STW81102-EVB2G [STMICROELECTRONICS]

Multi-band RF frequency synthesizer with integrated VCOs; 多频段RF频率合成器与集成的VCO
STW81102-EVB2G
型号: STW81102-EVB2G
厂家: ST    ST
描述:

Multi-band RF frequency synthesizer with integrated VCOs
多频段RF频率合成器与集成的VCO

文件: 总43页 (文件大小:802K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STW81102  
Multi-band RF frequency synthesizer with integrated VCOs  
Feature summary  
Integer-N Frequency Synthesizer  
Dual differential integrated VCOs with  
automatic center frequency calibration:  
VFQFPN28  
– 3000 - 3620 MHz (Direct output)  
– 4000 - 4650 MHz (Direct output)  
– 1500 - 1810 MHz (Internal divider by 2)  
– 2000 - 2325 MHz (Internal divider by 2)  
– 750 - 905 MHz (Internal divider by 4)  
– 1000 - 1162.5 MHz (Internal divider by 4)  
Excellent integrated phase noise  
Fast lock time: 150µs  
Applications  
2.5G and 3G Cellular Infrastructure Equipment  
CATV Equipment  
Instrumentation and Test Equipment  
Other Wireless Communication Systems  
Description  
Dual modulus programmable prescaler (16/17  
or 19/20)  
The STMicroelectronics STW81102 is an  
integrated RF synthesizer with voltage controlled  
oscillators (VCOs). Showing high performance,  
high integration, low power, and multi-band  
performances, STW81102 is a low cost one chip  
alternative to discrete PLL and VCOs solutions.  
2 programmable counters to achieve a  
feedback division ratio from 256 to 65551  
(prescaler 16/17) and from 361 to 77836  
(prescaler 19/20).  
Programmable reference frequency divider (10  
bits)  
STW81102 includes an Integer-N frequency  
synthesizer and two fully integrated VCOs  
featuring low phase noise performance and a  
noise floor of -155dBc/Hz. The combination of  
wide frequency range VCOs (thanks to center-  
frequency calibration over 32 sub-bands) and  
multiple output options (direct output, divided by 2  
or divided by 4) allows to cover from 750MHz to  
905MHz and 1000MHz to 1162.5MHz, from  
1500MHz to 1810MHz and 2000MHz to  
2325MHz, from 3000MHz to 3620MHz and  
4000MHz to 4650MHz bands.  
Phase frequency comparator and charge pump  
Programmable charge pump current  
Digital Lock Detector  
2
Dual Digital Bus Interface: SPI and I C bus with  
3 bit programmable address (1100A A A )  
2
1 0  
3.3V Power Supply  
Power down mode (HW and SW)  
Small size exposed pad VFQFPN28 package  
5x5x1.0mm  
Process: BICMOS 0.35µm SiGe  
The STW81102 is designed with  
STMicroelectronics advanced 0.35µm SiGe  
process.  
Order codes  
Part number  
Temp range, °C  
Package  
Packing  
STW81102AT  
-40 to 85  
-40 to 85  
VFQFPN28  
VFQFPN28  
Tray  
STW81102ATR  
Tape & Reel  
June 2006  
Rev 2  
1/43  
www.st.com  
1
Contents  
STW81102  
Contents  
1
Block diagram and pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1  
1.2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1  
2.2  
2.3  
2.4  
2.5  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Digital logic levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Phase noise specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3
4
Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.1  
Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
4.1.5  
4.1.6  
4.1.7  
4.1.8  
Reference input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Reference divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
A and B counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Phase frequency detector (PFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Lock detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Voltage controlled oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
VCO Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
VCO Frequency Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
VCO Voltage Amplitude Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
2
5
I C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5.1  
General features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
START condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
STOP condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Byte format and acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2/43  
STW81102  
Contents  
5.1.6  
5.1.7  
5.1.8  
Single-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Multi-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Current byte address read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5.2  
5.3  
Timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
I2C registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
FUNCTIONAL_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
B_COUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
A_COUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
REF_DIVIDER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
CALIBRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
READ-ONLY register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Default configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
5.4  
VCO calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6
7
SPI digital interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6.1  
6.2  
6.3  
General features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Bits table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.3.1  
Default configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.4  
VCO calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
7.1  
7.2  
7.3  
7.4  
Direct Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Divided by 2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Divided by 4 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Evaluation Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
8
Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
9
10  
3/43  
List of tables  
STW81102  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Operating conditions (Refer to application diagram) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Digital logic levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Phase noise specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Current value vs selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
VCO A performances vs. amplitude setting (Freq=3.3GHz). . . . . . . . . . . . . . . . . . . . . . . . 21  
VCO B performances vs. amplitude setting (Freq=4.3GHz). . . . . . . . . . . . . . . . . . . . . . . . 21  
Single-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Multi-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Current Byte Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Data and clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Start and stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Write-only registers list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Different functional mode of the FUNCTIONAL_MODE register . . . . . . . . . . . . . . . . . . . . 26  
