STW82100B [STMICROELECTRONICS]

RF down converter with embedded integer-N synthesizer; 射频降频转换器采用嵌入式整数N频率合成
STW82100B
型号: STW82100B
厂家: ST    ST
描述:

RF down converter with embedded integer-N synthesizer
射频降频转换器采用嵌入式整数N频率合成

转换器 射频
文件: 总67页 (文件大小:753K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STW82100B  
RF down converter with embedded integer-N synthesizer  
Datasheet production data  
Features  
High linearity:  
– IIP3: +25.5 dBm  
– 2FRF-2FLO spurious rejection: 77 dBc  
VFQFPN-44  
Noise figure:  
Applications  
– NF: 10.5 dB  
Cellular infrastructure equipment:  
– IF sampling receivers  
Conversion gain  
– CG: 8 dB  
– Digital PA linearization loops  
RF range: 1620 MHz to 2400 MHz  
Other wireless communication systems.  
Wide IF amplifier frequency range: 70 MHz to  
400 MHz  
Table 1.  
Device summary  
Integrated RF balun with internal matching  
Part number  
Package  
Packaging  
Tray  
Tape and reel  
Dual differential integrated VCOs with  
STW82100B  
VFQFPN-44  
VFQFPN-44  
automatic center frequency calibration:  
STW82100BTR  
– LOA: 1650 to 1950 MHz  
– LOB: 2050 to 2370 MHz  
Description  
Embedded integer-N synthesizer  
– Dual modulus programmable prescaler  
(16/17 or 19/20)  
– Programmable reference frequency divider  
(10 bits)  
The STMicroelectronics STW82100B is an  
integrated down converter providing 8 dB of gain,  
10.5 dB NF, and a very high input linearity by  
means of its passive mixer.  
– Adjustable charge pump current  
– Digital lock detector  
– Excellent integrated phase noise  
– Fast lock time: 150 µs  
Embedding two wide band auto calibrating VCOs  
and an integer-N synthesizer, the STW82100B is  
suitable for both Rx and Tx requirements for  
Cellular infrastructure equipment.  
The integrated RF balun and internal matching  
permit direct 50 ohm single-ended interface to RF  
port. The IF output is suitable for driving 200-ohm  
impedance filters.  
Integrated DAC with dual current output  
Supply: 3.3 V and 5 V analog,  
3.3 V Digital  
2
Dual digital bus interface: SPI and I C bus (fast  
By embedding a DAC with dual current output to  
drive an external PIN diode attenuator, the  
STW82100B replaces several costly discrete  
components and offers a significant footprint  
reduction.  
mode) with 3 bit programmable address  
(1101A A A )  
2
1 0  
Process: 0.35 µm BICMOS SiGe  
o
Operating temperature range -40 to +85 C  
The STW82100B device is designed with  
STMicroelectronics advanced 0.35 µm  
SiGe process. Its performance is specified over a  
-40 °C to +85 °C temperature range.  
44-lead exposed pad VFQFPN  
package7x7x1.0 mm  
May 2012  
Doc ID 018355 Rev 5  
1/67  
This is information on a product in full production.  
www.st.com  
1
 
Contents  
STW82100B  
Contents  
1
2
3
4
5
6
7
8
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8.1  
Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
8.1.6  
8.1.7  
8.1.8  
8.1.9  
Reference input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Reference divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
A and B counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Phase frequency detector (PFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Lock detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Mute until lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Voltage controlled oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8.1.10 Output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
8.1.11 External VCO buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
8.1.12 Mixer and IF amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
8.1.13 Dual output current DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
2/67  
Doc ID 018355 Rev 5  
STW82100B  
Contents  
9
I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
9.1  
I2C general features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
9.1.1  
9.1.2  
9.1.3  
9.1.4  
9.1.5  
9.1.6  
9.1.7  
Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
START and STOP conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Byte format and acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Single-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Multi-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Current byte address read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
9.2  
I2C timing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
9.2.1  
9.2.2  
9.2.3  
Data and clock timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
2
I C START and STOP timing specification . . . . . . . . . . . . . . . . . . . . . . 36  
2
I C acknowledge timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9.3  
9.4  
I2C registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
2
9.3.1  
I C register summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
2
9.3.2  
I C register definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Device calibration through the I2C interface . . . . . . . . . . . . . . . . . . . . . . . 45  
2
9.4.1  
9.4.2  
9.4.3  
VCO calibration procedure (I C interface) . . . . . . . . . . . . . . . . . . . . . . . 45  
2
Power ON sequence (I C interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
2
VCO calibration auto-restart procedure (I C interface) . . . . . . . . . . . . . 46  
10  
SPI digital interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.1 SPI general features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.2 SPI timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10.2.1 Data, clock and load timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10.3 SPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.3.1 SPI register summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.3.2 SPI register definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.4 Device calibration through the SPI interface . . . . . . . . . . . . . . . . . . . . . . 53  
10.4.1 VCO calibration procedure (SPI interface) . . . . . . . . . . . . . . . . . . . . . . . 53  
10.4.2 Power ON sequence (SPI interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
10.4.3 VCO calibration auto-restart procedure (SPI interface) . . . . . . . . . . . . . 54  
Doc ID 018355 Rev 5  
3/67  
Contents  
STW82100B  
11  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
11.1 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
11.2 Standard Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
11.3 Diversity mode operation with same LO frequency . . . . . . . . . . . . . . . . . 58  
11.4 Diversity mode operation with different LO frequencies . . . . . . . . . . . . . . 59  
11.5 External VCO standard mode operation . . . . . . . . . . . . . . . . . . . . . . . . . 60  
11.6 External VCO diversity mode operation with same LO . . . . . . . . . . . . . . 61  
12  
13  
14  
Evaluation kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
4/67  
Doc ID 018355 Rev 5  
STW82100B  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Digital logic levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Down converter mixer and IF amplifier electrical characteristics . . . . . . . . . . . . . . . . . . . . 15  
Pin diode attenuator driver (dual output current DAC) electrical characteristics. . . . . . . . . 16  
Integer-N synthesizer electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Phase noise performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Current values for CPSEL[2:0] selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
VCOA performance against amplitude setting (frequency = 3.6 GHz) . . . . . . . . . . . . . . . . 30  
VCOB performance against amplitude setting (frequency = 4.3 GHz) . . . . . . . . . . . . . . . . 30  
Suggested CAP[2:0] values for LO Frequency range mixer. . . . . . . . . . . . . . . . . . . . . . . . 31  
Linearity performance against IFAMP[1:0] configuration (typical condition). . . . . . . . . . . . 32  
2
I C data and clock timing parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
2
I C START and STOP timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
2
I C acknowledge timing parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
2
I C register list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Address decoder and outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
SPI timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
SPI register list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Application circuit component values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Evaluation kit order code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
VFQFPN-44 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Doc ID 018355 Rev 5  
5/67  
List of figures  
STW82100B  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
STW82100B block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
STW82100B pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Conversion gain against RF frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Noise figure against RF frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
IIP3 against RF frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2RF-2LO response against RF frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
LOA (VCOA div. by 2) closed-loop phase noise at 1.8 GHz  
(F  
= 200 kHz, I = 2 mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
STEP  
CP  
Figure 8.  
LOB (VCOB div. by 2) closed-loop phase noise at 2.2 GHz  
(F = 200 kHz, I = 2 mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
STEP  
CP  
Figure 9.  
Reference frequency input buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 10. VCO divider diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 11. PFD diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 12. Loop filter connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 13. VCO typical sub-band characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 14. Data validity waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 15. START and STOP condition waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 16. Byte format and acknowledge waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
2
Figure 17. I C data and clock waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
2
Figure 18. I C START and STOP timing waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
2
Figure 19. I C acknowledge timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
2
Figure 20. I C first programming timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 21. SPI input and output bit order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 22. SPI data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 23. SPI timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 24. SPI first programming timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 25. Typical STW82100B application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 26. Standard mode operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 27. Diversity mode operation with same LO frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 28. Diversity mode operation with different LO frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 29. External VCO standard mode operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 30. External VCO diversity mode operation with same LO. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 31. VFQFPN-44 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
6/67  
Doc ID 018355 Rev 5  
STW82100B  
1
Block diagram  
Block diagram  
Figure 1.  
STW82100B block diagram  
VDD_RFESD  
VSS_RFESD  
DAC  
IF_OUTP  
IF_OUTN  
RF_IN  
IF  
AMP  
RF_VSS  
RF_CT  
MIXDRV_CT  
DBUS_SEL  
VDD_MIXDRV  
VSS_MIXDRV  
MIX  
DRV  
SDA/DATA  
SCL/CLK  
DBUS  
VDD_DIV  
VSS_DIV  
LOAD  
ADD0  
ADD1  
ADD2  
VCO  
calibrator  
VDD_OUTBUF  
VSS_OUTBUF  
LO  
DIV2  
OUT  
CAL_VCO  
VDD_DIG  
VSS_DIG  
OUTBUFN  
OUTBUFP  
LOCK_DET  
LO/2xLO  
OUT  
VCO  
divider  
UP  
DN  
EXTVCO_INP  
EXTVCO_INN  
EXT  
LO/VCO  
BUF  
PFD  
CHP  
ICP  
REF  
divider  
VDD_VCO  
VSS_VCO  
VCO  
BUFF  
VDD_PLL  
VSS_PLL  
VDD_IO  
VSS_IO  
BUF  
CAL_VCO  
Doc ID 018355 Rev 5  
7/67  
 
