field (ST4 Register) must be set according to the  
supply voltage.  
28/58  
DocID025943 Rev 7  
 
 
 
STW81200  
Circuit description  
Value  
Table 8. Current value vs. selection  
CPSEL4  
CPSEL3  
CPSEL2  
CPSEL1  
CPSEL0  
Current  
0
0
0
-
0
0
0
-
0
0
0
-
0
0
1
-
0
1
0
-
-
0
IMIN  
158 µA  
316 µA  
-
2*IMIN  
-
-
-
-
-
-
-
-
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
29*IMIN  
30*IMIN  
31*IMIN  
4.58 mA  
4.74 mA  
4.9 mA  
7.7  
Fast lock mode  
The fast-lock feature can be enabled to trade fast settling time with spurs rejection,  
performances which generally require different settings of PLL bandwidth (narrow for better  
spurs rejection and wide for fast settling time).  
A narrow bandwidth for lower spurs can be designed for the lock state while a wider  
bandwidth can be designed for the PLL transients.  
The wider bandwidth is achieved during the transient by increasing the charge pump current  
and reducing accordingly the dumping resistor value of the loop filter in order to keep the  
phase margin of the PLL constant. The duration of the PLL wide band mode, in terms of  
number of PFD cycles, is set by programming the fast lock 13 bit counter.  
7.8  
7.9  
Cycle slip reduction  
The use of high F  
slips.  
/PLL_BW ratios may lead to an increased settling time due to cycle  
PFD  
A cycle slip compensation circuit is provided which automatically increases the charge  
pump current for high frequency errors and restores the programmed value at the end of the  
locking phase.  
Voltage controlled oscillators (VCOs)  
The STW81200 VCO section consists of three separate low-noise VCOs with different LC  
Tanks structures to cover a wide band from 3000 MHz to 6000 MHz.  
Each VCO is implemented using a structure with multiple sub-bands to keep low the VCO  
sensitivity (Kvco), thus resulting in low phase noise and spurs performances.  
The correct VCO and sub-band selection is automatically performed by dedicated digital  
circuitry (clocked by the PFD) at every new frequency programming. The VCO calibration  
starts when the ST0 Register is written.  
During the selection procedure the VCTRL of the VCO is charged to a fixed reference  
voltage.  
DocID025943 Rev 7  
29/58  
57  
 
 
 
 
Circuit description  
STW81200  
The procedure for the VCO and sub-band selection takes approximately 11 * CALDIV PFD  
cycles, where CALDIV is the division ratio of the programmable divider included in the path  
between the PFD and the selection circuitry. The maximum frequency allowed for the sub-  
band selection is 250 kHz and the CALDIV value must be set accordingly if the PFD  
frequency is higher.  
Once the correct VCO and sub-band are selected the normal PLL operations are resumed.  
The VCO core can be supplied from 2.5 to 5 V. The LDO_4V5 regulator (programmable to  
4.5 V, 3.3 V and 2.6 V) is used for this purpose. Furthermore, the amplitude of oscillation,  
which trades current consumption for phase noise performance, is 4-bit programmable (ST4  
Register, VCO_AMP bit). Section 7.15: STW81200 register descriptions shows the allowed  
ranges of oscillation amplitude for each available supply setting. In order to achieve the best  
phase noise performance, the maximum amplitude setting is recommended.  
7.10  
RF output divider stage  
The signal coming from the VCOs is fed to a flexible RF divider stage.  
The divider ratio is programmable among different values (1, 2, 4, 8,16, 32 and 64) and  
allows the selection of the desired output frequency band:  
3.0 to 6.0 GHz (divider ratio = 1)  
1.5 to 3.0 GHz (divider ratio = 2)  
0.75 to 1.5 GHz (divider ratio = 4)  
375 to 750 MHz (divider ratio = 8)  
187.5 to 375 MHz (divider ratio = 16)  
93.75 to 187.5 MHz (divider ratio = 32)  
46.875 to 93.75 MHz (divider ratio = 64)  
The final output stage buffer (pins RF1_OUTP, RF1_OUTN) is internally broadband  
matched to 100-ohm differential (50-ohm single-ended) and it delivers up to +7 dBm of  
output power on a 100-ohm differential load (+4 dBm on 50-ohm from each single-ended  
output).  
The final output stage buffer has a 3-bit programmable output level and can be powered  
down by software and/or hardware (pin PD_RF1) while the internal PLL is locked. The  
related circuitry, together with VCO and charge pump, is compatible with supply voltages  
ranging from 2.5 V to 5 V. The regulator LDO_4V5, which supplies this block, can be set to  
4.5 V, 3.3 V or 2.6 V. When supplied at 2.6 V, only the lowest 2 power levels are allowed  
(see ST4 Register settings, RF_OUT_PWR bit)  
An auxiliary output stage buffer (pins RF2_OUTP and RF2_OUTN) is available with the  
same features of the main one.  
The RF division ratio of this auxiliary output can be set independently from the main output  
in order to increase the flexibility. Furthermore it is possible to get, on the auxiliary output, a  
signal in phase or in quadrature with the main one, if the same frequency is selected on both  
outputs.  
The auxiliary output stage can also be powered down by software and/or hardware (pin  
PD_RF2).  
The output stage can be muted until the PLL achieves the lock status; this function can be  
activated by software.  
30/58  
DocID025943 Rev 7  
 