SPI data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Address decoder and outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
SPI Timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Bits (Serial Interface Address = 00h; Register name = ST1) . . . . . . . . . . . . . . . . . . . . . . . 32  
Bits (Serial Interface Address = 01h; Register name = ST2) . . . . . . . . . . . . . . . . . . . . . . . 33  
Order code of the evaluation kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
4/43  
STW81102  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
VCO A (Direct output) open loop phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
VCO B (Direct output) open loop phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
VCO A (Direct output) closed loop phase noise at 3.6GHz . . . . . . . . . . . . . . . . . . . . . . . . 14  
VCO B (Direct output) closed loop phase noise at 4.3GHz . . . . . . . . . . . . . . . . . . . . . . . . 14  
VCO A (Div. by 2 output) closed loop phase noise at 1.65GHz . . . . . . . . . . . . . . . . . . . . . 15  
VCO B (Div. by 2 output) closed loop phase noise at 2.15GHz . . . . . . . . . . . . . . . . . . . . . 15  
VCO A (Div. by 4 output) closed loop phase noise at 825MHz . . . . . . . . . . . . . . . . . . . . . 15  
Figure 10. VCO B (Div. by 4 output) closed loop phase noise at 1.075GHz . . . . . . . . . . . . . . . . . . . . 15  
Figure 11. PFD Frequency Spurs (Direct Output; F =200KHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
PFD  
Figure 12. PFD Frequency Spurs (Div. by 2 Output; F  
=400KHz) . . . . . . . . . . . . . . . . . . . . . . . . . 16  
PFD  
Figure 13. PFD Frequency Spurs (Div. by 4 Output; F  
=800KHz) . . . . . . . . . . . . . . . . . . . . . . . . . 16  
PFD  
Figure 14. Settling Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 15. Reference Frequency Input Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 16. VCO Divider Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 17. PFD diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 18. Loop filter connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 19. VCO Sub-Bands Frequency Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 20. Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 21. Start and Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 22. Byte format and acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 23. Data and clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 24. Start and stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 25. Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 26. SPI input and output bit order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 27. SPI Timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 28. Differential/single ended output network in the 3.0 - 4.65GHz range . . . . . . . . . . . . . . . . . 35  
Figure 29. LC lumped balun and matching network (MATCH_LC_LUMP_4G.dsn) . . . . . . . . . . . . . . 36  
Figure 30. Evaluation Board (EVB4G) matching network (MATCH_EVB4G.dsn). . . . . . . . . . . . . . . . 36  
Figure 31. Differential/single ended output network in the 1.5 - 2.325GHz range . . . . . . . . . . . . . . . . 37  
Figure 32. LC lumped balun for divided by 2 output (MATCH_LC_LUMP_2G.dsn) . . . . . . . . . . . . . . 37  
Figure 33. Evaluation Board (EVB2G) matching network (MATCH_EVB2G.dsn) . . . . . . . . . . . . . . . 38  
Figure 34. LC lumped balun for the divided by 4 output (MATCH_LC_LUMP_1G.dsn) . . . . . . . . . . . 38  
Figure 35. Evaluation Board (EVB1G) matching network (MATCH_EVB1G.dsn) . . . . . . . . . . . . . . . 39  
Figure 36. Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 37. VFQFPN28 Mechanical Data & Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
5/43  
Block diagram and pin configuration  
STW81102  
1
Block diagram and pin configuration  
1.1  
Block diagram  
Figure 1.  
Block diagram  
VDD_OUTBUF  
VSS_OUTBUF  
BUF  
VDD_DIV4  
VSS_DIV4  
VSS_CP  
VDD_CP  
VDD_DIV2  
VSS_DIV2  
REF  
Divider  
P
F
D
UP  
DN  
C
P
ICP  
VDD_BUFVCO  
VSS_BUFVCO  
VCO  
Divider  
BUF  
LOCK_DET  
DBUS_SEL  
EXTVCO_INP  
EXTVCO_INN  
EXT  
VCO BUF  
SCL / CLK  
SDA / DATA  
ADD0 / LOAD  
DBUS  
ADD1  
ADD2  
VCO  
BUFF  
VDD_VCOA  
VSS_VCOA  
VCO  
Calibrator  
VDD_VCOB  
VSS_VCOB  
VDD_DBUS  
VSS_DBUS  
VDD_ESD  
VSS_ESD  
6/43  
STW81102  
Block diagram and pin configuration  
1.2  
Pin configuration  
Figure 2.  
Pin connection (top view)  
DBUS_SEL  
VDD_BUFVCO  
EXTVCO_INP  
VDD_VCOA  
VDD_DIV2  
VDD_OUTBUF  
OUTBUFP  
OUTBUFN  
VDD_DIV4  
VDD_VCOB  
VFQFPN28  
EXTVCO_INN  
VDD_PLL  
REF_CLK  
TEST2  
Table 1.  
Pin No  
Pin description  
Name  
VDD_VCOA  
Description  
Observation  
1
2
VCOA power supply  
VDD_DIV2  
VDD_OUTBUF  
OUTBUFP  
OUTBUFN  
VDD_DIV4  
VDD_VCOB  
VDD_ESD  
VCTRL  
Divider by 2 power supply  
Output buffer power supply  
LO buffer positive output  
LO buffer negative output  
Divider by 4 power supply  
VCOB power supply  
3
4
Open collector  
5
Open collector  
6
7
8
ESD positive rail power supply  
VCO control voltage  
9
10  
ICP  
PLL charge pump output  
External resistance connection for  
PLL charge pump  
11  
12  
13  
14  
REXT  
VDD_CP  
TEST1  
Power supply for charge pump  
Test input 1  
Test purpose only; must  
be connected to GND  
LOCK_DET  
Lock detector  
CMOS Output  
7/43  
Block diagram and pin configuration  
STW81102  
Table 1.  
Pin No  
Pin description (continued)  
Name  
Description  
Observation  
Test purpose only; must  
be connected to GND  
15  
TEST2  
Test input 2  
16  
17  
REF_CLK  
VDD_PLL  
Reference clock input  
PLL digital power supply  
Test purpose only; must  
be connected to GND  
18  
19  
EXTVCO_INN  
EXTVCO_INP  
External VCO negative input  
External VCO positive input  
Test purpose only; must  
be connected to GND  
20  
21  
22  
23  
VDD_BUFVCO  
DBUS_SEL  
VDD_DBUS  
EXT_PD  
VCO buffer power supply  
Digital Bus Interface select  
SPI and I2C bus power supply  
Power down hardware  
CMOS Input  
CMOS Input  
CMOS Bidir Schmitt  
triggered  
24  
25  
26  
SDA/DATA  
SCL/CLK  
I2CBUS/SPI data line  
I2CBUS/SPI clock line  
CMOS Input  
CMOS Input  
I2CBUS address select pin/ SPI load  
line  
ADD0/LOAD  
27  
28  
ADD1  
ADD2  
I2CBUS address select pin  
I2CBUS address select pin  
CMOS Input  
CMOS Input  
8/43  
STW81102  
Electrical specifications  
2
Electrical specifications  
2.1  
Absolute maximum ratings  
Table 2.  