Pin description  
STW82100B  
2
Pin description  
Figure 2.  
STW82100B pin configuration  
44 43 42 41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
VDD_DAC  
REXT_DAC  
VDD_DIV  
VDD_IFAMP  
1
2
IF_OUTP  
IF_OUTN  
NC  
3
VDD_VCO  
4
EXTVCO_INN  
EXTVCO_INP  
EXT_PD  
ADD2  
LOAD  
5
STW82100B  
VFQFPN44  
SCL/CLK  
SDA/DATA  
VDD_DIG  
DBUS_SEL  
VDD_PLL  
REF_CLK  
6
7
8
9
ADD1  
10  
11  
ADD0  
VDD_IO  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
8/67  
Doc ID 018355 Rev 5  
STW82100B  
Pin description  
Table 2.  
Pin list  
Name  
Pin No  
Description  
DAC power supply  
Observation  
1
2
3
4
VDD_DAC  
REXT_DAC  
VDD_DIV  
Vsupply analog1= 3.3 V  
External resistance connection for DAC  
Divider by 2 power supply  
-
Vsupply analog1= 3.3 V  
VDD_VCO  
VCOs and External VCO Buffer power supply Vsupply analog1= 3.3 V  
Diversity Slave Mode and External  
5
EXTVCO_INN  
External VCO (LO) negative input  
VCO Modes; otherwise it must be  
connected to GND  
Diversity Slave Mode and External  
VCO Modes; otherwise it must be  
connected to GND  
6
7
EXTVCO_INP  
EXT_PD  
External VCO (LO) positive input  
Hardware power down:  
CMOS Input  
‘0’ device ON; ‘1’ device OFF  
8
ADD2  
I2CBUS address select pin  
I2CBUS address select pin  
I2CBUS address select pin  
Digital IO power supply  
CMOS Input  
9
ADD1  
CMOS Input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
ADD0  
CMOS Input  
VDD_IO  
VDD_PSCBUF  
NC  
Vsupply digital = 3.3 V  
Prescaler input buffer power supply  
Not connected  
Vsupply analog1= 3.3 V  
-
NC  
Not connected  
-
VDD_OUTBUF  
OUTBUFN  
OUTBUFP  
VCTRL  
ICP  
Power supply for LO buffer  
LO Output buffer negative output  
LO Output buffer positive output  
Control voltage for VCOs  
PLL charge pump output  
Vsupply analog1=3.3 V  
Open collector @3.3 V  
Open collector @ 3.3 V  
-
-
External resistance connection for PLL charge  
pump current  
20  
REXT_CP  
-
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
VDD_CP  
LOCK_DET  
REF_CLK  
VDD_PLL  
DBUS_SEL  
VDD_DIG  
SDA/DATA  
SCL/CLK  
LOAD  
Power supply for charge pump  
Lock detector  
Vsupply analog1= 3.3 V  
CMOS Output  
Reference frequency input  
PLL digital power supply  
Digital Bus Interface select  
Power supply for digital bus interface  
I2CBUS /SPI data line  
I2CBUS /SPI clock line  
SPI load line  
-
Vsupply analog1= 3.3 V  
CMOS Input  
Vsupply digital = 3.3 V  
CMOS Bidir Schmitt triggered  
CMOS Input Schmitt triggered  
CMOS Input Schmitt triggered  
-
NC  
Not connected  
IF_OUTN  
IF amplifier negative output  
Open collector @ 5 V(1)  
Doc ID 018355 Rev 5  
9/67  
Pin description  
STW82100B  
Table 2.  
Pin list (continued)  
Name  
IF_OUTP  
Pin No  
32  
Description  
IF Amplifier positive output  
Observation  
Open collector @ 5 V(1)  
33  
VDD_IFAMP  
TEST2  
IF Amplifier power supply  
Test input 2  
Vsupply analog1 = 3.3 V  
Test purpose only; it must be  
connected to GND  
34  
35  
36  
Test purpose only; it must be  
connected to GND  
TEST1  
Test input 1  
Test output  
Test purpose only; it must be  
connected to GND  
TEST_ALC  
37  
38  
39  
40  
41  
42  
RF_CT  
RF balun central tap  
-
RF_IN  
RF input  
-
VDD_RFESD  
MIXDRV_CT  
VDD_ALC  
VDD_MIXDRV  
RF ESD positive rail power supply  
Mixer driver balun central tap  
ALC power supply  
Vsupply analog1 = 3.3 V  
Vsupply analog2 = 5 V(1)  
Vsupply analog1 = 3.3 V  
Vsupply analog1 = 3.3 V  
Mixer driver power supply  
DAC current output for external PIN Diode  
attenuator  
43  
44  
I_PINDRV1  
I_PINDRV2  
PMOS Open drain  
PMOS Open drain  
DAC current output for external PIN Diode  
attenuator  
1. Supply voltage @ 3.3 V in low-current mode operation  
10/67  
Doc ID 018355 Rev 5  
STW82100B  
3
Absolute maximum ratings  
Absolute maximum ratings  
Table 3.  
Absolute maximum ratings  
Symbol  
Parameter  
Analog Supply voltage  
Values  
0 to 4.6  
0 to 6  
0 to 4.6  
+150  
0.8  
Unit  
AVCC1  
AVCC2  
DVCC  
Tstg  
V
Analog Supply voltage  
V
Digital Supply voltage  
V
Storage temperature  
°C  
HBM on pins 16, 17, 31, 32, 37, 40  
HBM on pin 38  
1
HBM on all remaining pins  
CDM-JEDEC Standard on pin 38  
CDM-JEDEC Standard on all remaining pins  
MM  
2
ESD  
kV  
(Electro-static discharge)  
0.25  
0.5  
0.2  
Doc ID 018355 Rev 5  
11/67  
 
 
Operating conditions  
STW82100B  
4
Operating conditions  
Table 4.  
Symbol  
Operating conditions  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
AVCC1  
AVCC2  
DVCC  
Analog Supply voltage  
Analog Supply voltage  
Digital Supply voltage  
-
-
-
3.15  
3.3  
5
3.45  
5.25  
3.45  
V
4.75  
V
V
3.15  
3.3  
130  
110  
105  
155  
Standard mode  
-
-
-
-
150 mA  
130 mA  
120 mA  
180 mA  
External VCO standard mode  
Diversity slave mode  
Diversity master mode  
ICC3.3V  
Current Consumption at 3.3 V  
Current Consumption  
External VCO diversity master  
mode  
-
140  
160 mA  
High current mode at 5 V  
-
-
170  
100  
195 mA  
115 mA  
ICC5V  
Low current mode at 3.3 V  
TA  
TJ  
Operating ambient temperature  
Maximum junction temperature  
-
-
-40  
-
85  
°C  
125 °C  
Junction to ambient package thermal  
resistance(1)  
Θ
Multi-layer JEDEC board  
Multi-layer JEDEC board  
Multi-layer JEDEC board  
Multi-layer JEDEC board  
Multi-layer JEDEC board  
-
-
-
-
-
33  
19  
3
-
-
-
-
-
°C/W  
JA  
Junction to board package thermal  
resistance(1)  
Θ
°C/W  
°C/W  
°C/W  
°C/W  
JB  
Junction to case package thermal  
resistance(1)  
Θ
JC  
Thermal characterization parameter  
junction to board(1)  
Ψ
18  
0.3  
JB  
Thermal characterization parameter  
junction to top case(1)  
Ψ
JT  
1. Refer to JEDEC standard JESD 51-12 for a detailed description of the thermal resistances and thermal parameters.  
Data here presented are referring to a Multi-layer board according to JEDEC standard.  
TJ = TA + ΘJA * Pdiss (in order to estimate TJ if ambient temperature TA and dissipated power Pdiss are known)  
TJ = TB + ΨJB * Pdiss (in order to estimate TJ if board temperature TB and dissipated power Pdiss are known)  
TJ = TT + ΨJT * Pdiss (in order to estimate TJ if top case temperature TT and dissipated power Pdiss are known)  
12/67  
Doc ID 018355 Rev 5  
 
 
STW82100B  
Operating conditions  
T
Table 5.  
Digital logic levels  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
Vil  
Low level input voltage  
High level input voltage  
Schmitt trigger hysteresis  
Low level output voltage  
High level output voltage  
-
-
-
-
-
-
0.8*Vdd  
0.8  
-
-
-
-
-
0.2*Vdd  
V
Vih  
-
-
V
V
V
V
Vhyst  
Vol  
-
0.4  
-
Voh  
0.85*Vdd  
Doc ID 018355 Rev 5  
13/67  
Test conditions  
STW82100B  
5
Test conditions  
Unless otherwise specified the following test conditions are applied:  
Vsupply digital = 3.3 V  
Vsupply analog1 = 3.3 V  
Vsupply analog2 = 5 V  
F
= 150 MHz  
IF  
MIX = 0111  
T ambient = 27 °C  
Refer also to Section 11: Application information.  
14/67  
Doc ID 018355 Rev 5  
 
STW82100B  
Electrical characteristics  
6
Electrical characteristics  
Note:  
Vsupply digital = 3.3 V, Vsupply analog1 = 3.3 V, Vsupply analog2 = 5 V, F = 2100 MHz,  
RF  
F
= 1950 MHz, T = +25 *C, RF power = 0 dBm, unless otherwise specified.  
LO  
A
)
(1)  
Table 6.  
Down converter mixer and IF amplifier electrical characteristics  
Parameter Conditions  
RF Frequency  
Symbol  
Min Typ Max Unit  
FRF  
-
1620  
1650  
2050  
70  
-
-
-
-
2400 MHz  
1950 MHz  
2370 MHz  
400 MHz  
VCOA divided by 2  
VCOB divided by 2  
FIF = ABS(FLO-FRF)  
FLO  
LO Frequency  
FIF  
IF Center Frequency(2)  
Power Conversion Gain  
Rin = 50 ohm, Rout = 200 ohm  
RFin = 0 dBm  
CG  
7.5  
-
8
8.5 dB  
Power Conversion Gain over  
Temperature(3)  
CGΔT  
IP1dB  
T= -40 to +85 °C  
0.7  
-
dB  
High current Mode  
Low current Mode  
High current Mode  
Low current Mode  
-
-
13.5  
8
-
-
-
-
Input P1dB  
dBm  
24.5 25.5  
18.5 19.5  
Third-order input intercept  
point(4)  
IIP3  
dBm  
IIP3 variation over  
temperature(3)  
IIP3ΔT  
T= -40 to +85 °C  
-
-
-
0.5  
77  
-
-
-
dB  
2FRF-2FLO FRFin = -5 dBm,  
FIF = 150 MHz  
dBc  
dBc  
nFRF-nFLO Spurious rejection at IF(3)  
3FRF-3FLO FRFin = -5 dBm,  
FIF = 150 MHz  
77  
High-current mode, MIX = 0011  
-
-
-
10.5  
10.5  
-35  
-33  
-29  
58  
11 dB  
11 dB  
NFSSB  
Noise figure  
Low-current mode, MIX = 0011  
1xLO  
-
dBm  
-
LO to IF Leakage  
2xLO  
-
LO to RF Leakage  
RF to IF Isolation  
RF Return Loss  
IF Return Loss  
-
-
-
-
-
-
-
-
-
dBm  
dB  
-
-
RFRL  
IFRL  
Matched to 50 ohm  
Matched to 200 ohm  
20  
dB  
25  
dB  
Maximum deviation from Fc over 10  
MHz. For any Fc within each TX  
observation path band.  
-0.05  
-0.10  
-
-
+0.05 dB  
+0.10 dB  
Gain Flatness for TX  
observation path(5)  
-
Maximum deviation from Fc over 30  
MHz. For any Fc within each TX  
observation path band.  
Doc ID 018355 Rev 5  
15/67  
 