STW81200  
Circuit description  
7.11  
Low-power functional modes  
All the performance characteristics defined in the electrical specifications are achieved in full  
current mode. The STW81200 is able to provide a set of low power functional modes which  
allows control of the current consumption of the different blocks.  
This feature can be helpful for those applications requiring low power consumption. The  
power saving modes trade the current consumption with the phase noise performance,  
and/or output level.  
The current of the blocks defined in Table 9 can be set by software, and the power saved on  
each block affect a specific performance as described in the same table.  
Table 9. Blocks with programmable current and related performance  
Block  
VCO Core  
Current Control bits  
Affected Performance  
ST4 Register bits[18:15]  
VCO phase noise (offset >PLL_BW)  
Phase Noise Floor (offset > ~10 MHz)  
Phase Noise Floor (offset > ~10 MHz)  
RF output level  
VCO Buffers and mux ST5 Register bits[12:11]  
RF Dividers Core  
RF output stage  
ST5 Register bits [10:4]  
ST4 Register bits [25:23]  
7.12  
LDO voltage regulators  
Low drop-out (LDO) voltage regulators are integrated to provide the synthesizer with stable  
supply voltages against input voltage, load and temperature variations. Five regulators are  
included to ensure proper isolation among circuit blocks. These regulators are listed below  
along with the target specifications for the regulated output voltage and current capability:  
LDO_DIG (to supply the digital circuitry),  
Vreg = 2.6 V, Imax = 50 mA, Vin Range: 3.0 to 5.4 V  
LDO_REF (to supply the PLL),  
Vreg = 2.6 V, Imax = 50 mA, Vin Range: 3.0 to 5.4 V  
LDO_RF (to supply the rf blocks),  
Vreg = 2.6 V, Imax = 100 mA, Vin Range: 3.0 to 5.4 V  
LDO_VCO (to supply the low-voltage VCO sub-blocks):  
Vreg = 2.6 V, Imax = 100 mA, Vin Range: 3.0 to 5.4 V  
LDO_4V5 (to supply high-voltage sub-blocks):  
Vreg = 4.5 V, 3.3 V and 2.6 V programmable, Imax = 150 mA  
Vin Range: 3.0 to 5.4 V (when Vreg=2.6 V)  
Vin Range: 3.6 to 5.4 V (when Vreg=3.3 V)  
Vin Range: 5.0 to 5.4 V (when Vreg=4.5 V)  
Proper stability and frequency response are achieved by adopting 10 µF load capacitors at  
the regulated output pins. The optimal configuration is achieved by connecting a small  
resistor in series with the capacitor in order to guarantee the controlled ESR required to  
ensure the proper phase margin, together with the best performance in terms of noise and  
PSRR. For a complete view of required connections and component values associated with  
the LDO output pins, see the related PCB schematics section available from the STW81200  
product page on the ST website.  
DocID025943 Rev 7  
31/58  
57  
 
 
 
Circuit description  
STW81200  
Very-low noise requirements have been assumed for the design of the VCO-related  
regulators (LDO_VCO and LDO_4V5). To comply with the noise specifications, these LDOs  
exploit an additional external bypass (feed forward) capacitor of 100 nF.  
All LDOs include over-current protection to avoid short-circuit failures, as well as internal  
power ramping to minimize startup current peaks.  
All LDOs operate from a reference voltage of 1.35 V, which is internally generated by an  
integrated band-gap circuit and noise-filtered through an external 10 µF capacitor.  
7.13  
STW81200 register programming  
The STW81200 has 12 registers (10 R/W + 2 Read-Only) programmed through an SPI  
digital interface. The protocol uses 3 wires (SDI, SCK, LE) for write mode plus an additional  
pin (LD_SDO) for read operation. Each register has 32 bits, one for Read/Write mode  
selection, 4 address bits and 27 data bits.  
Figure 31. SPI Protocol  
1. Bit for double buffering used for some registers only  
32/58  
DocID025943 Rev 7  
 
 
STW81200  
Circuit description  
The Data bits are stored in the internal shift register on the rising edge of SCK.  
The first bit, CO is used for mode selection (0=Write Operation, 1=Read Operation). The bit  
A[3:0] represents the register address, and D[26:0] are the data bits.  
In some registers, the first data bit D26 is used (when set to ‘1’) for double-buffering  
purposes. In this case the register content is stored in a temporary buffer and is transferred  
to the internal register once a write operation is done on the master register ST0.  
Figure 32. SPI timing diagram  
Table 10. SPI timings  
Parameter  
Comments  
Min  
Typ  
Max  
Unit  
Tsetup  
data to clock setup time  
4
1
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
Thold  
Tck  
Tdi  
data to clock hold time  
clock cycle period  
20  
4
disable pulse width  
clock-to-disable time  
enable-to-clock time  
Tcd  
Tec  
1
3
DocID025943 Rev 7  
33/58  
57  
 
 
Circuit description  
STW81200  
7.14  
STW81200 register summary  
Table 11. SPI Register map (address 12 to 15 not available)  
Register  
Name  
Address  
Type  
Description  
Page  
Master register. N divider, CP current.  
Writing to this register starts a VCO calibration  
0x00  
ST0_Register Read/Write  
on page 35  
Read/Write  
ST1_Register Double-  
Buffered  
0x01  
0x02  
FRAC value, RF1 output control  
MOD value, RF2 output control  
on page 36  
on page 37  
on page 38  
Read/Write  
ST2_Register Double-  
Buffered  
Read/Write  
ST3_Register Double-  
Buffered  
R divider, CP leakage, CP down-split pulse, Ref.  
Path selection, Device power down  
0x03  
0x04  
Lock det. control, Ref. Buffer, CP supply mode,  
VCO settings, Output power control  
ST4_Register Read/Write  
on page 40  
on page 42  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
ST5_Register Read/Write  
ST6_Register Read/Write  
ST7_Register Read/Write  
ST8_Register Read/Write  
ST9_Register Read/Write  
ST10_Register Read Only  
ST11_Register Read Only  
Low power mode control bit  
VCO Calibrator, Manual VCO control, DSM settings on page 43  
Fast Lock control, LD_SDO settings  
LDO Voltage Regulator settings  
Reserved (Test & Initialization bit)  
VCO, Lock det. Status, LDO status  
Device ID  
on page 45  
on page 46  
on page 47  
on page 48  
on page 49  
34/58  
DocID025943 Rev 7  
 