Symbol  
Absolute maximum ratings  
Parameter  
Values  
Unit  
AVCC  
DVCC  
Tstg  
Analog Supply voltage  
Digital Supply voltage  
Storage temperature  
0 to 4.6  
0 to 4.6  
V
V
-65 to 150  
°C  
Electrical Static Discharge  
- HBM(1)  
4
ESD  
KV  
- CDM-JEDEC Standard  
- MM  
1.5  
0.2  
1. The maximum rating of the ESD protection circuitry on pin 4 and pin 5 is 800V.  
2.2  
Operating conditions  
Table 3.  
Symbol  
Operating conditions (Refer to application diagram)  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
AVDD  
DVDD  
IVDD1  
IVDD2  
Analog Supply voltage  
Digital Supply voltage  
3.0  
3.0  
3.3  
3.3  
3.6  
3.6  
100  
15  
V
V
VDD1 Current Consumption  
VDD2 Current Consumption  
mA  
mA  
Operating ambient  
temperature  
Tamb  
Tj  
-40  
85  
°C  
°C  
Maximum junction  
temperature  
125  
Junction to ambient package  
thermal resistance  
Rth j-amb  
Multilayer JEDEC board  
35  
°C/W  
2.3  
Digital logic levels  
Table 4.  
Symbol  
Digital logic levels  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
Vil  
Vih  
Low level input voltage  
High level input voltage  
Schmitt trigger hysteresis  
Low level output voltage  
High level output voltage  
0.2*Vdd  
V
V
V
V
V
0.8*Vdd  
0.8  
Vhyst  
Vol  
0.4  
Voh  
0.85*Vdd  
9/43  
Electrical specifications  
STW81102  
2.4  
Electrical characteristics  
Table 5.  
Electrical characteristics  
All the Electrical Specifications are intended at 3.3V supply Voltage.  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
OUTPUT FREQUENCY RANGE  
Direct Output  
3000  
1500  
750  
3620  
1810  
905  
MHz  
MHz  
MHz  
MHz  
MHz  
Output Frequency Range with  
VCOA  
FOUTA  
Divider by 2  
Divider by 4  
Direct Output  
Divider by 2  
Divider by 4  
4000  
2000  
1000  
4650  
2325  
Output Frequency Range with  
VCOB  
FOUTB  
1162.5  
MHz  
VCO DIVIDERS  
VCO Divider Ratio  
Prescaler 16/17  
Prescaler 19/20  
256  
361  
65551  
77836  
N
REFERENCE CLOCK and PHASE FREQUENCY DETECTOR  
fref  
Reference input frequency  
Reference input sensitivity(1)  
Reference Divider Ratio  
PFD input frequency  
10  
0.35  
2
200  
1.5  
MHz  
1
Vpeak  
R
1023  
16  
fPFD  
MHz  
Hz  
FOUT  
65551  
/
FOUT  
256  
/
Prescaler 16/17  
Prescaler 19/20  
fstep  
Frequency step(2)  
FOUT  
77836  
/
FOUT  
361  
/
Hz  
CHARGE PUMP  
ICP  
ICP sink/source(3)  
3bit programmable  
5
mA  
V
Output voltage compliance  
range  
VOCP  
0.4  
Vdd-0.3  
Direct Output  
-73  
-83  
-91  
dBc  
dBc  
dBc  
(fPFD = 200KHz)  
Divider by 2  
Spurious(4)  
(fPFD = 400KHz)  
Divider by 4  
(fPFD = 800KHz)  
VCOs  
Lower frequency range  
40  
60  
80  
30  
40  
50  
55  
75  
70  
95  
MHz/V  
MHz/V  
MHz/V  
MHz/V  
MHz/V  
MHz/V  
KVCOA  
VCOA sensitivity(5)  
VCOB sensitivity(5)  
Intermediate frequency range  
Higher frequency range  
Lower frequency range  
105  
45  
140  
60  
KVCOB  
Intermediate frequency range  
Higher frequency range  
55  
70  
70  
90  
10/43  
STW81102  
Electrical specifications  
Table 5.  
Symbol  
Electrical characteristics (continued)  
All the Electrical Specifications are intended at 3.3V supply Voltage.  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
VCO A Pushing(5)  
VCO B Pushing(5)  
VCO control voltage(5)  
LO Harmonic Spurious(5)  
4
7
20  
3
MHz/V  
MHz/V  
V
14  
VCTRL  
0.4  
-20  
dBc  
mA  
fVCO=3.3GHz ; amplitude [11]  
fVCO=3.3GHz ; amplitude [00]  
fVCO=4.3GHz ; amplitude [11]  
fVCO=4.3GHz ; amplitude [00]  
30  
16  
22  
11  
15  
17  
13  
IVCOA  
VCOA current consumption  
VCOB current consumption  
mA  
mA  
IVCOB  
mA  
IVCOBUF VCO buffer consumption  
mA  
IDIV2  
IDIV4  
DIVIDER by 2 consumption  
DIVIDER by 4 consumption  
mA  
mA  
LO OUTPUT BUFFER  
PLO  
RL  
Output level  
Return Loss(5)  
0
dBm  
dB  
Matched to 50ohm  
DIV4 Buff  
15  
27  
23  
39  
mA  
mA  
mA  
IOUTBUF Current Consumption  
DIV2 Buff  
Direct Output  
EXTERNAL VCO (Test purpose only)  
Frequency range  
Input level  
3.0  
0
4.65  
+6  
GHz  
dBm  
mA  
Current Consumption  
VCO Internal Buffer  
15  
PLL MISCELLANEOUS  
Input Buffer, Prescaler, Digital  
Dividers, misc.  
IPLL  
Current Consumption  
Lock up time (5), (6)  
12  
mA  
µs  
25KHz PLL bandwidth; within  
1 ppm of frequency error  
Tlock  
150  
1. In order to achieve best phase noise performance 1V peak level is suggested.  
2. The frequency step is related to the PFD input frequency as follows:  
- fstep = fPFD for Direct Output  
- fstep = fPFD/2 for Divided by 2 Output  
- fstep = fPFD/4 for Divided by 4 Output  
3. see relationship between ICP and REXT in the Circuit Description section (Charge Pump)  
4. The level of the spurs may change depending on PFD frequency, Charge Pump current, selected channel and PLL loop  
BW.  