 
Electrical characteristics  
STW82100B  
(1)  
Table 6.  
Down converter mixer and IF amplifier electrical characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
Maximum deviation from linear phase  
at Fc over 10 MHz. For any Fc within -0.3  
each TX observation path band.  
-
-
+0.3 deg  
+0.7 deg  
Phase Flatness for TX  
observation path(5)  
-
Maximum deviation from linear phase  
at Fc over 30 MHz. For any Fc within -0.7  
each TX observation path band.  
Maximum ripple over a 4 MHz band.  
For any Fc within each RX path band.  
dB  
pk-pk  
-
-
Gain Flatness for RX path(5)  
Phase Flatness for RX path(5)  
-
-
-
0.1  
Maximum ripple over a 4 MHz band.  
For any Fc within each RX path band.  
deg  
pk-pk  
-
0.6  
3.3 V Supply (pin 41, 42)  
5 V Supply (pin 40)  
-
-
-
49  
60  
20  
-
-
-
mA  
mA  
mA  
Mixer Driver Current  
Consumption  
ICCMD  
Mixer Driver Current  
Consumption (Low Current  
Mode)  
3.3 V Supply (pin 41, 42)  
3.3 V Supply (pin 40)  
-
35  
-
mA  
3.3 V Supply (pin 33)  
5 V Supply (pin 31, 32)  
3.3 V Supply (pin 33)  
3.3 V Supply (pin 31, 32)  
-
-
-
-
10  
108  
6
-
-
-
-
mA  
mA  
mA  
mA  
IFAMP Current Consumption  
ICCIFAM  
IFAMP Current Consumption  
(Low Current Mode)  
55  
1. All linearity and NF performances are intended at maximum LO amplitude (LO_A[1:0]=[11]), tuning capacitors (CAP[2:0])  
programmed according to the selected frequency, mixer bias (MIX[3:0]) set to maximize performance and the device  
operated in high current mode. The performances of conversion gain, NF and linearity are intended at the SMA connectors  
of a typical application board.  
2. The IF frequency range supported by the IF Amplifier is from 70 to 400 MHz. The exact IF frequency range supported for a  
specific RF frequency can be calculated as FIF = ABS(FLO-FRF) where FLO is inside the specified LO frequency range.  
3. Guaranteed by design and characterization  
4. RFin = 0 dBm/tone, RF tone spacing = 5 MHz  
5. Guaranteed by design  
Table 7.  
Symbol  
Pin diode attenuator driver (dual output current DAC) electrical characteristics  
Parameters  
Resolution  
Conditions  
Min Typ Max Unit  
R
-
-
-
-
-
-
10  
-
-
Bit  
DNL  
INL  
IFS  
-
Differential non linearity  
Integral non linearity  
Full Scale current (1)  
Current Mismatch  
-0.05  
-0.45  
0.28  
-
0.05 LSB  
0.45 LSB  
2.8 mA  
-
-
-
2
3
%
V
Output voltage compliance  
range  
-
-
0
-
VREXT_DAC Voltage Reference  
-
-
-
10  
-
1.19  
-
V
REXT_DAC  
Iccstatic  
REXT DAC Range  
100 kΩ  
mA  
Static current consumption  
(Iout = 0 mA; pin 1)  
2.5  
-
1. See relationship between IDAC and REXT_DAC in the Circuit Description section (Dual Output Current DAC)  
16/67  
Doc ID 018355 Rev 5  
STW82100B  
Electrical characteristics  
Table 8.  
Symbol  
Integer-N synthesizer electrical characteristics  
Parameter Conditions  
Min  
Typ  
Max  
Unit  
VCO dividers  
Prescaler 16/17  
256  
361  
-
-
65551  
77836  
-
-
N
VCO Divider Ratio (N)  
Prescaler 19/20  
Reference clock and phase frequency detector  
Fref  
-
Reference input frequency  
Reference input sensitivity  
Reference Divider Ratio  
PFD input frequency  
-
-
-
-
10  
0.35  
2
19.2  
200  
1.5  
MHz  
1
-
Vpeak  
R
1023  
16  
FPFD  
-
-
MHz  
Hz  
FLO  
/
FLO  
/
Prescaler 16/17  
Prescaler 19/20  
-
-
65551  
256  
FSTEP  
Frequency step (1)  
FLO  
/
FLO  
/
Hz  
77836  
361  
Charge pump  
ICP  
ICP sink/source (2)  
3bit programmable  
-
0.4  
-
-
-
5
mA  
V
VOCP  
-
Output voltage compliance range  
Spurious(3)  
-
-
Vdd-0.3  
-
-70  
dBc  
VCOs  
Higher frequency range  
-
-
100  
85  
-
-
MHz/V  
MHz/V  
Intermediate frequency  
range  
KVCOA  
VCOA sensitivity  
VCOB sensitivity  
Lower frequency range  
Higher frequency range  
-
-
70  
75  
-
-
MHz/V  
MHz/V  
Intermediate frequency  
range  
KVCOB  
-
65  
-
MHz/V  
Lower frequency range  
-
55  
-
-
125  
125  
95  
MHz/V  
° C  
CALTYPE [0]  
-
VCOA Maximum Temperature  
variation for continuous lock (4)  
ΔTLKA  
ΔTLKB  
-
CALTYPE [1]  
-
-
° C  
CALTYPE [0]  
-
-
° C  
VCOB Maximum Temperature  
variation for continuous lock (4)  
CALTYPE [1]  
-
-
-
125  
-
° C  
VCO A Pushing  
-
-
-
-
8
14  
MHz/V  
MHz/V  
V
VCO B Pushing  
-
-
VCTRL  
-
VCO control voltage  
LO Harmonic Spurious  
0.4  
-
Vdd-0.3  
-20  
dBc  
VCO and VCO buffer current  
consumption  
IVCO  
Amplitude [11] (pin 4)  
(pin 3)  
-
-
35  
20  
-
-
mA  
mA  
IDIV  
DIVIDER by 2 consumption  
2
Doc ID 018355 Rev 5  
17/67  
 
Electrical characteristics  
STW82100B  
Table 8.  
Symbol  
Integer-N synthesizer electrical characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
2 x LO output buffer (test purpose only)  
FOUT  
POUT  
RL  
Frequency range  
Output level  
-
-
3.3  
-
4.74  
GHz  
-
-
-
0
-
-
-
dBm  
dB  
Return Loss  
Matched to 50ohm  
(pin 15, 16, 17)  
15  
26  
I2LOBUF  
Current Consumption  
mA  
LO output buffer  
FOUT  
POUT  
RL  
Frequency range  
-
1.65  
-
2.37  
GHz  
dBm  
dB  
Output level  
-
-
-
-
3
-
-
-
Return Loss  
Matched to 50ohm  
(pin 15, 16, 17)  
14  
26  
ILOBUF  
Current Consumption  
mA  
External VCO (LO) buffer  
fINVCO  
PIN  
Frequency range  
Input level  
-
-
1.65  
-
-
2.37  
-
GHz  
dBm  
0
External VCO Buffer  
(pin 4)  
IEXTBUF  
Current Consumption  
-
25  
-
mA  
PLL miscellaneous  
Input Buffer, Prescaler,  
Digital Dividers, misc.  
(pin 24)  
IPLL  
PLL Current Consumption  
-
8
-
mA  
Prescaler input buffer Current  
Consumption  
IPRE  
ICP  
(pin 12)  
-
-
3
4
-
-
mA  
mA  
CPSEL=[111], REXT_CP  
= 4.7 kΩ (pin 21)  
Charge Pump Current Consumption  
Lock up time(5)  
25 kHz PLL bandwidth;  
within 1ppm of frequency  
error  
tLOCK  
-
150  
-
µs  
1. The frequency step is related to the PFD input frequency as follows: FSTEP=FPFD/2)  
2. See relationship between ICP and REXT_CP in the Circuit Description section (Charge Pump)  
3. The level of spurs may change depending on PFD frequency, Charge Pump current, selected channel and PLL loop BW.  
4. When setting a specified output frequency, the VCO calibration procedure must be run first in order to select the best  
subrange for the VCO covering the desired frequency. Once programmed at the initial temperature T0 inside the operating  
temperature range (-40 oC to +85 oC), the synthesizer is able to maintain the lock status if the temperature drift (in either  
direction) is within the limit specified by ΔTLKA or ΔTLKB, provided that the final temperature T1 is still inside the nominal  
range.  
5. Frequency jump form 1950 to 1800 MHz; it includes the time required by the VCO calibration procedure (7 x FPFD cycles  
=17.5 µs with FPFD =400 kHz))  
18/67  
Doc ID 018355 Rev 5  
STW82100B  
Table 9.  
Electrical characteristics  
(1)  
Phase noise performance  
Parameters  
Conditions  
Min.  
Typ.  
Max.  
Unit  
In band phase noise floor, closed loop(2)  
Normalized In Band Phase Noise  
Floor (LO)  
I
CP=4 mA, PLL BW = 50 kHz  
-
-230  
-
dBc/Hz  
(including reference clock  
contribution)  
In Band Phase Noise Floor (LO)  
-230+20log(N)+10log(FPFD) dBc/Hz  
PLL integrated phase noise  
Integrated Phase Noise  
(single sided)  
-
-
-45  
-
-
dBc  
FLO=2.200 GHz, FSTEP=200 kHz,  
ICP=3 mA, PLL BW = 25 kHz  
0.48  
° rms  
100 Hz to 40 MHz  
LOA (1650 MHz to 1950 MHz) – open loop  
Phase Noise @ 1 kHz  
-
-
-
-
-
-
-
-
-
-
-
-
-69  
-95  
-
-
-
-
-
-
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Phase Noise @ 10 kHz  
Phase Noise @ 100 kHz  
Phase Noise @ 1 MHz  
Phase Noise @ 10 MHz  
Phase Noise Floor @ 40 MHz  
-118  
-139  
-152  
-154  
LOB (2050 MHz to 2370 MHz) – open loop  
Phase Noise @ 1 kHz  
-
-
-
-
-
-
-
-
-
-
-
-
-62  
-88  
-
-
-
-
-
-
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Phase Noise @ 10 kHz  
Phase Noise @ 100 kHz  
Phase Noise @ 1 MHz  
Phase Noise @ 10 MHz  
Phase Noise Floor @ 40 MHz  
-112  
-134  
-150  
-153  
1. Phase Noise SSB. VCO amplitude set to maximum value [11]. All the closed-loop performances are specified using a  
Reference Clock signal at 76.8 MHz with phase noise of -144 dBc/Hz @1 kHz offset, -157 dBc/Hz @10 kHz offset and  
-168 dBc/Hz of noise floor.  
2. Normalized PN = Measured LO PN – 20log(N) – 10log(FPFD) where N is the VCO divider ratio (N=B*P+A) and FPFD is the  
comparison frequency at the PFD input  
Doc ID 018355 Rev 5  
19/67  
 
Typical performance characteristics  
STW82100B  
7
Typical performance characteristics  
Note:  
Vsupply digital = 3.3 V, Vsupply analog1 = 3.3 V, Vsupply analog2 = 5 V, F = 150 MHz,  
IF  
T = +25 °C, RF power = 0 dBm, unless otherwise specified.  
A
Figure 3.  
Conversion gain against RF frequency  
RF frequency (MHz)  
Figure 4.  
Noise figure against RF frequency  
RF frequency (MHz)  
20/67  
Doc ID 018355 Rev 5  
 
STW82100B  
Figure 5.  
Typical performance characteristics  
IIP3 against RF frequency  
RF frequency (MHz)  
Figure 6.  
2RF-2LO response against RF frequency  
RF frequency (MHz)  
Doc ID 018355 Rev 5  
21/67  
Typical performance characteristics  
Figure 7. LOA (VCOA div. by 2) closed-loop phase noise at 1.8 GHz (F  
STW82100B  
=
STEP  
200 kHz, I = 2 mA)  
CP  
Figure 8.  
LOB (VCOB div. by 2) closed-loop phase noise at 2.2 GHz (F  
=
STEP  
200 kHz, I = 2 mA)  
CP  
22/67  
Doc ID 018355 Rev 5  
STW82100B  
General description  
8
General description  
The STW82100B (see Figure 1: STW82100B block diagram on page 7) consists of a high  
linearity passive CMOS mixer with integrated RF balun, an IF amplifier, a 10-bit current  
steering DAC with dual output, and an integrated integer-N synthesizer.  
The synthesizer embeds 2 internal low-noise VCOs with buffer blocks, a divider by 2, a low  
noise PFD (Phase Frequency Detector), a precise charge pump, a 10-bit programmable  
reference divider, two programmable counters and a dual-modulus prescaler. The A-counter  
(5 bits) and B counter (12 bits) counters, in conjunction with the dual modulus prescaler  
P/P+1 (16/17 or 19/20), implement an N integer divider, where N = B*P+A.  
The device is controlled through a digital interface (I2C bus interface or SPI digital interface).  
All internal devices operate with a power supply of 3.3 V except for the IF Amplifier output  
stage and the mixer driver stage operating at 5 V power supply in order to maximize the  
linearity performance. If the application requires a reduced linearity and noise figure  
performance the device is programmed in a low-current mode by using the minimum LO  
amplitude and the minimum biasing current in the IF amplifier. In low-current mode  
operation the device can use only the 3.3 V power supply thus dissipating less power.  
8.1  
Circuit description  
8.1.1  
Reference input stage  
The reference input stage is shown in Figure 9. The resistor network feeds a DC bias at the  
F
input while the inverter used as the frequency reference buffer is AC coupled.  
ref  
Figure 9.  
Reference frequency input buffer  
VDD  
Fref  
Inverter  
Buffer  
Power Down  
Doc ID 018355 Rev 5  
23/67  
 