 
STW81200  
Circuit description  
7.15  
STW81200 register descriptions  
ST0 Register  
26 25 24 23 22 21 20 19 18 17 16  
15  
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW RW  
RW  
Address:  
Type:  
STW81200BaseAddress + 0x00  
R/W  
Description:  
Master register. N divider, CP current  
[26] RESERVED: must be set to ‘0’  
[25:21] CP_SEL: Set Charge Pump pulse current value (0 to 4.9 mA; step ~158 μA)  
00000: (0) set ICP=0  
00001: (1) set ICP=158 μA  
00010: (2) set ICP=316 μA  
11110: (30) set ICP=4.74 mA  
11111: (31) set ICP=4.90 mA  
[20:19] PFD_DEL: Set PFD anti-backlash delay / down-split current value  
00: (0) 1.2 ns / 0 A (default)  
01: (1) 1.9 ns / 0.25*ICP  
10: (2) 2.5 ns / 0.5*ICP  
11: (3) 3.0 ns / 0.75*ICP  
[18] RESERVED: must be set to ‘0’  
[17] RESERVED: must be set to ‘0’  
[16:0] N: Set integer part of N divider ratio (NINT  
)
For NINT 512, fractional mode is not allowed (FRAC and MOD settings are ignored)  
DocID025943 Rev 7  
35/58  
57  
 
Circuit description  
STW81200  
ST1 Register  
26 25 24 23 22 21 20  
19  
18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
RW RW RW  
RW  
RW  
Address:  
STW81200BaseAddress + 0x01  
R/W  
Type:  
Applicability:  
Description:  
Double buffered (based upon DBR bit setting)  
FRAC value, RF1 output control  
[26] DBR: Double buffering bit enable; at ‘1’ the register is buffered and transferred only once the master  
register ST0 is written  
[25] RESERVED: must be set to ‘0’  
[24] RF1_OUT_PD: RF1 output power down  
0 = RF1 output enabled  
1 = RF1 output disabled  
[23:21] RF1_DIV_SEL: RF1 output divider selection  
000: (0) VCO direct  
001: (1) VCO divided by 2  
010: (2) VCO divided by 4  
011: (3) VCO divided by 8  
100: (4) VCO divided by 16  
101: (5) VCO divided by 32  
110: (6) VCO divided by 64  
111: (7) Reserved  
[20:0] FRAC: Fractional value bit; set the numerator value of the fractional part of the overall division ratio  
(N=NINT+FRAC/MOD)  
Range: 0 to 2097151 (must be < MOD)  
36/58  
DocID025943 Rev 7  
STW81200  
Circuit description  
ST2 Register  
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
RW RW RW  
RW  
RW  
Address:  
STW81200BaseAddress + 0x02  
R/W  
Type:  
Applicability:  
Description:  
Double buffered (based upon DBR bit setting)  
MOD value, RF2 output control  
[26] DBR: Double buffering bit enable; at ‘1’ the register is buffered and transferred only once the master  
register ST0 is written  
[25] RESERVED: must be set to ‘0’  
[24] RF2_OUT_PD: RF2 output power down  
0 = RF2 output enabled  
1 = RF2 output disabled  
[23:21] RF2_DIV_SEL: RF2 output divider selection  
000: (0) VCO direct  
001: (1) VCO divided by 2  
010: (2) VCO divided by 4  
011: (3) VCO divided by 8  
100: (4) VCO divided by 16  
101: (5) VCO divided by 32  
110: (6) VCO divided by 64  
111: (7) same divided output of RF1 (not valid if RF1_DIV_SEL=0)  
[20:0] MOD: Modulus value bit; set the denominator value of the fractional part of the overall division ratio  
(N=NINT+FRAC/MOD)  
Range: 2 to 2097151  
DocID025943 Rev 7  
37/58  
57  
Circuit description  
STW81200  
ST3 Register  
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RW RW RW  
RW  
RW RW  
RW  
RW  
RW  
Address:  
STW81200BaseAddress + 0x03  
R/W  
Type:  
Applicability:  
Description:  
Double buffered (based upon DBR bit setting)  
R divider, CP leakage, CP down-split pulse, Ref. Path selection, Device power down  
[26] DBR: Double buffering bit enable; at ‘1’ the register is buffered and transferred only once the master  
register ST0 is written  
[25] PD: device power down; at ‘1’ put OFF all blocks (except LDOs)  
[24] CP_LEAK_x2: double Charge Pump leakage current bit  
0 = set standard leakage current (10 µA step)  
1 = set doubled leakage current (20 µA step)  
[23:19] CP_LEAK: Set Charge Pump leakage current value (0 to 620 μA; step 10 μA or 20 μA base upon  
CP_LEAK_x2 setting)  
00000: (0) set ILEAK = 0 (default)  
00001: (1) set ILEAK = 10 μA (ILEAK = 20 μA if CP_LEAK_x2 = 1)  
00010: (2) set ILEAK = 20 μA (ILEAK = 40 μA if CP_LEAK_x2 = 1)  
11110: (30) set ILEAK = 300 μA (ILEAK = 600 μA if CP_LEAK_x2 = 1)  
11111: (31) set ILEAK = 310 μA (ILEAK = 620 μA if CP_LEAK_x2 = 1)  
[18] CP_LEAK_DIR: set direction of the leakage current  
0: set down-leakage (current sink)  
1: set up-leakage (current source)  
[17] DNSPLIT_EN: at ‘1’ enables down-split pulse current; current level set by PFD_DEL[1:0] in register ST0  
38/58  
DocID025943 Rev 7  
 