5. Guaranteed by design and characterization.  
6. Frequency jump from 2300 to 2150 MHz; it includes the time required by the VCO calibration procedure (7 fPFD cycles with  
fPFD=400KHz).  
11/43  
Electrical specifications  
STW81102  
2.5  
Phase noise specification  
Table 6.  
Phase noise specification  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
PHASE NOISE PERFORMANCE(1)  
In Band Phase Noise Floor – Closed Loop(2)  
ICP=4mA, PLL BW = 50KHz;  
Normalized In Band Phase Noise  
Floor  
-222  
dBc/Hz  
including reference clock  
contribution  
In Band Phase Noise Floor  
Direct Output  
-222+20log(N)+10log(fPFD  
)
dBc/Hz  
dBc/Hz  
dBc/Hz  
ICP=4mA, PLL BW = 50KHz;  
In Band Phase Noise Floor  
Divider by 2  
-228+20log(N)+10log(fPFD  
-234+20log(N)+10log(fPFD  
)
)
including reference clock  
contribution  
In Band Phase Noise Floor  
Divider by 4  
PLL Integrated Phase Noise – Direct Output  
FOUT = 4.3 GHz,  
-35  
1.4  
dBc  
Integrated Phase Noise  
100Hz to 40MHz  
fPFD = 200KHz, fSTEP =200 KHz,  
PLL BW = 15KHz, ICP=4mA  
° rms  
PLL Integrated Phase Noise – Divider by 2  
FOUT = 2.15 GHz,  
-44  
dBc  
Integrated Phase Noise  
100Hz to 40MHz  
fPFD = 400KHz, fSTEP =200 KHz,  
PLL BW = 20KHz, ICP=3mA  
0.52  
° rms  
PLL Integrated Phase Noise – Divider by 4  
FOUT = 1.075 GHz,  
-51  
dBc  
Integrated Phase Noise  
100Hz to 40MHz  
fPFD = 800KHz, fSTEP =200 KHz,  
PLL BW = 30KHz, ICP=2.5mA  
0.22  
° rms  
VCO A Direct (3000MHz-3620MHz) – Open Loop(3)  
Phase Noise @ 1 KHz  
Phase Noise @ 10 KHz  
Phase Noise @ 100 KHz  
Phase Noise @ 1 MHz  
Phase Noise @ 10 MHz  
Phase Noise @ 40 MHz  
-56  
-83  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
-107  
-129  
-149  
-159  
VCO B Direct (4000MHz-4650MHz) – Open Loop(3)  
Phase Noise @ 1 KHz  
Phase Noise @ 10 KHz  
Phase Noise @ 100 KHz  
Phase Noise @ 1 MHz  
Phase Noise @ 10 MHz  
Phase Noise @ 40 MHz  
-54  
-82  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
-106  
-128  
-148  
-158  
12/43  
STW81102  
Table 6.  
Electrical specifications  
Phase noise specification (continued)  
Parameter Test conditions  
Min  
Typ  
Max  
Unit  
VCO A with divider by 2 (1500MHz-1810MHz) – Open Loop(3)  
Phase Noise @ 1 KHz  
Phase Noise @ 10 KHz  
Phase Noise @ 100 KHz  
Phase Noise @ 1 MHz  
Phase Noise @ 10 MHz  
Phase Noise Floor @ 40 MHz  
-62  
-89  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
-113  
-135  
-151.5  
-155  
VCO B with divider by 2 (2000MHz-2325MHz) – Open Loop(3)  
Phase Noise @ 1 KHz  
Phase Noise @ 10 KHz  
Phase Noise @ 100 KHz  
Phase Noise @ 1 MHz  
Phase Noise @ 10 MHz  
Phase Noise Floor @ 40 MHz  
-60  
-88  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
-112  
-134  
-151.5  
-155  
VCO A with divider by 4 (750MHz-905MHz) – Open Loop(3)  
Phase Noise @ 1 KHz  
Phase Noise @ 10 KHz  
Phase Noise @ 100 KHz  
Phase Noise @ 1 MHz  
Phase Noise @ 10 MHz  
Phase Noise Floor @ 40 MHz  
-68  
-95  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
-119  
-141  
-154  
-155  
VCO B with divider by 4 (1000MHz-1162.5MHz) – Open Loop(3)  
Phase Noise @ 1 KHz  
-66  
-94  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Phase Noise @ 10 KHz  
Phase Noise @ 100 KHz  
Phase Noise @ 1 MHz  
Phase Noise @ 10 MHz  
Phase Noise Floor @ 40 MHz  
-118  
-140  
-154  
-155  
1. Phase Noise SSB.  
VCO amplitude setting to value [11].  
All the closed-loop performances are specified using a Reference Clock signal at 76.8 MHz with phase noise of  
-135dBc/Hz @1KHz offset, -145dBc/Hz @10KHz offset and -149.5dBc/Hz of noise floor.  
2. Normalized PN = Measured PN – 20log(N) – 10log(fPFD) where N is the VCO divider ratio (N=B*P+A) and fPFD is the  
comparison frequency at the PFD input  
3. Typical Phase Noise at centre band frequency  
Upon request an Evaluation Kit is available including a powerful simulation tool  
(STWPLLSim) which allows to estimate very accurately the Phase Noise of the device  
according to the desired project parameters (VCO Frequency, Selected Output Stage,  
Reference Clock, Frequency Step, …); refer to the Application Information (Section 7) for  
more details.  
13/43  
Typical performance characteristics  
STW81102  
3
Typical performance characteristics  
The phase noise is measured with the Agilent E5052A Signal Source Analyzer. All the  
closed-loop measurements are done with f =200 KHz setting properly the f and the  
STEP  
PFD  
Charge Pump current. The loop filter configuration used is depicted in the paragraph 8  
(Application Diagram) and the Reference Clock signal is at 76.8 MHz with phase noise of -  
135dBc/Hz @1KHz offset, -145dBc/Hz @10KHz offset and -149.5dBc/Hz of noise floor.  
Figure 3.  
VCO A (Direct output) open loop  
phase noise  
Figure 4.  
VCO B (Direct output) open loop  
phase noise  
Figure 5.  