General description  
STW82100B  
8.1.2  
Reference divider  
The 10-bit programmable reference counter allows the input reference frequency to be  
divided to produce the input clock to the PFD. The division ratio is programmed through the  
digital interface.  
8.1.3  
Prescaler  
The dual-modulus prescaler P/P+1 takes the CML clock from the VCO buffer and divides it  
down to a manageable frequency for the CMOS A and B counters. The modulus (P) is  
programmable and can be set to 16 or 19. It is based on a synchronous 4/5 core which  
division ratio depends on the state of the modulus input.  
8.1.4  
A and B counters  
The A (5 bits) and B (12 bits) counters, in conjunction with the selected dual modulus (16/17  
or 19/20) prescaler make it possible to generate output frequencies which are spaced only  
by the reference frequency divided by the reference division ratio. Thus, the division ratio  
and the VCO output frequency are given by the following formulae:  
N = B × P + A  
(B × P + A) × Fref  
FVCO = -----------------------------------------------  
R
where:  
F
: VCO output frequency.  
VCO  
P: modulus of dual modulus prescaler (16 or 19 selected through the digital interface).  
B: division ratio of the main counter.  
A: division ratio of the swallow counter.  
F : input reference frequency.  
ref  
R: division ratio of the reference counter.  
N: division ratio of the PLL  
The following points should be noted:  
For the VCO divider to work correctly, B must be higher than A.  
A can take any value from 0 to 31.  
Two PLL division ratio (N) ranges are possible, depending on the value of P:  
256 to 65551 (when P=16)  
361 to 77836 (when P=19).  
24/67  
Doc ID 018355 Rev 5  
STW82100B  
General description  
Figure 10. VCO divider diagram  
VCOBUF-  
VCOBUF+  
Prescaler  
16/17 or 19/20  
To PFD  
modulus  
12-bit  
B counter  
5-bit  
A counter  
8.1.5  
Phase frequency detector (PFD)  
The PFD takes inputs from the reference and the VCO dividers and produces an output  
proportional to the phase error. The PFD includes a delay gate that controls the width of the  
anti-backlash pulse. This pulse ensures that there is no dead zone in the PFD transfer  
function.  
Figure 11 is a simplified schematic of the PFD.  
Figure 11. PFD diagram  
VDD  
D
Q
Up  
F
ref_DIV  
R
Delay  
R
F
VCO_div  
Q
VDD  
D
Down  
ABL  
Doc ID 018355 Rev 5  
25/67  
 
General description  
STW82100B  
8.1.6  
Lock detect  
This signal indicates that the difference between rising edges of both UP and DOWN PFD  
signals is found to be shorter than the fixed delay (roughly 5 ns). The Lock Detect signal is  
high when the PLL is locked. The Lock Detector consumes current only during PLL  
transients.  
8.1.7  
Mute until lock  
This (software controlled) function shuts down the following elements until the PLL achieves  
the lock status:  
RF output stage  
LO output buffer  
mixer  
IF amplifier circuitry  
Under this setting there is no signal at the IF output stage or the LO output during a  
frequency jump.  
8.1.8  
Charge pump  
This block drives two matched current sources, Iup and Idown, which are controlled  
respectively by the UP and DOWN PFD outputs. The nominal value of the output current is  
controlled by an external resistor (to be connected to the REXT input pin) and the selection  
of one of 8 possible values by a 3-bit word.  
The minimum value of the output current is: IMIN = 2*VBG/REXT_CP (VBG~1.17 V)  
Table 10. Current values for CPSEL[2:0] selection  
CPSEL2  
CPSEL1  
CPSEL0  
Current  
Value for REXT=4.7 kΩ  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
IMIN  
0.5 mA  
1.00 mA  
1.50 mA  
2.00 mA  
2.50 mA  
3.00 mA  
3.50 mA  
4.00 mA  
2*IMIN  
3*IMIN  
4*IMIN  
5*IMIN  
6*IMIN  
7*IMIN  
8*IMIN  
Note:  
The current is output on pin ICP. During the VCO auto calibration, ICP and VCTRL pins are  
forced to VDD/2.  
26/67  
Doc ID 018355 Rev 5  
STW82100B  
General description  
Figure 12. Loop filter connection  
VDD  
VCTRL  
C3  
R3  
Buffer  
Charge  
pump  
ICP  
R1  
C1  
C2  
Buffer  
Cal bit  
8.1.9  
Voltage controlled oscillators  
VCO selection  
Within the STW82100B two low-noise VCOs are integrated to cover a wide band from  
1650 MHz to 1950 MHz, and from 2050 MHz to 2370 MHz after the division by 2:  
VCO A frequency range is 3300 MHz to 3900 MHz  
VCO B frequency range is 4100 MHz to 4740 MHz  
VCO frequency calibration  
Both VCOs can operate on 32 frequency ranges that are selected by adding or subtracting  
capacitors to the resonator. These frequency ranges are intended to cover the wide band of  
operation and compensate for process variations on the VCO center frequency.  
An automatic range selection is performed when the bit SERCAL rises from ‘0’ to ‘1’ . The  
charge pump is inhibited and the pins ICP and VCTRL are set at a fixed calibration voltage  
(VCAL). The frequency ranges are then tested to select the nearest one to the desired  
output frequency (FOUT= N*Fref/R) with VCAL input voltage applied. After this selection, the  
charge pump is once again enabled and the PLL performs a fine adjustment around VCAL  
on the loop filter voltage to lock FOUT, thus enabling a fast settling time.  
Two calibration algorithms are selectable by setting the CALTYPE bit.  
Setting the CALTYPE to ’1’ guarantees the PLL lock versus temperature variations. Once  
programmed at the initial temperature, T , within the operating temperature range (-40 °C to  
0
+85 °C), the synthesizer is able to maintain the lock status if the temperature drift (in either  
direction) is within the limit specified by ΔT , and provided that the final temperature, T , is  
LK  
1
still inside the nominal range.  
Setting the CALTYPE bit to ‘0’ fixes VCAL to the mid point of the charge pump output  
(VDD/2). Optimum PLL phase noise performance versus temperature variations with a  
reduced ΔT is guaranteed in this case. The ΔT parameter, specific to each VCO and  
LK  
LK  
calibration type, in the STW82100B is specified in Table 8: Integer-N synthesizer electrical  
characteristics.  
Doc ID 018355 Rev 5  
27/67  
General description  
STW82100B  
Figure 13. VCO typical sub-band characteristics  
00000  
00001  
01111  
11111  
Calibrator lock  
range  
3.50  
0.00  
0.50  
2.50  
3.00  
1.00  
1.50  
VCTRL (V)  
2.00  
The SERCAL bit should be set to ’1’ at each division ratio change. The calibration takes  
approximately 7 periods of the Comparison Frequency and the SERCAL bit is automatically  
reset to ’0’ at the end of each calibration.  
The maximum allowed F  
to perform the calibration process is 1 MHz. If a higher F  
is  
PFD  
PFD  
used the following procedure should be adopted:  
1. Calibrate the VCO at the desired frequency with an F  
lower than 1 MHz  
PFD  
2. Set the A, B and R dividers ratio for the desired F  
PFD  
For calibration details refer to Section 9.4.1: VCO calibration procedure (I2C interface) or  
Section 10.4.1: VCO calibration procedure (SPI interface).  
28/67  
Doc ID 018355 Rev 5  
STW82100B  
General description  
VCO calibration auto-restart feature  
The VCO Calibration Auto-Restart feature, once activated, allows the calibration procedure  
to be restarted when the Lock Detector reports that the PLL has moved to an unlock  
condition (trigger on ‘1’ to ‘0’ transition of Lock Detector signal).  
This situation could happen if the device experiences a significant temperature variation and  
the CALTYPE bit is set for optimum PLL phase noise performance (CALTYPE [0]).  
By enabling the VCO Calibration Auto-Restart feature (through the AUTO_CAL bit), the  
device re-selects the proper VCO frequency sub-range without any external user command.  
This feature can be enabled only when the F  
is lower than 1 MHz.  
PFD  
VCO voltage amplitude control  
The voltage swing of the VCOs can be adjusted over 4 levels by means of two dedicated  
programming bits (PLL_A1 and PLL_A0). This setting trades current consumption with  
phase noise performances of the VCO. Higher amplitudes provide best phase noise while  
lower ones save power.  
Doc ID 018355 Rev 5  
29/67  
General description  
STW82100B  
Table 11 and Table 12 give the current consumption and the phase noise at 1 MHz.  
Table 11. VCOA performance against amplitude setting (frequency = 3.6 GHz)  
Current  
PLL_A[1:0]  
PN @ 1 MHz  
Consumption (mA)  
00  
01  
10  
11  
23  
24  
32  
35  
-127  
-128  
-131  
-132  
Table 12. VCOB performance against amplitude setting (frequency = 4.3 GHz)  
Current  
PLL_A[1:0]  
PN @ 1 MHz  
Consumption (mA)  
00  
01  
10  
11  
16  
18  
27  
30  
-124  
-126  
-128  
-129  
8.1.10  
8.1.11  
Output stage  
The differential output signal of the synthesizer after the Divider by 2 is available on  
pins 16 and 17.  
The output stage is selected by programming the PD[4:0] bits.  
The output stage is an open-collector structure which is able to meet different requirements  
over the desired output frequency range by proper connections on the PCB. See Figure 27:  
Diversity mode operation with same LO frequencies.  
External VCO buffer  
Although the STW82100B includes two wideband and low-noise VCOs, external VCO use  
capability is also provided.  
The external VCO buffer can be used to manage a signal coming from an external VCO in  
order to build a local oscillator signal by using the STW82100B internal synthesizer as a  
PLL. This is only possible when External VCO standard mode or External VCO diversity  
master mode operation are selected. See Figure 29: External VCO standard mode  
operation and Figure 30: External VCO diversity mode operation with same LO.  
If the STW82100B is operated in Diversity slave mode, the external VCO buffer manage the  
signal coming from the synthesizer output stage of another STW82100B device See  
Figure 27: Diversity mode operation with same LO frequencies and Figure 30: External  
VCO diversity mode operation with same LO.  
The selection of the external VCO buffer is done by setting the PD[4:0] bits.  
The external VCO signal can range from 1650 MHz to 2370 MHz and its minimum power  
level must be -10 dBm.  
30/67  
Doc ID 018355 Rev 5  
 