STW81200  
Circuit description  
[16:15] PFD_DEL_MODE: set PFD delay mode; delay values set by PFD_DEL[1:0] in register ST0  
00: (0) no delay (default)  
01: (1) VCO_DIV delayed  
10: (2) REF_DIV delayed  
11: (3) Reserved  
[14:13] REF_PATH_SEL: reference clock path selection  
00: (0) Direct  
01: (1) Doubled in single mode; Not Applicable in differential mode  
10: (2) Divided by 2  
11: (3) Divided by 4  
[13:0] R: set Reference clock divider ratio (1 to 8191)  
DocID025943 Rev 7  
39/58  
57  
Circuit description  
STW81200  
ST4 Register  
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
RW  
RW  
RW RW RW RW  
RW  
RW  
RW  
RW RW  
RW  
RW RW  
RW  
RW  
Address:  
Type:  
STW81200BaseAddress + 0x04  
R/W  
Description:  
Lock det. control, Ref. Buffer, CP supply mode, VCO settings, Output power control  
[26] RESERVED: must be set to ‘0’  
[25:23] RF_OUT_PWR: RF output power control bit; set output power level of differential signal (valid  
for both RF1 and RF2 outputs; measured @ 4 GHz). When VCC_RFOUT is supplied at 2.6 V  
‘0’ and ‘1’ are the only values allowed.  
000: (0) -1.0 dBm (-4.0 dBm on each single-ended signal)  
001: (1) +1.0 dBm (-2.0 dBm on each single-ended signal)  
010: (2) +2.5 dBm (-0.5 dBm on each single-ended signal)  
011: (3) +3.5 dBm (+0.5 dBm on each single-ended signal)  
100: (4) +4.5 dBm (+1.5 dBm on each single-ended signal)  
101: (5) +5.5 dBm (+2.5 dBm on each single-ended signal)  
110: (6) +6.5 dBm (+3.5 dBm on each single-ended signal)  
111: (7) +7.0 dBm (+4.0 dBm on each single-ended signal)  
[22] VCO_2V5_MODE: to be set to ‘1’ when VCO core (pin #3) is supplied at 2.6 V  
[21] RESERVED: must be set to ‘0’  
[20] RESERVED: must be set to ‘0’  
[19] EXT_VCO_EN: external VCO Buffer enable  
0: external VCO buffer disabled; integrated VCOs are used  
1: external VCO buffer enabled; external VCO required (internal VCOs are powered down)  
[18:15] VCO_AMP: set VCO signal amplitude at the internal oscillator circuit nodes; higher signal level  
gives best phase noise performance while lower signal level gives low current consumption.  
Different ranges of value are available, based upon the supply voltage provided to pin  
VCC_VCO_core (pin #3).  
Allowed settings:  
0000 to 0110: (0-6) when VCO core is supplied at 2.6 V  
0000 to 1010: (0-10) when VCO core is supplied at 3.3 V  
0000 to 1111: (0-15) when VCO core is supplied at 4.5/5 V  
40/58  
DocID025943 Rev 7  
 