VCO A (Direct output) closed loop Figure 6.  
phase noise at 3.6GHz  
VCO B (Direct output) closed loop  
phase noise at 4.3GHz  
(F  
=200KHz; F  
=200KHz;  
(F  
=200KHz; F  
=200KHz;  
STEP  
PFD  
STEP  
PFD  
I
=3mA)  
I
=4mA)  
CP  
CP  
1. 2° rms  
1.4° rms  
14/43  
STW81102  
Figure 7.  
Typical performance characteristics  
VCO A (Div. by 2 output) closed  
loop phase noise at 1.65GHz  
Figure 8.  
VCO B (Div. by 2 output) closed  
loop phase noise at 2.15GHz  
(F  
=200KHz; F  
=400KHz;  
(F  
=200KHz; F  
=400KHz;  
STEP  
PFD  
STEP  
PFD  
I
=2mA)  
I
=3mA)  
CP  
CP  
0.57° rms  
0.5° rms  
Figure 9.  
VCO A (Div. by 4 output) closed  
loop phase noise at 825MHz  
Figure 10. VCO B (Div. by 4 output) closed  
loop phase noise at 1.075GHz  
(F  
=200KHz; F  
=800KHz;  
(F  
=200KHz; F  
=800KHz;  
STEP  
PFD  
STEP  
PFD  
I
=1.5mA)  
I
=2.5mA)  
CP  
CP  
0.24° rms  
0.2° rms  
15/43  
Typical performance characteristics  
STW81102  
Figure 11. PFD Frequency Spurs (Direct  
Figure 12. PFD Frequency Spurs (Div. by 2  
Output; F =400KHz)  
Output; F  
=200KHz)  
PFD  
PFD  
-73 dBc  
@200KHz  
-83 dBc  
@400KHz  
Figure 13. PFD Frequency Spurs (Div. by 4  
Output; F =800KHz)  
Figure 14. Settling Time  
(Final Frequency=2.15 GHz;  
=400KHz; I =3mA)  
PFD  
F
PFD  
CP  
-91 dBc  
@800KHz  
16/43  
STW81102  
General description  
4
General description  
The block diagram of Figure 1 shows the different blocks, which have been integrated to  
achieve an integer-N PLL frequency synthesizer.  
The STW81102 consists of 2 internal low-noise VCOs with buffer blocks, a divider by 2, a  
divider by 4, a low-noise PFD (Phase Frequency Detector), a precise charge pump, a 10-bit  
programmable reference divider, two programmable counters and a programmable dual-  
modulus prescaler. The A-counter (5 bits) and B counter (12 bits) counters, in conjunction  
with the dual modulus prescaler P/P+1 (16/17 or 19/20), implement an N integer divider,  
where N = B*P +A. The division ratio of both reference and VCO dividers is controlled  
2
through the selected digital interface (I C bus or SPI).  
The selection of the digital interface type is done by the proper hardware connection of the  
2
pin DBUS_SEL (0 V for I C bus, 3.3 V for SPI).  
All devices operate with a power supply of 3.3 V and can be powered down when not in use.  
4.1  
Circuit description  
4.1.1  
Reference input stage  
The reference input stage is shown in Figure 15. The resistor network feeds a DC bias at the  
Fref input while the inverter used as the frequency reference buffer is AC coupled.  
Figure 15. Reference Frequency Input Buffer  
VDD  
Fref  
INV  
BUF  
Power Down  
4.1.2  
4.1.3  
Reference divider  
The 10-bit programmable reference counter allows the input reference frequency to be  
divided to produce the input clock to the PFD. The division ratio is programmed through the  
digital interface.  
Prescaler  
The dual-modulus prescaler P/P+1 takes the CML clock from the VCO buffer and divides it  
down to a manageable frequency for the CMOS A and B counters. The modulus (P) is  
programmable and can be set to 16 or 19. It is based on a synchronous 4/5 core which  
division ratio depends on the state of the modulus input.  
17/43  
General description  
STW81102  
4.1.4  
A and B counters  
The A (5 bits) and B (12 bits) counters, in conjunction with the selected dual modulus (16/17  
or 19/20) prescaler make it possible to generate output frequencies which are spaced only  
by the reference frequency divided by the reference division ratio. Thus, the division ratio  
and the VCO output frequency are given by these formulas:  
N = B · P + A  
(B P + A) ⋅ F  
ref  
F
= ------------------------------------------  
vco  
R
where:  
F
: output frequency of VCO.  
vco  
P: modulus of dual modulus prescaler (16 or 19 selected through the digital interface).  
B: division ratio of the main counter.  
A: division ratio of the swallow counter.  
F : input reference frequency.  
ref  
R: division ratio of reference counter.  
N: division ratio of PLL  
For a correct work of the VCO divider, B must be strictly higher than A. A can take any value  
ranging from 0 to 31. The range of the N number can vary from 256 to 65551 (P=16) or from  
361 to 77836 (P=19).  
Figure 16. VCO Divider Diagram  
VCOBUF-  
Prescaler  
16/17 or 19/20  
VCOBUF+  
To PFD  
modulus  
5 bit  
12 bit  
A counter  
B counter  
4.1.5  
Phase frequency detector (PFD)  
The PFD takes inputs from the reference and the VCO dividers and produces an output  
proportional to the phase error. The PFD includes a delay gate that controls the width of the  
anti-backlash pulse. This pulse ensures that there is no dead zone in the PFD transfer  
function.  
Figure 17 is a simplified schematic of the PFD.  
18/43  
STW81102  
General description  
Figure 17. PFD diagram  
VDD  
Fref  
Up  
D FF  
R
Delay  
R
Fref  
VDD  
D FF  
Down  
ABL  
4.1.6  
4.1.7  
Lock detect  
This signal indicates that the difference between rising edges of both UP and DOWN PFD  
signals is found to be shorter than the fixed delay (roughly 5 ns). Lock Detect signal is high  
when the PLL is locked. When Power Down is activated, Lock Detect is let to high level  
(Lock Detect consumes current only during PLL transients).  
Charge pump  
This block drives two matched current sources, Iup and Idown, which are controlled  
respectively by UP and DOWN PFD outputs. The nominal value of the output current is  
controlled by an external resistor (to be connected to the REXT input pin) and a selection  
among 8 by a 3 bit word.  