 
STW82100B  
General description  
8.1.12  
Mixer and IF amplifier  
LO mixer driver  
The LO signal is fed through a driver in order to achieve the high power level needed to drive  
the passive mixer for maximum performance of linearity and NF.  
The LO Mixer Driver is coupled to the mixer with an integrated LO balun. The LO signal level  
is adjusted by means of an Automatic Level Control loop (ALC) controlled by the bits  
LO_A[1:0].  
In low current mode the configuration LO_A[1:0]=’00’ (minimum LO amplitude) should be  
selected and the power supply on pin 40 can be set to 3.3 V.  
The LO balun resonating frequency can be adjusted by means of the bits CAP[2:0] in order  
to match the selected LO frequency.  
Table 13. Suggested CAP[2:0] values for LO Frequency range mixer  
CAP[2:0]  
LO frequency range  
000  
001  
010  
011  
100  
101  
110  
111  
2225MHz ÷ 2370MHz  
2100MHz ÷ 2225MHz  
2000MHz ÷ 2100MHz  
1900MHz ÷ 2000MHz  
1825MHz ÷ 1900MHz  
1750MHz ÷ 1825MHz  
1700MHz ÷ 1750MHz  
1650MHz ÷ 1700MHz  
Mixer  
A doubly balanced CMOS passive mixer is internally driven by the high level LO signal in  
order to achieve high linearity and low noise performance.  
The RF integrated balun permits the removal of external components and it is internally  
matched to 50 ohms.  
The gate bias of the CMOS devices in the mixer is programmable with 4 bits (MIX[3:0]) to  
optimize the input matching and the gain of the signal chain.  
Higher values of gate bias (higher decimal values of MIX[3:0]) are suggested to maximize  
linearity and lower values to maximize the performance of Gain and NF.  
Doc ID 018355 Rev 5  
31/67  
General description  
STW82100B  
IF amplifier  
The integrated IF stage permits a 200-ohm load to be driven (typically a SAW filter) ensuring  
high linearity.  
It is an open collector stage (pin 31, 32) and should be biased to 5 V with choke inductors.  
The typical output impedance is 200 ohms. The linearity performances are controlled by the  
bits IFAMP[1:0]. In low current mode the configuration IFAMP[1:0]=’00’ (minimum linearity)  
should be selected and the open collector stage can be biased to 3.3 V with choke  
inductors.  
Table 14. Linearity performance against IFAMP[1:0] configuration (typical  
condition)  
IFAMP[1:0]  
Linearity performance  
00  
01  
10  
11  
19.5 dB  
21.5 dB  
23.5dB  
25.5dB  
8.1.13  
Dual output current DAC  
The STW82100B embeds a 10-bit Dual Output steering current DAC especially suited to  
drive an external PIN diode attenuator. This provides power level calibration capability at the  
RF input for the TX observation path applications.  
The current sourced by the DAC is related to the R  
resistor according to the  
EXT_DAC  
following formulae (where VR  
is approximately 1.19 V):  
EXT_DAC  
3 × VREXT_DAC  
1
2
1
64  
-- ---------------------------------------- ------  
IDACLSB  
=
×
×
LSB DAC current  
REXT_DAC  
3 × VREXT_DAC  
-- ---------------------------------------- ------------  
1
2
1023  
64  
IDACFS  
=
×
×
Full scale current  
REXT_DAC  
With a 10 kΩ R  
the FS current is approximately 2.8 mA.  
EXT_DAC  
32/67  
Doc ID 018355 Rev 5  
STW82100B  
I2C bus interface  
2
9
I C bus interface  
2
The I C bus interface is selected by hardware connection of the pin 25 (DBUS_SEL) to 0 V.  
Data transmission from a microprocessor to the STW82100B takes place through the 2  
2
wires (SDA and SCL) I C-bus interface. The STW82100B is always a slave device.  
2
The I C-bus protocol defines any device that sends data on to the bus as a transmitter and  
any device that reads the data as receiver. The device that controls the data transfer is  
known as the master and the others as slaves. The master always initiates the transfer and  
provides the serial clock for synchronization.  
2
The STW82100B I C bus supports Fast Mode operation (clock frequency up to 1 MHz).  
9.1  
I2C general features  
9.1.1  
Data validity  
Data changes on the SDA line must only occur when the SCL is LOW. SDA transitions while  
the clock is HIGH identify START or STOP conditions.  
Figure 14. Data validity waveform  
SDA  
SCL  
Change  
data allowed  
Data line stable  
data valid  
Doc ID 018355 Rev 5  
33/67  
I2C bus interface  
STW82100B  
9.1.2  
START and STOP conditions  
Figure 15. START and STOP condition waveform  
SCL  
SDA  
START  
STOP  
START condition  
A START condition is identified by a HIGH to LOW transition of the data bus SDA while the  
clock signal SCL is stable in the HIGH state. A Start condition must precede any command  
for data transfer.  
STOP condition  
A STOP condition is identified by a transition of the data bus SDA from LOW to HIGH while  
the clock signal SCL is stable in the HIGH state.. A STOP condition terminates  
communications between the STW82100B and the Bus Master.  
9.1.3  
Byte format and acknowledge  
Every byte (8 bits long) transferred on the SDA line must contain bits. Each byte must be  
followed by an acknowledge bit. The MSB is transferred first.  
An acknowledge bit indicates a successful data transfer. The transmitter, either master or  
slave, releases the SDA bus after sending 8 bits of data. During the 9th clock pulse the  
receiver pulls the SDA low to acknowledge the receipt of 8 bits of data.  
Figure 16. Byte format and acknowledge waveform  
SCL  
2
7
1
3
8
9
SDA  
MSB  
Acknowledgement  
from receiver  
START  
STOP  
34/67  
Doc ID 018355 Rev 5  
STW82100B  
I2C bus interface  
9.1.4  
Device addressing  
To start the communication between the Master and the STW82100B, the master must  
initiate with a START condition. Following this, the master sends onto the SDA line 8 bits  
(MSB first) corresponding to the device select address and read or write mode.  
2
The first 7 MSBs are the device address identifier, corresponding to the I C-Bus definition.  
For the STW82100B the address is set as ’1101A A A ’, 3-bits programmable. The 8th bit  
2
1 0  
(LSB) is the read or write operation bit (the RW bit is set to 1 in read mode and to 0 in write  
mode).  
After a START condition the STW82100B identifies the device address on the bus and, if  
matched, it acknowledge the identification on SDA bus during the 9th clock pulse.  
9.1.5  
9.1.6  
9.1.7  
Single-byte write mode  
Following a START condition the master sends a device select code with the RW bit set to 0.  
The STW82100B gives an acknowledge and waits for the internal sub-address (1 byte). This  
byte provides access to any of the internal registers.  
After reception of the internal byte sub-address the STW82100B again responds with an  
acknowledge. A single-byte write to sub-address 0x00 would affect DATA_OUT[47:40], a  
single-byte write with sub-address 0x04 would affect DATA_OUT[15:8] and so on.  
sub-address  
S
1101A2A1A0  
0
ack  
ack  
DATA IN  
ack  
P
byte  
Multi-byte write mode  
The multi-byte write mode can start from any internal address. The master sends the data  
bytes and each one is acknowledged. The master terminates the transfer by generating a  
STOP condition.  
The sub-address determines the starting byte. For example, a multi-byte write with sub-  
address 0x01 and 4 DATA_IN bytes affects 4 bytes starting at address 0x01 (registers at  
addresses 0x01, 0x02, 0x03 and 0x04 are modified).  
sub-address  
byte  
DATA  
IN  
S
1101A2A1A0 0 ack  
ack  
DATA IN  
ack  
..  
ack  
P
Current byte address read  
In the current byte address read mode, following a START condition, the master sends the  
device address with the RW bit set to 1 (No sub-address is needed as there is only 1 byte  
read register). The STW82100B acknowledges this and outputs the data byte. The master  
does not acknowledge the received byte, but terminates the transfer with a STOP condition.  
S
1101A2A1A0  
1
ack  
DATA OUT  
No ack  
P
Doc ID 018355 Rev 5  
35/67  
I2C bus interface  
STW82100B  
9.2  
I2C timing specifications  
9.2.1  
Data and clock timing specification  
2
Figure 17. I C data and clock waveforms  
SDA  
SCL  
tcwl  
tcs  
tch  
tcwh  
2
Table 15. I C data and clock timing parameters  
Symbol  
Tcs  
Parameter  
Data to clock set up time  
Min  
2
Unit  
Tch  
Data to clock hold time  
Clock pulse width high  
Clock pulse width low  
2
ns  
Tcwh  
Tcwl  
10  
5.5  
2
9.2.2  
I C START and STOP timing specification  
2
Figure 18. I C START and STOP timing waveforms  
SDA  
SCL  
tstop  
tstart  
36/67  
Doc ID 018355 Rev 5  
STW82100B  
I2C bus interface  
2
Table 16. I C START and STOP timing parameters  
Symbol  
start  
Parameter  
Clock to data start time  
Data to clock down stop time  
Min  
Unit  
T
T
2
2
ns  
stop  
2
9.2.3  
I C acknowledge timing specification  
2
Figure 19. I C acknowledge timing waveforms  
SDA  
SCL  
8
9
td1  
td2  
2
Table 17. I C acknowledge timing parameters  
Symbol  
Parameter  
Ack begin delay  
Ack end delay  
Max  
Unit  
Td1  
Td2  
2
2
ns  
Doc ID 018355 Rev 5  
37/67  
I2C bus interface  
STW82100B  
9.3  
I2C registers  
STW82100B has 9 write-only registers and 1 read-only register.  
2
9.3.1  
I C register summary  
The following table gives a short description of the write-only registers list.  
2
Table 18. I C register list  
Offset  
0x00  
Register name  
Description  
Functional mode register  
Page  
FUNCTIONAL_MODE  
B_COUNTER  
on page 39  
on page 39  
on page 40  
on page 40  
on page 41  
on page 42  
on page 42  
on page 43  
on page 43  
on page 44  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
B counter register  
A_COUNTER  
A counter register  
REF_DIVIDER  
Reference clock divider ratio register  
PLL control register  
CONTROL  
MUTE_&_CALIBRATION  
DAC_CONTROL  
Mute and calibration control register  
DAC control register  
MIXER_CONTROL  
IFAMP_LO_CONTROL  
READ_ONLY_REGISTER  
Mixer control register  
IF amplifier LO control register  
Device ID and calibration status register  
38/67  
Doc ID 018355 Rev 5  
STW82100B  
I2C bus interface  
2
9.3.2  
I C register definitions  
FUNCTIONAL_MODE  
Functional mode register  
7
ALC_PD  
W
6
PKD_EN  
W
5
4
3
PD[4:0]  
W
2
1
0
B11  
W
Address:  
Type:  
0x00  
W
Reset:  
0x00  
[7] ALC_PD: for test purpose only must be set to ’0’. (ALC ON)  
[6] PKD_EN: for test purpose only must be set to ’0’. (Peak detector output on pin 36 OFF)  
[5:1] PD[4:0]: bits used to select different functional modes for the STW82100B according to  
the following table  
00000: (0 decimal) Power down mode  
00001: (1 decimal) Standard Mode VCOA (VCOA and RX chain ON)  
00010: (2 decimal) Standard Mode VCOB (VCOB and RX chain ON)  
00011: (3 decimal). Diversity Slave Mode (ExtVCO/LO input buffer and RX Chain ON;  
internal synthesizer OFF)  
00100: (4 decimal) Diversity Master Mode VCOA (VCOA, RX Chain and LO output  
buffer ON)  
00101: (5 decimal) Diversity Master Mode VCOB (VCOB, RX Chain and LO output  
buffer ON)  
00110: (6 decimal) External LO Standard Mode (RX Chain ON; PLL and ExtVCO/LO  
input buffer ON)  
00111: (7 decimal) External LO Diversity Master Mode (RX Chain ON; PLL, ExtVCO/LO  
input buffer and LO output buffer ON)  
[0] B11: B counter value (bits B[10:0] in the B_COUNTER and A_COUNTER registers)  
B_COUNTER  
B counter register  
7
6
5
4
3
2
1
0
B[10:3]  
W
Address:  
Type:  
0x01  
W
Reset:  
0x00  
Description:  
Most significant bits of the B counter value  
[7:0] B[10:3]: B counter value (bit B11 in the FUNCTIONAL_MODE register, bits B[2:0] in the  
A_COUNTER register)  
Doc ID 018355 Rev 5  
39/67  
I2C bus interface  
STW82100B  
A_COUNTER  
A counter register  
7
6
5
4
3
2
A[4:0]  
W
1
0
B[2:0]  
W
Address:  
Type:  
0x02  
W
Reset:  
0x00  
Description:  
Least significant bits of the B-counter value. A-counter value.  
[7:5] B[2:0]: B Counter value (bit B11 in the FUNCTIONAL_MODE register, bits B[10:3] in  
the B_COUNTER register).  
[4:0] A[4:0]: A counter value  
REF_DIVIDER  
Reference clock divider ratio register  
7
6
5
4
3
2
1
0
R[9:2]  
W
Address:  
Type:  
0x03  
W
Reset:  
0x00  
Description:  
Most significant bits of the reference clock divider ratio value.  
[7:0] R[9:2]: Reference clock divider ratio (bits R[1:0] in the CONTROL register)  
40/67  
Doc ID 018355 Rev 5  
STW82100B  
I2C bus interface  
CONTROL  
PLL control register  
7
6
5
4
3
2
CPSEL[2:0]  
W
1
0
PSC_SEL  
W
[R1:0]  
PLL_A[1:0]  
W
W
Address:  
Type:  
0x04  
W
Reset:  
0x00  
Description:  
Least significant bits of the reference clock divider ratio value and PLL control bits.  
[7:6] R[1:0]: Reference clock divider ratio (bits R[9:2] in the REF_DIVIDER register)  
[5:4] PLL_A[1:0]: VCO amplitude  
[3:1] CPSEL[2:0]: Charge Pump output current  
[0] PSC_SEL: Prescaler Modulus select (‘0’ for P=16, ‘1’ for P=19)  
The LO output frequency is programmed by setting the proper value for A, B and R  
according to the following formula:  
Fref  
---------  
FLO = DR ⋅ (B P + A) ⋅  
R
where DR equals 0.5 (VCOs output frequency divided by 2)  
and P is the selected Prescaler Modulus  
Doc ID 018355 Rev 5  
41/67  
I2C bus interface  
STW82100B  
MUTE_&_CALIBRATION  
Mute and calibration control register  
7
6
5
4
3
2
1
0
W
W
W
W
W
W
W
W
Address:  
Type:  
0x05  
W
Reset:  
0x00  
Description:  
For test purposes only  
[7] CALTYPE: Calibration algorithm selection  
0: standard calibration to optimize the phase noise versus temperature  
1: enhanced calibration to maximize the ΔTLK range  
[6] SERCAL:  
1: starts the VCO auto-calibration (automatically reset to ’0’ at the end of calibration)  
[5] SELEXTCAL: test purpose only; must be set to ‘0’  
[4] MUTE_EN:  
0: mute function disabled  
1: mute function enabled  
[3] MUTE_TYPE: must be set to '1' while the mute function is enabled (mute the IF output  
on Unlock state)  
[2] MUTE_LOOUT_EN:  
To be set to ’1’ to mute the LO output buffer  
[1] MUTE_MIX_EN:  
To be set to ’1’ mute the Mixer circuitry  
[0] MUTE_IFAMP_EN: To be set to '1' to mute the IF amplifier circuitry  
DAC_CONTROL  
DAC control register  
7
6
5
4
3
2
1
0
DAC[9:2]  
W
Address:  
Type:  
0x06  
W
Reset:  
0x00  
Description:  
Most significant bits of the DAC control word  
[7:0] DAC[9:2]: DAC input word for DAC current control (bits DAC[1:0] in the  
MIXER_CONTROL register).  
42/67  
Doc ID 018355 Rev 5  
STW82100B  
I2C bus interface  
MIXER_CONTROL  
Mixer control register  
7
6
5
4
3
2
1
0
W
W
W
W
Address:  
Type:  
0x07  
W
Reset:  
0x00  
Description:  
Least significant bits of DAC control word and mixer control bit fields  
[7:6] DAC[1:0]: DAC input word for DAC current control (bits DAC[9:2] in the DAC_CONTROL  
register)  
[5:2] MIX[3:0]: Mixer bias control value  
[1] PD_DAC: DAC power down  
[0] CAL_AUTOSTART_EN: VCO calibration auto-restart enable (’1’ active), permits to  
automatically restart the VCO calibration procedure in case of PLL unlock  
IFAMP_ LO_CONTROL  
IF amplifier LO control register  
7
6
5
4
CAP[2:0]  
W
3
2
1
0
LPMUX_EN  
W
IFAMP[1:0]  
W
LO_A[1:0]  
W
Address:  
Type:  
0x08  
W
Reset:  
0x00  
[7:6] IFAMP[1:0]: power consumption/linearity control  
[5:3] CAP[2:0]: Tuning capacitors control  
[2:1] LO_A[1:0]: LO amplitude control  
[0] LPMUX_EN: for test purpose only (low power mode for MUX). Must be set to ’0’  
Doc ID 018355 Rev 5  
43/67  
I2C bus interface  
STW82100B  
READ-ONLY REGISTER  
Device ID and calibration status register  
7
6
5
LOCK_DET  
R
4
3
2
INTCAL[4:0]  
R
1
0
ID[1:0]  
R
Address:  
Type:  
0x09  
R
Reset:  
0x00  
Description:  
This register is automatically addressed in the ‘current byte address read mode’  
[7:6] ID[1:0]: device identification ’00’ for STW82100B  
[5] LOCK_DET: ’1’ when PLL is locked  
[4:0] INTCAL[4:0]: internal value of the VCO calibration control word  
44/67  
Doc ID 018355 Rev 5  
STW82100B  
I2C bus interface  
9.4  
Device calibration through the I2C interface  
2
9.4.1  
VCO calibration procedure (I C interface)  
The calibration of the VCO center frequency is activated by setting the SERCAL bit of the  
MUTE & CALIBRATION register to ’1’.  
To program the device ensuring a correct VCO calibration, the following procedure is  
required before every channel change:  
1. Program all the Registers using a multi-byte write sequence with the desired setting:  
Functional Mode  
B and A counters  
R counter  
VCO amplitude  
Charge Pump  
Prescaler Modulus  
DAC  
Mixer and LO Control  
all bits of the MUTE & CALIBRATION Register (0x05) set to ’0’.  
2. Program the MUTE & CALIBRATION register using a single-byte write sequence (sub-  
address 0x05) with the SERCAL bit set to ’1’.  
The maximum allowed PFD frequency (F  
) to perform the calibration process is 1 MHz. If  
PFD  
the desired F  
is higher than 1 MHz the following steps are needed:  
PFD  
3. Perform all the step of the above calibration procedure programming the desired VCO  
frequency with a proper setting of R, B and A counter so that F  
1 MHz.  
results lower than  
PFD  
4. Once calibration is completed, program all the Registers by using a multi-byte write  
sequence (Functional Mode, B and A counters, R counter, VCO amplitude, Charge  
Pump, Prescaler Modulus, DAC, Mixer and LO Control) with the proper settings for the  
desired VCO and PFD frequencies.  
2
9.4.2  
Power ON sequence (I C interface)  
At power-on the device is configured in power-down mode.  
In order to guarantee correct setting of the internal circuitry after the power on, the following  
steps must be followed:  
1. Power up the device  
2. Provide the Reference clock  
3. Implement the first programming sequence with a proper delay time between the STOP  
condition of the multi-byte write sequence and that of the single-byte write sequence  
(see Figure 20). The T  
value must respect the following condition:  
delay  
1
Fref  
---------  
Tdelay >1023 ×  
F
is the reference clock frequency.  
ref  
Doc ID 018355 Rev 5  
45/67  
 