STW81200  
Circuit description  
[14] PLL_MUX_DIV: PLL MUX setting; select the desired signal path from VCO to the N Divider  
(VCO divider in the PLL feedback path):  
0: VCO direct to N Divider (default)  
1: VCO divided to N Divider (division ratio set by RF1_DIV_SEL in register ST1)  
[13:12] CP_SUPPLY_MODE: Charge Pump supply mode settings; value to be set according to the  
supply used for charge pump core circuit (pin #16)  
00: (0) 4.5V to 5.0 V  
01: (1) 3.3 V  
10: (2) 2.6 V  
11: (3) Reserved  
[11] KVCO_COMP_DIS: disable KVCO compensation circuit  
0: compensation enabled (default - CP current auto-adjusted to compensate KVCO variation)  
1: compensation disabled (CP current fixed by CP_SEL settings)  
[10] PFD_POL: set PFD polarity  
0: standard mode (default)  
1: “inverted” mode (to be used only with active inverting loop filter or with VCO with negative  
tuning characteristics)  
[9:8] REF_BUFF_MODE: set Reference Clock buffer mode  
00: (0) Reserved  
01: (1) Differential Mode (Ref. clock signal on pin #20 and #21)  
10: (2) XTAL Mode (Xtal oscillator enabled with crystal connected on pin #20 and #21)  
11: (3) Single Ended Mode (Ref. clock signal on pin #21)  
[7] MUTE_LOCK_EN: enables mute function  
0: “mute on unlock” function disabled  
1: “mute on unlock” function enabled (RF output stages are put OFF when PLL is unlocked)  
[6] LD_ACTIVELOW: set low state as lock indicator  
0: set lock indicator active high (LD=0 means PLL unlocked; LD=1 means PLL locked)  
1: set lock indicator active low (LD=0 means PLL locked; LD=1 means PLL unlocked)  
[5:3] LD_PREC: set Lock Detector precision  
000: (0) 2 ns (default for Integer Mode)  
001: (1) 4 ns (default for Fractional Mode)  
010: (2) 6 ns  
011: (3) 8 ns  
100: (4) 10 ns  
101: (5) 12 ns  
110: (6) 14 ns  
111: (7) 16 ns  
[2:0] LD_COUNT: set Lock Detector counter for lock condition  
000: (0) 4  
001: (1) 8 (default for FPFD ~1MHz in Integer Mode)  
010: (2) 16  
011: (3) 64  
100: (4) 256  
101: (5) 1024 (default for FPFD ~50MHz in both Fractional/Integer Mode)  
110: (6) 2048  
111: (7) 4096  
DocID025943 Rev 7  
41/58  
57  
Circuit description  
STW81200  
ST5 Register  
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
RW RW  
RW  
RW RW RW RW RW RW RW RW RW RW RW RW RW  
Address:  
Type:  
STW81200BaseAddress + 0x05  
R/W  
Description:  
Low power mode control bit  
[26] RESERVED: must be set to ‘0’  
[25] RESERVED: must be set to ‘0’  
[24:13] RESERVED: must be set to ‘0’  
[12] VCO_BUFF_LP: VCO Buffer low power mode (0=full power; 1=low power)  
[11] VCO_MUX_LP: VCO MUX low power mode (0=full power; 1=low power)  
[10] RF_DIV2_LP: RF Div. by 2 low power mode (0=full power; 1=low power)  
[9] RF_DIV4_LP: RF Div. by 4 low power mode (0=full power; 1=low power)  
[8] RF_DIV8_LP: RF Div. by 8 low power mode (0=full power; 1=low power)  
[7] RF_DIV16_LP: RF Div. by 16 low power mode (0=full power; 1=low power)  
[6] RF_DIV32_LP: RF Div. by 32 low power mode (0=full power; 1=low power)  
[5] RF_DIV64_LP: RF Div. by 64 low power mode (0=full power; 1=low power)  
[4] RF_DIV_MUXOUT_LP: RF Div. MUX low power mode (0=full power; 1=low power)  
[3] RESERVED: must be set to ‘0’  
[2] PLL_MUX_LP: MUX PLL low power mode (0=full power; 1=low power)  
[1] RESERVED: must be set to ‘0’  
[0] REF_BUFF_LP: Ref. Buffer low power mode (0=full power; 1=low power)  
42/58  
DocID025943 Rev 7  
STW81200  
Circuit description  
ST6 Register  
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
RW RW RW  
RW  
RW RW  
RW  
RW  
RW  
RW  
RW  
RW  
Address:  
Type:  
STW81200BaseAddress + 0x06  
R/W  
Description:  
VCO Calibrator, Manual VCO control, DSM settings  
[26] DITHERING: at ‘1’ enables dithering of DSM output sequence  
[25] CP_UP_OFF: for test purposes only; must be set to ‘0’  
[24] CP_DN_OFF: for test purposes only; must be set to ‘0’  
[23:22] DSM_ORDER: set the order of Delta-Sigma Modulator  
00: (0) 3rd order DSM (recommended)  
01: (1) 2nd order DSM  
10: (2) 1st order DSM  
11: (3) 4th order DSM  
[21] DSM_CLK_DISABLE: for test purposes only; must be set to ‘0’  
[20] MAN_CALB_EN: enables manual VCO calibrator mode  
0: automatic VCO calibration (VCO_SEL, VCO_WORD settings are ignored)  
1: manual VCO calibration (VCO_SEL, VCO_WORD settings are used and the VCO calibration  
procedure is inhibited)  
[19:18] VCO_SEL: VCO selection bit  
00: (0) VCO_HIGH  
01: (1) VCO_LOW  
10: (2) VCO_MID  
11: (3) VCO_LOW  
[17:13] VCO_WORD: select specific VCO sub-band (range:0 to 31)  
[12] CAL_TEMP_COMP: at ‘1’ enables temperature compensation for VCO calibration procedure (to be used  
when PLL Lock condition is required on extremes thermal cycles)  
DocID025943 Rev 7  
43/58  
57  
 
Circuit description  
STW81200  
[11:10] PRCHG_DEL: set the number of calibration slots for pre-charge of VCTRL node at the Voltage reference  
value used during VCO calibration procedure  
00: (0) 1 slot (default)  
01: (1) 2 slots  
10: (2) 3 slots  
11: (3) 4 slots  
[9] CAL_ACC_EN: at ‘1’ increase calibrator accuracy by removing residual error taking 2 additional  
calibration slots (default = ‘0’)  
[8:0] CAL_DIV: Set Calibrator Clock divider ratio (Range:1 to 511); ‘0’ set the maximum ratio (‘511’)  
44/58  
DocID025943 Rev 7  
STW81200  
Circuit description  
ST7 Register  
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RW RW RW RW  
RW  
RW RW RW  
RW  
RW  
Address:  
Type:  
STW81200BaseAddress + 0x07  
R/W  
Description:  
Fast Lock control, LD_SDO settings  
[26] RESERVED: must be set to ‘0’  
[25] LD_SDO_tristate: at ‘1’ put LD_SDO out pin in Tri-State mode  
[24] LD_SDO_MODE: LD_SDO output interface mode selection  
0: Open Drain mode (Level Range: 1.8V to 3.6V)  
1: 2.5V CMOS output mode  
[23] SPI_DATA_OUT_DISABLE: disable auto-switch of LD_SDO pin during SPI read mode  
0: LD_SDO pin automatically switched to SPI data out line during SPI read mode  
1: LD_SDO pin fixed to Lock detector indication (SPI read operation not possible)  
[22:21] LD_SDO_SEL: LD_SDO Mux output selection bit  
00: (0) Lock Detector (default)  
01: (1) VCO Divider output (for test purposes only)  
10: (2) Calibrator VCO Divider output (for test purposes only)  
11: (3) Fast Lock clock output (for test purposes only)  
[20] REGDIG_OCP_DIS: for test purposes only ; must be set to ‘0’ (at ‘1’ disable the over-current protection  
of Digital LDO Voltage Regulator)  
[19] CYCLE_SLIP_EN: at ‘1’ enables Cycle Slip feature  
[18] FSTLCK_EN: at ‘1’ enables Fast lock mode using pin #6 (PD_RF2/FL_SW)  
[17:13] CP_SEL_FL: set the Charge Pump current during fast lock time slot (range:0 to 31)  
[12:0] FSTLCK_CNT: Fast-Lock counter value (Range: 2 to 8191); set duration of fast-lock time slot as number  
of FPFD cycles  
DocID025943 Rev 7  
45/58  
57  
Circuit description  
STW81200  
ST8 Register  
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
RW RW RW RW RW RW RW RW RW  
RW  
RW RW  
RW  
RW RW  
RW  
RW RW  
RW  
RW RW  
RW  
Address:  
Type:  
STW81200BaseAddress + 0x08  
R/W  
Description:  
LDO Voltage Regulator settings  
[26] PD_RF2_DISABLE: at ‘1’ disable the hardware power down function of the pin PD_RF2 (pin #6) thus  
allowing the pin PD_RF1 (pin #5) to control the power down status of both RF Output stages  
[25] RESERVED: must be set to ‘0’  
[24] RESERVED: must be set to ‘0’  
[23] RESERVED: must be set to ‘0’  
[22] RESERVED: must be set to ‘0’  
[21] RESERVED: must be set to ‘0’  
[20] RESERVED: must be set to ‘0’  
[19] REG_OCP_DIS: for test purposes only; must be set to ‘0’ (at ‘1’ disable the over-current protection of  
LDO Voltage Regulators except DIG regulator)  
[18] REG_DIG_PD: DIGITAL Regulator power down; must be set to ‘0’  
[17:16] REG_DIG_VOUT: DIGITAL Regulator output voltage set  
00: (0) 2.6 V (Default)  
01: (1) 2.3 V (for test purposes only)  
10: (2) 2.4 V (for test purposes only)  
11: (3) 2.5 V (for test purposes only)  
[15] RESERVED: must be set to ‘0’  
[14] REG_REF_PD: REFERENCE CLOCK Regulator power down; must be set to ‘0’  
[13:12] REG_REF_VOUT: REFERENCE CLOCK Regulator output voltage set  
00: (0) 2.6 V (default)  
01: (1) 2.5 V (for test purposes only)  
10: (2) 2.7 V (for test purposes only)  
11: (3) 2.8 V (for test purposes only)  
[11] RESERVED: must be set to ‘0’  
[10] REG_RF_PD: RF Output section Regulator power down; must be set to ‘0’  
46/58  
DocID025943 Rev 7  
 