The minimum value of the output current is: I  
= 2*VBG/REXT (VBG~1.17 V)  
MIN  
Table 7.  
CPSEL2  
Current value vs selection  
CPSEL1  
CPSEL0  
Current  
Value for REXT=4.7 KΩ  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
IMIN  
0.5 mA  
1.0 mA  
1.5 mA  
2.0 mA  
2.5 mA  
3.0 mA  
3.5 mA  
4.0 mA  
2*IMIN  
3*IMIN  
4*IMIN  
5*IMIN  
6*IMIN  
7*IMIN  
8*IMIN  
Note:  
The current is output on pin ICP. During the VCO auto calibration, ICP and VCTRL pins are  
forced to VDD/2  
19/43  
General description  
Figure 18. Loop filter connection  
STW81102  
VDD  
VCTRL  
BUF  
C3  
R3  
Charge  
Pump  
ICP  
R1  
C1  
C2  
BUF  
Cal bit  
4.1.8  
Voltage controlled oscillators  
VCO Selection  
Within STW81102 two low-noise VCOs are integrated to cover a wide band from 3000MHz  
to 3620MHz and 4000MHz to 4650MHz (direct output), from 1500MHz to 1810MHz and  
2000MHz to 2325MHz (selecting divider by 2), from 750MHz to 905MHz and 1000MHz to  
1162.5MHz (selecting divider by 4).  
VCO A frequency range 3000MHz-3620MHz  
VCO B frequency range 4000MHz-4650MHz  
VCO Frequency Calibration  
Both VCOs can operate on 32 frequency ranges that are selected by adding or subtracting  
capacitors to the resonator. These frequency ranges are intended to cover the wide band of  
operation and compensate for process variation on the VCO center frequency.  
An automatic selection of the range is performed when the bit SERCAL rises from "0" to "1".  
The charge pump is inhibited and the pins ICP & VCTRL are at VDD/2 volts. Then the ranges  
are tested to select the one which with this VCO input voltage is the nearest to the desired  
output frequency (Fout = N*Fref/R). When this selection is achieved the signal ENDCALB  
(which means End of Calibration) falls to "0", then the charge pump is enabled again and  
SERCAL should be reset to "0" before the next channel step. The PLL has just to perform  
fine adjustment around VDD/2 on the loop filter to reach Fout, which enables a fast settle.  
Figure 19. VCO Sub-Bands Frequency Characteristics  
20/43  
STW81102  
General description  
The SERCAL bit should be set to "1" at each division ratio change. It should be noted that in  
order to reset the autocalibrator State Machine after a power-up, and anyway before the first  
calibration, the INITCAL bit should be set to "1" and back to "0" (this operation is  
automatically performed by the Power On Reset circuitry). The calibration takes  
approximately 7 periods of the PFD Frequency.  
The maximum allowed f  
to perform the calibration process is 1 MHz. Using an higher  
PFD  
F
the following procedure should be adopted:  
PFD  
1. Calibrate the VCO at the desired frequency with an f  
less than 1 MHz  
PFD  
2. Set the A, B and R dividers ratio for the desired f  
PFD  
VCO Voltage Amplitude Control  
The voltage swing of the VCOs can be adjusted over 4 levels by means of two dedicated  
programming bits (PLL_A1 and PLL_A0). Higher amplitudes provide best phase noise while  
lower ones save power.  
The following table gives the voltage level expected on the resonator nodes, the current  
consumption and the phase noise @1MHz.  
Table 8.  
VCO A performances vs. amplitude setting (Freq=3.3GHz)  
Differential  
Current  
PLL_A[1:0]  
PN @1MHz (dBc/Hz)  
voltage swing (Vp)  
Consumption (mA)  
00  
01  
10  
11  
1.1  
1.3  
1.9  
2.1  
16  
18  
27  
30  
-125  
-126  
-128.5  
-129  
Table 9.  
VCO B performances vs. amplitude setting (Freq=4.3GHz)  
Differential  
Current  
PLL_A[1:0]  
PN @1MHz (dBc/Hz)  
voltage swing (Vp)  
Consumption (mA)  
00  
01  
10  
11  
1.1  
1.3  
1.9  
2.1  
11  
14  
20  
22  
-124  
-125  
-127.5  
-128  
21/43  
2
I C bus interface  
STW81102  
2
5
I C bus interface  
2
The I C bus interface is selected by hardware connection of the pin #21 (DBUS_SEL) to 0 V.  
Data transmission from microprocessor to the STW81102 takes place through the 2 wires  
2
(SDA and SCL) I C-BUS interface. The STW81102 is always a slave device.  
2
The I C-bus protocol defines any device that sends data on to the bus as a transmitter and  
any device that reads the data as receiver. The device that controls the data transfer is  
known as the Master and the others as the slave. The master will always initiate the transfer  
and will provide the serial clock for synchronization.  
5.1  
General features  
5.1.1  
Data validity  
Data changes on the SDA line must only occur when the SCL is LOW. SDA transitions while  
the clock is HIGH are used to identify START or STOP condition.  
Figure 20. Data validity  
SDA  
SCL  
DATA LINE  
STABLE DATA  
VALID  
CHANGE  
DATA  
ALLOWED  
5.1.2  
5.1.3  
START condition  
A Start condition is identified by a HIGH to LOW transition of the data bus SDA while the  
clock signal SCL is stable in the HIGH state. A Start condition must precede any command  
for data transfer.  
STOP condition  
A LOW to HIGH transition of the data bus SDA identifies stop while the clock signal SCL is  
stable in the HIGH state. A STOP condition terminates communications between the  
STW81102 and the Bus Master.  
22/43  
2
STW81102  
I C bus interface  
Figure 21. Start and Stop condition  
SCL  
SDA  
START  
STOP  
5.1.4  
Byte format and acknowledge  
Every byte transferred on the SDA line must contain bits. Each byte must be followed by an  
acknowledge bit. The MSB is transferred first.  
An acknowledge bit is used to indicate a successful data transfer. The bus transmitter, either  
master or slave, will release the SDA bus after sending 8 bits of data. During the 9th clock  
pulse the receiver pulls the SDA low to acknowledge the receipt of 8 bits data.  