 
I2C bus interface  
STW82100B  
2
Figure 20. I C first programming timing  
START  
START  
STOP  
STOP  
CLK  
Tdelay > 1023/F  
ref  
LSB  
MSB  
LSB  
MSB  
DATA  
Multi-byte sequence  
Single-byte sequence  
2
9.4.3  
VCO calibration auto-restart procedure (I C interface)  
The VCO calibration auto-restart feature is enabled in two steps:  
1. Set the desired frequency ensuring VCO calibration procedure as described above  
(Section 9.4.1).  
2. Program the MIXER_CONTROL register (sub-address 0x07) using a single-byte write  
sequence with the CAL_AUTOSTART_EN bit set to '1' while keeping the others  
unchanged.  
46/67  
Doc ID 018355 Rev 5  
STW82100B  
SPI digital interface  
10  
SPI digital interface  
10.1  
SPI general features  
The SPI digital interface is selected by hardware connection of the pin 25 (DBUS_SEL) to  
3.3 V.  
The STW82100B IC is programmed by means of a high-speed serial-to-parallel interface  
with write option only. The 3-wires bus can be clocked at a frequency as high as 100 MHz to  
allow fast programming of the registers containing the data for RF IC configuration.  
The programming of the chip is done through serial words with whole length of 26 bits. The  
first 2 MSB represent the address of the registers. The others 24 LSB represent the value of  
the registers.  
Each data bit is stored in the internal shift register on the rising edge of the CLOCK signal.  
On the rising edge of the LOAD signal the outputs of the selected register are sent to the  
device.  
Figure 21. SPI input and output bit order  
Last  
bit sent  
(LSB) 0  
25 (MSB)  
23  
2
1
24  
DATA  
A1  
LOAD  
Address  
decoder  
LOAD #4  
00 (LSB)  
Reg. #0  
Reg. #1  
Reg. #4  
Doc ID 018355 Rev 5  
47/67  
SPI digital interface  
STW82100B  
Figure 22. SPI data structure  
LSB  
MSB  
Address  
Data for register (24 bits)  
A1 A0 D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Note: MSB is sent first  
Table 19. Address decoder and outputs  
Address  
Outputs  
DATABITS  
D23-D0  
A1  
A0  
No  
Name  
ST1  
Function  
0
0
0
1
24  
24  
0
1
DAC, Mixer, Tuning capacitors, LO_amplitude  
Reference divider, VCO amplitude, VCO Calibration, Charge  
Pump current, Prescaler Modulus, Mute functions  
ST2  
1
1
0
1
24  
24  
2
3
ST3  
ST4  
Functional modes, VCO dividers  
Reserved  
48/67  
Doc ID 018355 Rev 5  
STW82100B  
SPI digital interface  
10.2  
SPI timing specification  
10.2.1  
Data, clock and load timing  
Figure 23. SPI timing waveforms  
t
t
setup  
hold  
MSB  
MSB - 1  
LSB  
DATA  
CLOCK  
t
clk_loadr  
t
clk  
LOAD  
t
t
clk_loadf  
load  
Table 20. SPI timing parameters  
Parameter Description  
tsetup  
Min.  
Typ.  
Max.  
Unit  
DATA to CLOCK setup time  
DATA to clock hold time  
CLOCK cycle period  
1
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
thold  
0.5  
10  
3
tclk  
tload  
LOAD pulse width  
tclk_loadr  
tclk_loadf  
CLOCK to LOAD rising edge  
CLOCK to LOAD falling edge  
0.6  
2.5  
Doc ID 018355 Rev 5  
49/67  
 
 
SPI digital interface  
STW82100B  
10.3  
SPI registers  
10.3.1  
SPI register summary  
Table 21. SPI register list  
Offset Register name  
0x00  
Description  
Page  
ST1  
ST2  
ST3  
SPI register 1  
SPI register 2  
SPI register 3  
on page 50  
on page 51  
on page 52  
0x01  
0x10  
10.3.2  
ST1  
SPI register definitions  
SPI register 1  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
W
W
W
W
W
W
W
W
Address:  
Type:  
0x00  
W
Reset:  
0x00  
[23:14] DAC[9:0]: DAC input word  
[13:10] MIX[3:0]: Mixer bias control  
[9] PWD_DAC: DAC power down  
[8] CAL_AUTOSTART_EN: VCO calibration auto-restart enable  
[7:6] IF[1:0]: Power consumption/linearity control  
[5:3] CAP[2:0]: Tuning capacitors control  
[2:1] LO_A[1:0]: LO amplitude control  
[0] LPMUX_EN: For test purpose only. Must be set to ‘0’  
50/67  
Doc ID 018355 Rev 5  
 
 
 