STW81200  
Circuit description  
[9:8] REG_RF_VOUT: RF Output section Regulator output voltage set  
00: (0) 2.6 V (default)  
01: (1) 2.5 V (for test purposes only)  
10: (2) 2.7 V (for test purposes only)  
11: (3) 2.8 V (for test purposes only)  
[7] RESERVED: must be set to ‘0’  
[6] REG_VCO_PD: VCO bias-and-control regulator power down; must be set to ‘0’  
[5:4] REG_VCO_VOUT: VCO bias-and-control regulator output voltage set  
00: (0) 2.6 V (default)  
01: (1) 2.5 V (for test purposes only)  
10: (2) 2.7 V (for test purposes only)  
11: (3) 2.8 V (for test purposes only)  
[3] RESERVED: must be set to ‘0’  
[2] REG_VCO_4V5_PD: High-voltage regulator power down (to be used to supply VCO core, RF output final  
stage and Charge Pump). Must be set to ‘0’  
[1:0] REG_VCO_4V5_VOUT: High-voltage regulator output voltage set (to be used to supply VCO core, RF  
output final stage and charge-pump output)  
00: (0) 5.0 V (Require 5.4 V unregulated voltage line on pin# 36 for test purposes only)  
01: (1) 2.6 V (3.0-5.4 V unregulated voltage line Range allowed on pin#36)  
10: (2) 3.3 V (3.6-5.4 V unregulated voltage line Range allowed on pin#36)  
11: (3) 4.5 V (5.0-5.4 V unregulated voltage line Range allowed on pin#36)  
ST9 Register  
26  
25  
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
RW  
Address:  
Type:  
STW81200BaseAddress + 0x09  
R/W  
Description:  
Reserved (Test & Initialization bit)  
[26:0] RESERVED: Test & Initialization bit; must be set to ‘0’  
DocID025943 Rev 7  
47/58  
57  
Circuit description  
STW81200  
ST10 Register  
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
Address:  
Type:  
STW81200BaseAddress + 0x0A  
R
Description:  
VCO, Lock det. Status, LDO status  
[26:18] RESERVED: fixed to ‘0’  
[17] REG_DIG_STARTUP: DIGITAL regulator ramp-up indicator (‘1’ means correct start-up)  
[16] REG_REF_STARTUP: REFERENCE CLOCK regulator ramp-up indicator (‘1’ means correct start-up)  
[15] REG_RF_STARTUP: RF Output section regulator ramp-up indicator (‘1’ means correct start-up)  
[14] REG_VCO_STARTUP: VCO bias-and-control regulator ramp-up indicator (‘1’ means correct start-up)  
[13] REG_VCO_4V5_STARTUP: High-voltage regulator ramp-up indicator (‘1’ means correct start-up)  
[12] REG_DIG_OCP: DIGITAL regulator over-current protection indicator (‘1’ means over-current detected)  
[11] REG_REF_OCP: REFERENCE CLOCK regulator over-current protection indicator (‘1’ means over-  
current detected)  
[10] REG_RF_OCP: RF Output section regulator over-current protection indicator (‘1’ means over-current  
detected)  
[9] REG_VCO_OCP: VCO Bias and  
Control regulator over-current protection indicator (‘1’ means over-current detected)  
[8] REG_VCO_4V5_OCP: High Voltage regulator over-current protection indicator (‘1’ means over-current  
detected)  
[7] LOCK_DET: Lock detector status bit (‘1’ means PLL locked)  
[6:5] VCO_SEL: VCO selected by Calibration algorithm  
00: (0) VCO_HIGH  
01: (1) VCO_LOW  
10: (2) VCO_MID  
11: (3) VCO_LOW  
[4:0] WORD: specific VCO sub-band selected by Calibration algorithm (Range:0 to 31)  
48/58  
DocID025943 Rev 7  
 