Figure 22. Byte format and acknowledge  
SCL  
1
3
7
2
8
9
//  
//  
SDA  
MSB  
ACKNOWLEDGMENT  
FROM RECEIVER  
START  
5.1.5  
Device addressing  
To start the communication between the Master and the STW81102, the master must  
initiate with a start condition. Following this, the master sends onto the SDA line 8 bits (MSB  
first) corresponding to the device select address and read or write mode.  
2
The first 7 MSB's are the device address identifier, corresponding to the I C-Bus definition.  
For the STW81102 the address is set as "1100A A A ", 3bits programmable. The 8th bit  
2
1 0  
(LSB) is the read or write operation bit (RW; set to 1 in read mode and to 0 in write mode).  
After a START condition the STW81102 identifies on the bus the device address and, if  
matched, it will acknowledge the identification on SDA bus during the 9th clock pulse.  
5.1.6  
Single-byte write mode  
Following a START condition the master sends a device select code with the RW bit set to 0.  
The STW81102 gives an acknowledge and waits for the internal sub-address (1 byte). This  
byte provides access to any of the internal registers.  
After the reception of the sub-address internal byte the STW81102 again responds with an  
acknowledge. A single-byte write to sub-address 00H will change the  
"FUNCTIONAL_MODE" register, so a single-byte write with sub-address 04H will change  
the "CONTROL" register and so on.  
23/43  
2
I C bus interface  
STW81102  
Table 10. Single-byte write mode  
ack  
S
1100A A A  
1 0  
0
sub-address byte  
ack  
DATA IN  
ack  
P
2
5.1.7  
Multi-byte write mode  
The multi-byte write mode can start from any internal address. The master sends the data  
bytes and each one is acknowledged. The master terminates the transfer by generating a  
STOP condition.  
The sub-address decides the starting byte. A multi-byte with sub-address 01H and 2  
DATA_IN bytes will change the "B_COUNTER" and "A_COUNTER" registers (01H,02H), so  
a multi-byte with sub-address 00H and and 6 DATA_IN bytes will change all the STW81102  
registers.  
Table 11. Multi-byte write mode  
S
1100A2A1A0  
0
ack sub-address byte ack DATA IN ack .... DATA IN ack  
P
5.1.8  
Current byte address read  
In the current byte address read mode, following a START condition, the master sends the  
device address with the rw bit set to 1 (No sub-address is needed as there is only 1 byte  
read register). The STW81102 acknowledges this and outputs the data byte. The master  
does not acknowledge the received byte, but terminates the transfer with a STOP condition.  
Table 12. Current Byte Address Read  
S
1100 A2 A1 A0  
1
ack  
DATA OUT  
No ack  
P
5.2  
Timing specification  
Figure 23. Data and clock  
SDA  
SCL  
tcwl  
tcs  
tch  
tcwh  
Table 13. Data and clock  
Symbol  
Parameter  
Minimum time (ns)  
Tcs  
Tch  
Data to clock set up time  
Data to clock hold time  
Clock pulse width high  
Clock pulse width low  
2
2
Tcwh  
Tcwl  
10  
5
24/43  
2
STW81102  
I C bus interface  
Figure 24. Start and stop  
Table 14. Start and stop  
Symbol  
Parameter  
Minimum time (ns)  
Tstart  
Tstop  
Clock to data start time  
2
2
Data to clock down stop time  
Figure 25. Acknowledge  
SDA  
SCL  
8
9
td2  
td1  
Table 15. Acknowledge  
Symbol  
Parameter  
Minimum time (ns)  
Td1  
Td2  
Ack begin delay  
Ack end delay  
2
2
25/43  
2
I C bus interface  
STW81102  
5.3  
I2C registers  
STW81102 has 6 write-only registers and 1 read-only register.  
The following table gives a short description of the write-only registers list.  
Table 16. Write-only registers list  
HEX CODE  
DEC CODE  
DESCRIPTION  
FUNCTIONAL_MODE  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0
1
2
3
4
5
B_COUNTER  
A_COUNTER  
REF_DIVIDER  
CONTROL  
CALIBRATION  
5.3.1  
FUNCTIONAL_MODE  
MSB  
LSB  
b7  
b6  
b5  
PD4  
b4  
b3  
b2  
b1  
b0  
PD6  
PD5  
PD3  
PD2  
PD1  
PD0  
B11  
FUNCTIONAL_MODE register is used to select different functional mode for the STW81102  
synthesizer according to the following table:  
Table 17. Different functional mode of the FUNCTIONAL_MODE register  
Decimal value  
Description  
0
1
2
3
4
5
6
7
8
9
Power down mode  
Enable VCO A, output frequency divided by 2  
Enable VCO B, output frequency divided by 2  
Enable external VCO, output frequency divided by 2  
Enable VCO A, output frequency divided by 4  
Enable VCO B, output frequency divided by 4  
Enable external VCO, output frequency divided by 4  
Enable VCO A, direct output  
Enable VCO B, direct output  
Enable external VCO, direct output  
26/43  
2
STW81102  
I C bus interface  
5.3.2  
B_COUNTER  
MSB  
LSB  
b7  
b6  
B9  
b5  
B8  
b4  
b3  
B6  
b2  
B5  
b1  
b0  
B10  
B7  
B4  
B3  
B[10:3]. Counter value (bit B11 in the previous register, bits B[2:0] in the next register)  
5.3.3  
5.3.4  
5.3.5  
A_COUNTER  
MSB  
LSB  
b7  
B2  
b6  
B1  
b5  
B0  
b4  
b3  
b2  
b1  
b0  
A0  
A4  
A3  
A2  
A1  
Bits B[2:0] for B Counter, A Counter value.  
REF_DIVIDER  
MSB  
LSB  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
Reference Clock divider ratio R[9:1] (bits R1, R0 in the next register).  
CONTROL  
MSB  
LSB  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
PLL_  
A1  
PLL_  
A0  
CP  
CP  
CP  
PSC_  
SEL  
R1  
R0  
SEL2  
SEL1  
SEL0  
The CONTROL register is used to set the Charge Pump current, the VCO output voltage  
amplitude and the Prescaler Modulus.  