STW82100B  
SPI digital interface  
ST2  
SPI register 2  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
W
W
W
W
W
W
W
W
W
W
W
W
Address:  
Type:  
0x01  
W
Reset:  
0x00  
[23:14] R[9:0]: Reference clock divider ratio  
[13:12] PLL_A[1:0]: VCO amplitude control  
[11:9] CPSEL[2:0]: Charge pump output current control  
[8] PSC_SEL: Prescaler modulus select (‘0’ for P=16, ‘1’ for P=19)  
[7] CAL_TYPE: Calibration algorithm selection  
0: standard calibration to optimize the phase noise versus temperature  
1: enhanced calibration to maximize the ΔTLK range  
[6] SERCAL:  
at ‘1’ starts the VCO auto-calibration (automatically reset to ‘0’ at the end of calibration)  
[5] SELEXTCAL: test purpose only. Must be set to ‘0’  
[4] MUTE_EN:  
0: mute function disabled  
1: mute function enabled  
[3] MUTE_TYPE: must be set to '1' while the mute function is enabled (mute the IF output  
on Unlock state)  
[2] MUTE_LOOUT_EN:  
To be set to ’1’ to mute the LO output buffer  
[1] MUTE_MIX_EN:  
To be set to ’1’ to mute the Mixer circuitry  
[0] MUTE_IFAMP_EN:  
To be set to ’1’ to mute the IF amplifier circuitry  
Doc ID 018355 Rev 5  
51/67  
SPI digital interface  
STW82100B  
ST3  
SPI register 3  
23  
22  
W
21  
20  
19  
W
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
W
W
W
Address:  
Type:  
0x10  
W
Reset:  
0x00  
[23] ALC_PD: Test purpose only; must be set to ‘0’ (ALC ON)  
[22] PKD_EN: for test purpose only; must be set to ‘0’  
[21:17] PD[4:0]:  
00000: (0 decimal) Power down mode  
00001: (1 decimal) Standard Mode VCOA (VCOA and RX chain ON)  
00010: (2 decimal) Standard Mode VCOB (VCOB and RX chain ON)  
00011: (3 decimal). Diversity Slave Mode (ExtVCO/LO input buffer and RX Chain ON;  
internal synthesizer OFF)  
00100: (4 decimal) Diversity Master Mode VCOA (VCOA, RX Chain and LO output  
buffer ON)  
00101: (5 decimal) Diversity Master Mode VCOB (VCOB, RX Chain and LO output  
buffer ON)  
00110: (6 decimal) External LO Standard Mode (RX Chain ON; PLL and ExtVCO/LO  
input buffer ON)  
00111: (7 decimal) External LO Diversity Master Mode (RX Chain ON; PLL, ExtVCO/LO  
input buffer and LO output buffer ON)  
[16:5] B[11:0]: B counter bits  
[4:0] A[4:0]: A Counter Bits  
52/67  
Doc ID 018355 Rev 5  
STW82100B  
SPI digital interface  
10.4  
Device calibration through the SPI interface  
10.4.1  
VCO calibration procedure (SPI interface)  
The calibration of the VCO center frequency is activated by setting to ’1’ the SERCAL bit  
(ST2 Register bit [6]).  
In order to program properly the device while ensuring the VCO calibration, the following  
procedure is required before every channel change:  
1. Program the ST1 Register with the desired setting (DAC, Mixer, LO Control)  
2. Program the ST3 Register with the desired setting (Functional mode, B and A counters)  
3. Program the ST2 Register with the desired setting (R counter, VCO amplitude, Charge  
Pump, Prescaler Modulus) and SERCAL bit set to ’1’  
The maximum allowed PFD frequency (F  
) to perform the calibration process is 1 MHz; if  
PFD  
the desired F  
is higher than 1 MHz the following steps are needed:  
PFD  
4. Perform all the steps of the above calibration procedure programming the desired VCO  
frequency with a proper setting of R, B and A counter so that F  
MHz.  
results lower than 1  
PFD  
5. Once calibration is completed program the device with the proper setting for the desired  
VCO and PFD frequencies according to the following steps:  
a) Program the ST3 Register with the desired setting (Functional mode, B and A  
counters)  
b) Program the ST2 Register with the desired setting (R counter, VCO amplitude,  
Charge Pump, Prescaler Modulus) with the SERCAL bit set to ’0’.  
10.4.2  
Power ON sequence (SPI interface)  
At power-on the device is configured in power-down mode.  
In order to guarantee correct setting of the internal circuitry after the power on, the following  
steps must be followed:  
1. Power up the device  
2. Provide the reference clock  
3. Implement the first programming sequence with a proper delay time between the ST3  
and ST2 load rising edges (see Figure 24). The T  
value must respect the following  
delay  
condition:  
1
Fref  
---------  
Tdelay >1023 ×  
F
is the reference clock frequency.  
ref  
Doc ID 018355 Rev 5  
53/67  
 
 
SPI digital interface  
STW82100B  
Figure 24. SPI first programming timing  
ST2  
ST3  
LSB-1  
MSB  
MSB-1  
LSB  
LSB-1  
DATA  
MSB  
MSB-1  
LSB  
T
> 1023/F  
delay  
ref  
LOAD  
10.4.3  
VCO calibration auto-restart procedure (SPI interface)  
The VCO calibration auto-restart feature is enabled in two steps:  
1. Set the desired frequency ensuring VCO calibration as described in Section 10.4.1.  
2. Program the ST1 register with the CAL_AUTOSTART_EN bit set to '1' while keeping  
unchanged the others.  
54/67  
Doc ID 018355 Rev 5  
STW82100B  
Application information  
11  
Application information  
11.1  
Application circuit  
Figure 25. Typical STW82100B application circuit  
3.3V_LN4  
C1  
C2 C3  
RF_IN  
C19  
5V_1  
C1  
C2 C3  
C1  
C2 C3  
3.3V_LN1  
C1  
C2 C3  
3.3V_LN3  
40  
38  
42  
44 43  
39  
36  
35  
34  
41  
37  
C1  
C2 C3  
1
2
VDD_DAC  
REXT_DAC  
VDD_DIV  
VDD_IFAMP  
33  
U3  
IF_out  
3.3V_LN1  
5V_2  
C15 C16 C17  
1
2
3
6
L3  
L4  
32  
31  
30  
IF_OUTP  
IF_OUTN  
C18  
NC  
5
4
C1  
C2 C3  
3
4
VDD_VCO  
NC  
C4  
C14  
C13  
C12  
NC  
6
LOAD  
5
EXTVCO_INN  
EXTVCO_INP  
EXT_PD  
ADD2  
LOAD  
29  
28  
4
5
2
R1  
C5  
R10  
R9  
SLC/CLK  
U1  
1
3
X1  
SLC/CLK  
X3  
6
VFQFPN-44  
SDA/DATA  
7
SDA/DATA 27  
VDD_DIG 26  
External VCO  
X4  
X2  
R8  
3.3V_LN2  
8
3.3V_LN2  
SPI  
I2C  
3.3V_LN1  
C1  
C2 C3  
DBUS_SEL  
25  
9
ADD1  
3.3V_LN2  
VDD_PLL 24  
REF_CLK 23  
ADD0  
10  
11  
REF_CLK  
C11  
C1 C2 C3  
VDD_IO  
R7  
12  
22  
13  
20  
14 15  
16 17 18 19  
3.3V_LN1  
21  
LOCK_DET  
3.3V_LN1  
R6  
C1  
C2 C3  
3.3V_LN1  
3.3V_LN1  
C2 C3  
C1  
C2 C3  
R2  
L1  
R3  
L2  
C1  
R4  
C9  
C1 C2  
C3  
C10  
C8  
R5  
C6  
C7  
3
2
1
4
5
6
NC  
U2  
X5  
X7  
X6  
X8  
LO_Output  
Doc ID 018355 Rev 5  
55/67  
Application information  
STW82100B  
Table 22. Application circuit component values  
Designation  
C1, C15  
Quantity  
Description  
Supplier  
2
2
1
2
3
1
1
1
3
1
1
1
4
3
1
1
1
1
1
1
2
1
1
0
1
1
1
2
2
4.7 µF capacitors COG (0402)  
1 nF capacitors COG (0402)  
10 pF capacitor COG (0402)  
3.6 pF capacitors COG (0402)  
6.8 pF capacitors COG (0402)  
270 pF capacitor COG (0402)  
2.7 nF capacitor COG (0402)  
68 pF capacitor COG (0402)  
15 pF capacitors COG (0402)  
100 nF capacitor COG (0402)  
100 pF capacitor COG (0402)  
180 pF capacitor COG (0402)  
100 Ohm resistors (0402)  
51 Ohm resistors (0402)  
2.2 kohm resistor (0402)  
8.2 kohm resistor (0402)  
4.7 kohm resistor (0402)  
Balun JTI - 2450BL15B100  
Balun JTI - 1600BL15B100  
Balun ADT4-5WT  
C2, C11  
C3  
C4,C5  
C6, C7, C19  
C8  
Murata Manufacturing Co., Ltd  
C9  
C10  
C12, C13, C14  
C16  
C17  
C18  
R1, R8, R9, R10  
-
-
-
-
-
R2, R3, R7  
R4  
R5  
R6  
U1  
JOHANSON TECHNOLOGY  
U2  
U3  
Mini Circuits  
X1, X8  
X2  
3.3 nH inductors CS (0402)  
1.2 pF capacitor COG (0402)  
0 Ohm resistor (0402)  
Coilcraft, Inc  
Murata Manufacturing Co., Ltd  
X3  
-
X4  
NC  
-
X5  
1.6 pF capacitor COG (0402)  
3.9 nH inductor CS (0402)  
2 pF capacitor COG (0402)  
3.7 nH inductors HQ (0402)  
220 nH inductors CS (1206)  
Murata Manufacturing Co., Ltd  
Coilcraft, Inc  
X6  
X7  
Murata Manufacturing Co., Ltd  
L1, L2  
L3, L4  
Coilcraft, Inc  
Note:  
1
2
For optimum performance a low-noise 3.3 V power supply must be used.  
The 3.3 V and 5 V power supplies are split in order to maximize the isolation between RF,  
LO, IF and digital sections.  
56/67  
Doc ID 018355 Rev 5  
STW82100B  
Application information  
11.2  
Standard Mode Operation  
The STW82100B can be used in Standard Mode for both RX path and TX observation path  
(RX Chain ON and Synthesizer ON).  
In such a case the 10-bit internal DAC can drive an external PIN diode attenuator in order to  
calibrate the signal level at the input of the device.  
Figure 26. Standard mode operation  
I_PINDRV1  
STW82100B  
DAC  
I_PINDRV2  
5V  
RF_IN2  
RF_IN  
RF_IN  
4:1  
IF_OUT  
IF_OUTP  
IF_OUTN  
IF AMP  
DBUS  
RF_VSS  
RF_CT  
50 Ω  
DBUS_SEL  
SDA/DATA  
SCL/CLK  
LOAD  
5V  
MIXDRV_CT  
VCO  
calibrator  
MIX  
DRV  
CAL_VCO  
REF_CLK  
BUF  
DIV2  
LOCK_DET  
UP  
DN  
PLL  
PFD  
CHP  
REXT_CP  
VCO  
BUFF  
CAL_VCO  
ICP  
VCTRL  
Doc ID 018355 Rev 5  
57/67  
Application information  
STW82100B  
11.3  
Diversity mode operation with same LO frequency  
The STW82100B supports the Diversity mode with the same LO frequency by using one  
STW82100B in Master Mode (RX Chain ON, Synthesizer ON and LO output buffer ON) and  
the other in Slave Mode (RX Chain ON, Synthesizer OFF and EXT VCO/LO buffer ON). This  
operation mode is suitable for antenna diversity.  
Figure 27. Diversity mode operation with same LO frequencies  
5V  
STW82100B Master  
RF_IN_M  
RF_IN  
4:1  
IF_M  
IF_OUTP  
IF_OUTN  
IF AMP  
DBUS  
RF_VSS  
RF_CT  
50 Ω  
DBUS_SEL  
to DAC  
SDA/DATA  
SCL/CLK  
LOAD  
5V  
MIXDRV_CT  
MIX  
DRV  
VCO  
calibrator  
CAL_VCO  
3.3V  
REF_CLK  
50 Ω  
50 Ω  
BUF  
OUTBUFP  
LO  
OUT  
DIV2  
OUTBUFN  
LOCK_DET  
UP  
DN  
PLL  
PFD  
CHP  
REXT_CP  
VCO  
BUFF  
CAL_VCO  
ICP  
VCTRL  
STW82100B Slave  
EXTVCO_INP  
EXT  
LO/VCO  
BUF  
100 Ω  
EXTVCO_INN  
DBUS_SEL  
SDA/DATA  
SCL/CLK  
LOAD  
DBUS  
MIX  
DRV  
5V  
5V  
MIXDRV_CT  
RF_IN_S  
RF_IN  
4:1  
IF_S  
IF_OUTP  
IF_OUTN  
IF AMP  
RF_VSS  
RF_CT  
50 Ω  
58/67  
Doc ID 018355 Rev 5  
STW82100B  
Application information  
11.4  
Diversity mode operation with different LO frequencies  
The STW82100B is particularly suitable for Diversity schemes using different LO  
frequencies such as the Interferer Diversity. In these schemes two STW82100Bs are used,  
each one set in Standard Mode and with different LO frequencies.  
Figure 28. Diversity mode operation with different LO frequencies  
5V  
STW82100B Master  
RF_IN1  
RF_IN  
RF_VSS  
RF_CT  
4:1  
IF_OUT1  
IF_OUTP  
IF_OUTN  
IF AMP  
DBUS  
50 Ω  
LO1  
DBUS_SEL  
SDA/DATA  
SCL/CLK  
LOAD  
5V  
MIXDRV_CT  
MIX  
DRV  
VCO  
calibrator  
CAL_VCO  
REF_CLK  
BUF  
DIV2  
LOCK_DET  
UP  
DN  
PLL  
PFD  
CHP  
REXT_CP  
VCO  
BUFF  
CAL_VCO  
ICP  
VCTRL  
5V  
RF_IN2  
RF_IN  
RF_VSS  
RF_CT  
4:1  
IF_OUT2  
STW82100B Diversity  
IF_OUTP  
IF_OUTN  
IF AMP  
50 Ω  
LO2  
DBUS_SEL  
SDA/DATA  
SCL/CLK  
LOAD  
5V  
DBUS  
MIXDRV_CT  
MIX  
DRV  
VCO  
calibrator  
CAL_VCO  
REF_CLK  
BUF  
DIV2  
LOCK_DET  
UP  
DN  
PLL  
PFD  
CHP  
REXT_CP  
VCO  
BUFF  
CAL_VCO  
ICP  
VCTRL  
Doc ID 018355 Rev 5  
59/67  
Application information  
STW82100B  
11.5  
External VCO standard mode operation  
The STW82100B can be used in Ext VCO Mode for both RX path and TX observation path  
(RX Chain ON, Synthesizer ON, EXT VCO/LO buffer ON and with an external VCO).  
In such a case the 10-bit internal DAC can drive an external PIN diode attenuator in order to  
calibrate the signal level at the input of the device.  
Figure 29. External VCO standard mode operation  
I_PINDRV1  
STW82100B  
DAC  
I_PINDRV2  
5V  
RF_IN2  
RF_IN  
4:1  
IF_OUT  
RF_IN  
RF_VSS  
RF_CT  
IF_OUTP  
IF_OUTN  
IF AMP  
DBUS  
50 Ω  
DBUS_SEL  
SDA/DATA  
SCL/CLK  
LOAD  
5V  
MIXDRV_CT  
MIX  
DRV  
REF_CLK  
BUF  
LOCK_DET  
REXT_CP  
UP  
DN  
PLL  
PFD  
CHP  
EXT  
LO/VCO  
BUF  
ICP  
EXTVCO_INP  
EXTVCO_INN  
EXTERNAL  
VCO  
60/67  
Doc ID 018355 Rev 5  
STW82100B  
Application information  
11.6  
External VCO diversity mode operation with same LO  
The STW82100B can be used in Diversity mode using one STW82100B in Master Mode  
(RX Chain ON, Synthesizer ON, EXT VCO/LO buffer ON, LO output buffer ON and with an  
external VCO) and the other one in Slave Mode (RX Chain ON, Synthesizer OFF and EXT  
VCO/LO buffer ON).  
Figure 30. External VCO diversity mode operation with same LO  
STW82100B Master  
5V  
RF_IN_M  
RF_IN  
4:1  
IF_M  
IF_OUTP  
IF_OUTN  
IF AMP  
RF_VSS  
50 Ω  
RF_CT  
to DAC  
DBUS_SEL  
SDA/DATA  
SCL/CLK  
LOAD  
5V  
DBUS  
MIXDRV_CT  
MIX  
DRV  
REF_CLK  
3.3V  
BUF  
50 Ω  
50 Ω  
LO/2xLO  
OUT  
OUTBUFP  
OUTBUFN  
LOCK_DET  
REXT_CP  
UP  
DN  
PLL  
PFD  
CHP  
VCO  
BUFF  
ICP  
EXTVCO_INP  
EXTVCO_INN  
EXTERNAL  
VCO  
EXTVCO_INP  
100 Ω  
STW82100B Slave  
EXT  
LO/VCO  
BUF  
EXTVCO_INN  
DBUS_SEL  
SDA/DATA  
SCL/CLK  
LOAD  
DBUS  
MIX  
DRV  
5V  
5V  
MIXDRV_CT  
RF_IN_S  
4:1  
IF_S  
RF_IN  
IF_OUTP  
IF_OUTN  
IF AMP  
RF_VSS  
RF_CT  
50 Ω  
Doc ID 018355 Rev 5  
61/67  
Evaluation kit  
STW82100B  
12  
Evaluation kit  
An evaluation kit can be delivered upon request, including the following:  
Evaluation board  
GUI (graphical user interface) to program the device  
PLLSim software for PLL loop filter design and noise simulation  
When ordering, please specify the following order code:  
Table 23. Evaluation kit order code  
Part number  
Description  
STW82100B evaluation kit, 1.6 to 2.4 GHz RF frequency range  
STW82100B-EVB  
62/67  
Doc ID 018355 Rev 5  
 