STW81200  
Circuit description  
ST11 Register  
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
R
Address:  
Type:  
STW81200BaseAddress + 0x0B  
R
Description:  
Device ID  
[26:0] Device_ID: Device Identifier (0x0008021)  
DocID025943 Rev 7  
49/58  
57  
 
Circuit description  
STW81200  
7.16  
Power ON sequence  
In order to guarantee the correct start-up of the internal circuitry after the power on, the  
following steps must be followed:  
1. Power up the device (LDO supply pins: pin#9 #18, #28 and #36)  
2. Once the voltages applied on the LDO supply pins are stable, wait 50 ms. (After this  
transient time, the LDOs are powered on with the regulated voltages available at pins  
#2, #8, #19, #27 and #29, while all other circuits are in power down mode)  
3. Provide the reference clock signal  
4. Implement the first programming sequence as follows:  
a) Program register ST9 (test and initialization) with all bit set to ‘0’  
b) Program register ST0 according to the desired configuration  
c) Program the following registers in the specified order according to the desired  
configuration: ST8, ST7, ST6, ST5, ST4, ST3, ST2, ST1, ST0  
5. Check the PLL Lock status on pin LD_SDO (pin #26) and/or read all relevant  
information provided on registers ST10 and ST11.  
7.17  
Example of Register programming  
Setup conditions and requirements:  
Unregulated Supply voltage: 5.0 V  
Reference Clock: 122.88 MHz, single-ended, sine wave  
LO Frequency: 2646.96 MHz – exact freq. mode (VCO Frequency=5293.92 MHz)  
Output Power: +7 dBm (differential)  
Phase Noise requirements: full performance VCO, full performance Noise floor.  
Register configurations (Hex values including register address)  
ST9 = 0x48000000 (initialization; all bits set to ‘0’)  
ST8 = 0x40000003 (REG_4V5 = 4.5 V)  
ST7 = 0x39000000 (“fast lock” not used; LD_SDO pin configured as 2.5 V CMOS  
buffer)  
rd  
ST6 = 0x30001000 (DITHERING=0; DSM_ORDER=0 for 3 order DSM;  
CAL_TEMP_COMP=1 to guarantee lock on extreme temperature drift)  
ST5 = 0x28000000 (low power modes not used)  
ST4 = 0x2387838D (lock detector setting for fractional mode and F  
REF_BUF_MODE=3 for single-ended mode; VCO_AMP=15 for best VCO phase noise  
@4.5 V supply; RF_OUT_PWR=7 to have +7 dBm differential)  
= 61.44 MHz;  
PFD  
ST3 = 0x18008002 (PFD_DEL_MODE = ‘VCO_DIV_delayed’, R=2 and  
REF_PATH_SEL = 0 ‘direct’ for F  
= 61.44 MHz)  
PFD  
ST2 = 0x13000080 (MOD=128; RF2_OUT_PD=1 for RF2 Output in power down)  
ST1 = 0x08200015 (FRAC=21; RF1_DIVSEL=1 set RF1 Output with VCO freq.  
Divided By 2)  
ST0 = 0x03E00056 (N =86; PFD_DEL = 1.2 ns; CPSEL = 31 for Icp = 4.9 mA)  
INT  
50/58  
DocID025943 Rev 7  
 
 
STW81200  
Application information  
8
Application information  
8.1  
Application diagrams  
Figure 33. Application diagram (internal VCO)  
Note:  
This diagram shows a simplified schematic; the Evaluation Board schematic should be used  
as reference for connections and components values. Visit the STW81200 product page on  
the ST website www.st.com/stw81200ad to download the Evaluation Board Data Brief  
including PCB schematics.  
DocID025943 Rev 7  
51/58  
57  
 
 
 
Application information  
STW81200  
Figure 34. Application diagram (external VCO)  
Note:  
This diagram shows a simplified schematic; the Evaluation Board schematic should be used  
as reference for connections and components values. Visit the STW81200 product page on  
the ST website www.st.com/stw81200ad to download the evaluation board data brief  
including PCB schematics.  
52/58  
DocID025943 Rev 7  
 
STW81200  
Application information  
8.2  
Thermal PCB design considerations  
The STW81200 QFN package offers a low thermal resistance (θ ~3°C/W on a JEDEC  
JC  
Multi-Layer Board). Preferred thermal flow in QFN package is through the bottom central  
pad.  
The central thermal pad provides a solderable surface on the top of the PCB (for soldering  
the package die paddle on the board). Thermal vias are needed to provide a thermal path to  
the inner and bottom layers of the PCB in order to remove/dissipate the heat. The size of the  
thermal pad can be matched with the exposed die paddle, or it may be smaller taking into  
consideration clearance for vias to route the inner row signals.  
A PCB can be designed to achieve a thermal impedance of 2 to 4°C/W through a 1.6 mm  
(.063”) thick FR-4 type PCB (a reliable, low cost solution).  
For example the ST EVAL KIT uses a 0.8 mm thick PCB with a thermal impedance of  
~50°C/W for a single via filled with solder. 25 vias are used, giving a thermal impedance of  
~2°C/W with solder-filled vias (50°C/W divided by 25 vias).  
Using a plate on the underside of the PCB (a common solution in STW81200 applications,  
as the plate is typically the metal housing of the application assembly) brings the total  
thermal resistance (junction to housing in the customer application) below 10°C/W.  
As the typical power dissipation of the STW81200 is approximately 1.5 W, at maximum  
specified ambient temperature (85°C) a junction temperature of less than 100°C is  
attainable. This is well below the maximum specified value (125°C) to ensure safe operation  
of the STW81200 in worst-temperature conditions.  
The ST EVAL KIT is not provided with additional heatsinking, and the thermal resistance  
(θ ) measured in the EVAL BOARD is ~30°C/W.  
JA  
DocID025943 Rev 7  
53/58  
57  
 