STW82100B  
Package mechanical data  
13  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Figure 31. VFQFPN-44 package outline  
Doc ID 018355 Rev 5  
63/67  
Package mechanical data  
STW82100B  
Table 24. VFQFPN-44 package dimensions  
Dimensions in mm  
Typ  
Symbol  
Min  
Max  
A
0.80  
0.90  
0.02  
0.65  
0.200  
0.25  
7.00  
6.750  
3.90  
4.90  
7.00  
6.750  
3.90  
4.90  
0.50  
0.55  
-
1.00  
0.05  
1.00  
-
A1  
A2  
A3  
b
-
-
-
0.18  
0.30  
7.15  
-
D
6.85  
D1  
D2  
D3  
E
-
3.80  
4.00  
-
-
6.85  
7.15  
-
E1  
E2  
E3  
e
-
3.80  
4.00  
-
-
-
-
L
0.35  
0.75  
0.60  
12  
P
-
-
-
K (degree)  
ddd  
-
-
0.08  
Note:  
1
2
VFQFPN stands for Thermally Enhanced Very thin Fine pitch Quad Flat Package No lead.  
Very thin: A=1.00 Max.  
Details of terminal 1 identifier are optional but must be located on the top surface of the  
package by using either a mold or marked features.  
64/67  
Doc ID 018355 Rev 5  
STW82100B  
Revision history  
14  
Revision history  
Table 25. Document revision history  
Date  
Revision  
Changes  
14-Jan-2011  
1
First release  
Corrected cover-page description paragraph tag  
Table 11 and Table 12:  
07-Mar-2011  
2
– corrected introductory sentence  
– aligned titles with corporate rules  
Corrected RF range on cover page and in Table 6: Down converter mixer and  
IF amplifier electrical characteristics  
Updated description of bitfield MUTE_TYPE in Mute and calibration control  
register  
Removed Section 4.4.1: Default configuration  
Added Section 9.4.2: Power ON sequence (I2C interface)  
Updated Figure 23: SPI timing waveforms  
29-Jun-2011  
3
Updated Table 20: SPI timing parameters  
Updated description of bitfield MUTE_TYPE in SPI register 2  
Updated description of bitfield PD[4:0] in SPI register 3  
Removed Section 5.4.1: Default configuration  
Added Section 10.4.2: Power ON sequence (SPI interface)  
Removed ‘Preliminary Data’ tags from cover page.  
Table 3 moved to new Section 3: Absolute maximum ratings  
Section 2.1 becomes Section 4: Operating conditions  
Secction 2.2 becomes Section 5: Test conditions  
Section 2.3 becomes Section 6: Electrical characteristics  
Table 3: Absolute maximum ratings pins 31 and 32 changed from 0.7 to 0.8 kV  
ESD rating.  
Table 4: Operating conditions updated current consumption:  
– ICC3.3V. Updated typical values for Diversity Master mode and external VCO  
diversity master mode. Added maximum values.  
10-Jan-2012  
4
– ICC5V. Added maximum values.  
Section 6: Electrical characteristics. Added note about Vsupply, RF frequency  
range, ambient temperature and RF power conditons.  
Table 6: Down converter mixer and IF amplifier electrical characteristics :  
– added Max value for CG  
– added Min values for IIP3  
– modified typical value of nFRF-nFLO at 3FRF-3FLO FRFin = -5 dBm,  
FIF = 150 MHz condition.  
– modified LO to IF leakage typical value  
– modified IFRL typical value  
– modified ICCMD typical value on 3.3 V supply (pin 41, 42)  
Doc ID 018355 Rev 5  
65/67  
Revision history  
STW82100B  
Table 25. Document revision history (continued)  
Date  
Revision  
Changes  
Table 8: Integer-N synthesizer electrical characteristics updated:  
– KVCOA and KVCOB value  
ΔTLK split into ΔTLK A and ΔTLK B (for VCOA and VCOB). Specified as  
maximum values.  
– I2LOBUF, LOBUF, PLL and IPRE values  
I
I
– Added table footnote 4  
Table 9: Phase noise performance updated values of:  
– Integrated Phase Noise (single sided) 100 Hz to 40 MHz  
– LOA open-loop phase noise @ 1 kHz and 10 kHz  
– LOB open-loop phase noise @ 1 kHz and 100 kHz  
Added Section 7: Typical performance characteristics.  
Modified sub-sections;  
10-Jan-2012  
4
VCO frequency calibration  
VCO calibration auto-restart feature  
Updated description of bitfield CALTYPE in registers  
MUTE_&_CALIBRATION  
ST2  
Added Section 12: Evaluation kit.  
Corrected RF range lower value on cover page.  
Replaced occurrences of ‘STI register’ with ‘SPI register’ in section headers:  
Section 10.3: SPI registers  
10-May-2012  
5
Section 10.3.1: SPI register summary  
Section 10.3.2: SPI register definitions.  
66/67  
Doc ID 018355 Rev 5  
STW82100B  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2012 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 018355 Rev 5  
67/67  

相关型号:

STW82101B

RF down converter with embedded integer-N synthesizer
STMICROELECTR

STW82102B

RF down converter with embedded integer-N synthesizer
STMICROELECTR

STW82103B

RF down converter with embedded integer-N synthesizer
STMICROELECTR

STW88N65M5

N-channel 650 V, 0.024 Ω typ., 84 A, MDmesh™ V Power MOSFET in TO-247 and TO-247 long leads packages
STMICROELECTR

STW8A2N

DuroSite? LED Area Light
DIALIGHT

STW8C2N

DuroSite? LED Area Light
DIALIGHT

STW8C2SA

Top View Led
SEOUL

STW8N80

N-CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTORS
STMICROELECTR

STW8NA60

N - CHANNEL ENHANCEMENT MODE FAST POWER MOS TRANSISTOR
STMICROELECTR

STW8NA80

N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTORS
STMICROELECTR

STW8NB100

N - CHANNEL 1000V - 1.2ohm- 8A - TO-247 PowerMESH MOSFET
STMICROELECTR

STW8NB80

N - CHANNEL 800V - 1.2ohm - 7.5A - TO-247 PowerMESH MOSFET
STMICROELECTR