Evaluation Kit  
STW81200  
9
Evaluation Kit  
An evaluation kit can be supplied upon request (Order Code: STW81200-EVB), including  
the following:  
Evaluation board  
GUI (graphical user interface) to configure the board and the STW81200 IC  
STWPLLSim software for PLL loop filter design and phase noise/transient simulation  
A comprehensive set of documentation (Evaluation board data brief including PCB  
schematics and GUI help, STWPLLSim User Manual).  
The evaluation kit and the related SW and documentation can be ordered/downloaded from  
the ST website at the followng address: www.st.com/stw81200ad.  
Table 12. STW81200 order codes  
Order Code  
STW81200-EVB  
Description  
STW81200 Evaluation Kit (Evaluation Board, GUI and STWPLLSim tool)  
STWPLLSim simulation tool for STW81200  
STSW-RFSOL001  
STSW-RFSOL002  
GUI for configuring STW81200 evaluation board  
54/58  
DocID025943 Rev 7  
 
 
STW81200  
Package information  
10  
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
10.1  
VFQFPN36 package information  
Figure 35. VFQFPN36 package outline  
DocID025943 Rev 7  
55/58  
57  
 
 
 
Package information  
STW81200  
Table 13. VFQFPN36 package mechanical data  
REF.  
A
MIN.  
TYP.  
0.90  
0.02  
0.65  
0.20  
0.23  
6.00  
3.70  
6.00  
3.70  
0.50  
0.55  
MAX.  
1.00  
0.05  
1.00  
NOTES  
0.80  
A1  
A2  
A3  
b
0.18  
5.875  
3.55  
5.875  
3.55  
0.45  
0.35  
0.25  
0.30  
6.125  
3.85  
D
D2  
E
6.125  
3.85  
E2  
e
0.55  
L
0.75  
K
ddd  
0.08  
1. VFQFNP stands for Thermally Enhanced Very thin Fine pitch Quad Flat Package No lead. Very thin:  
A=1.00 Max.  
2. Details of terminal 1 identifier are optional but must be located on the top surface of the package by using  
either a mold or marked features.  
56/58  
DocID025943 Rev 7  
 
STW81200  
Revision history  
11  
Revision history  
Table 14. Document revision history  
Changes  
Date  
Revision  
21-Feb-2014  
07-Apr-2014  
1
2
Initial release.  
Removed confidential banner  
Added HBM footnote in Table 3: Absolute maximum ratings  
Updated device ID in ST11 Register on page 49  
04-Sep-2014  
23-Sep-2014  
3
4
Updated to use latest corporate template and legal disclaimer.  
Changed ‘Multi-band’ to ‘Wideband’ in document title.  
Renamed pin 14 to VDD_CP in Table 2: Pin description.  
Added IOL and IOH values in Table 5: Digital logic levels  
Updated parameter VICP in Table 6: Electrical specifications  
Updated Figure 9 through Figure 28  
Added Section 7.3.1: Fractional spurs and compensation mechanism.  
Updated  
Section 7.6: Charge pump.  
Section 7.9: Voltage controlled oscillators (VCOs)  
Section 7.10: RF output divider stage  
Section 7.11: Low-power functional modes  
Section 7.12: LDO voltage regulators  
Updated ST0 register description in Table 11: SPI Register map (address 12  
12-Jun-2015  
5
to 15 not available)  
Updated following register bitfield descriptions:  
STW81200 register descriptions bit PFD_DEL  
ST3 Register bits CP_LEAK and DNSPLIT_EN  
ST4 Register bit RF_OUT_PWR  
ST6 Register bit MAN_CALB_EN  
ST8 Register bit REG_VCO_4V5_VOUT  
ST10 Register bit REG_VCO_OCP  
Updated Section 7.17: Example of Register programming  
Added notes to Figure 33 and Figure 34  
Added Section 9: Evaluation Kit  
Re formatted Section 10: Package information to comply with latest  
corporate guidelines.  
08-Jul-2015  
04-Jan-2016  
6
7
Regenerated for XML generation.  
Updated parameter Kvco in Table 6: Electrical specifications  
Updated:  
Section 7.6: Charge pump  
Section 7.16: Power ON sequence.  
Re-named Section 8: Application information, and added Section 8.2:  
Thermal PCB design considerations.  
In Table 6: Electrical specifications updated dimensions D2 and E2.  
DocID025943 Rev 7  
57/58  
57  
 
 
STW81200  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2016 STMicroelectronics – All rights reserved  
58/58  
DocID025943 Rev 7  

相关型号:

STW82100B

RF down converter with embedded integer-N synthesizer
STMICROELECTR

STW82101B

RF down converter with embedded integer-N synthesizer
STMICROELECTR

STW82102B

RF down converter with embedded integer-N synthesizer
STMICROELECTR

STW82103B

RF down converter with embedded integer-N synthesizer
STMICROELECTR

STW88N65M5

N-channel 650 V, 0.024 Ω typ., 84 A, MDmesh™ V Power MOSFET in TO-247 and TO-247 long leads packages
STMICROELECTR

STW8A2N

DuroSite? LED Area Light
DIALIGHT

STW8C2N

DuroSite? LED Area Light
DIALIGHT

STW8C2SA

Top View Led
SEOUL

STW8N80

N-CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTORS
STMICROELECTR

STW8NA60

N - CHANNEL ENHANCEMENT MODE FAST POWER MOS TRANSISTOR
STMICROELECTR

STW8NA80

N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTORS
STMICROELECTR

STW8NB100

N - CHANNEL 1000V - 1.2ohm- 8A - TO-247 PowerMESH MOSFET
STMICROELECTR