PLL_A[1:0]: VCO amplitude  
CPSEL[2:0]: Charge Pump output current  
PSC_SEL: Prescaler Modulus select ('0' for P=16, '1' for P=19)  
The LO output frequency is programmed by setting the proper value for A,B and R  
according to the following formula:  
F
REF_CLK  
---------------------------  
F
= D ⋅ (B P + A) ⋅  
OUT  
R
R
27/43  
2
I C bus interface  
STW81102  
1
for Direct Output  
where DR equals  
0.5  
for Output Divided by 2  
{
0.25 for Output Divided by 4  
and P is the selected Prescaler Modulus  
5.3.6  
CALIBRATION  
MSB  
LSB  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
SEL  
EXT  
CAL  
INIT  
CAL  
SER  
CAL  
CAL4  
CAL3  
CAL2  
CAL1  
CAL0  
This register controls VCO calibrator.  
INITCAL:  
SERCAL:  
resets the auto-calibrator State Machine (writing to "1" and back to "0")  
at "1" starts the VCO auto-calibration (should be reset to "0" at the end of  
calibration)  
SELEXTCAL: test purpose only; must be set to '0'  
CAL[4:0]: test purpose only; must be set to '0'  
5.3.7  
READ-ONLY register  
MSB  
LSB  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
LOCK_  
DET  
INT  
INT  
INT  
INT  
INT  
DEV_ID1  
DEV_ID0  
CAL4  
CAL3  
CAL2  
CAL1  
CAL0  
This register is automatically addressed in the 'current byte address read mode'.  
DEV_ID[1:0]: device identifier bits; returns '00'  
LOCK_DET: "1" when PLL is locked  
INTCAL[4:0]: internal value of the VCO control word  
5.3.8  
Default configuration  
At Power On Reset the following configuration is automatically loaded:  
FUNCTIONAL MODE = 1 (VCOA with divided by 2 output)  
A COUNTER = 8  
B COUNTER = 562  
R DIVIDER = 192  
PLL_A[1:0] = [10]  
CP_SEL[2:0] = [111]  
PSC_MOD_SEL set to "0" (Modulus = 16)  
This is corresponding to an output frequency of 1800MHz and a PFD frequency of 400KHz  
using a 76.8MHz reference clock (calibration algorithm of the VCO is automatically started).  
28/43  
2
STW81102  
I C bus interface  
5.4  
VCO calibration procedure  
The calibration of the VCO center frequency is activated by a '0' to '1' transition of the  
SERCAL bit (CALIBRATION Register bit[6]).  
In order to program properly the device, ensuring the VCO calibration, the following  
procedure is required before every channel change:  
a) Reset the "CALIBRATION" Register using a single-byte write sequence (sub-  
address 05H) with all the bits set to '0'  
b) Program all the Registers using a multi-byte write sequence with the desired  
settings (Functional Mode, B and A counters, R counter, VCO amplitude, Charge  
Pump, Prescaler Modulus) and the SERCAL bit of the "CALIBRATION" Register  
(05H) set to '1'  
The maximum allowed PFD frequency (f  
) to perform the calibration process is 1 MHz; if  
PFD  
the desired f  
is higher than 1MHz the following steps are needed:  
PFD  
Perform all the steps of the calibration procedure programming the desired VCO  
frequency with a proper setting of R, B and A counter so that f is 1MHz.  
PFD  
Program the device with the proper setting for the desired VCO and PFD  
frequencies according to the above step b) only.  
29/43  
SPI digital interface  
STW81102  
6
SPI digital interface  
6.1  
General features  
The SPI digital interface is selected by hardware connection of the pin #21 (DBUS_SEL) to  
3.3V.  
The STW81102 IC is programmed by means of a high-speed serial-to-parallel interface with  
write option only. The 3-wires bus can be clocked at a frequency as high as 100MHz to allow  
fast programming of the registers containing the data for RF IC configuration.  
The programming of the chip is done through serial words with whole length of 26 bits. The  
first 2 MSB represent the address of the registers. The others 24 LSB represent the value of  
the registers.  
Each Data bit is stored in the internal shift register on the rising edge of the CLOCK signal.  
On the rising edge of the LOAD signal the outputs of the selected register are sent to the  
device.  
Figure 26. SPI input and output bit order  
30/43  
STW81102  
SPI digital interface  
LSB  
Table 18. SPI data structure  
MSB  
Address  
Data for Register (24 bits)  
A1 A0 D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Table 19. Address decoder and outputs  
Address  
Outputs  
DATABITS  
D23-D0  
A1  
A0  
No  
Name  
Function  
Reference divider, VCO amplitude,  
VCO Calibration, Charge Pump  
current, Prescaler Modulus  
0
0
24  
0
ST1  
0
1
1
1
0
1
24  
24  
24  
1
2
3
ST2  
ST3  
ST4  
Functional modes, VCO dividers  
Reserved  
Reserved  
6.2  
Timing specification  
Figure 27. SPI Timing specification  
Table 20. SPI Timing specification  
Parameter  
Description  
Min.  
Typ.  
Max.  
Unit  
tsetup  
thold  
DATA to CLOCK setup time  
DATA to clock hold time  
CLOCK cycle period  
0.8  
0.2  
10  
3
ns  
ns  
ns  
ns  
ns  
ns  
tclk  
tload  
LOAD pulse width  
tclk_loadr  
tclk_loadf  
CLOCK to LOAD rising edge  
CLOCK to LOAD falling edge  
2
0.5  
31/43  
SPI digital interface  
STW81102  
6.3  
Bits table  
Table 21. Bits (Serial Interface Address = 00h; Register name = ST1)  
Bit  
Name  
Description  
[23]  
[22]  
[21]  
[20]  
[19]  
[18]  
[17]  
[16]  
[15]  
[14]  
[13]  
[12]  
[11]  
[10]  
[9]  
R9  
R8  
R7  
R6  
R5  
REFERENCE CLOCK DIVIDER RATIO  
R4  
R3  
R2  
R1  
R0  
PLL_A1  
PLL_A0  
CPSEL2  
CPSEL1  
CPSEL0  
PSC_SEL  
INITCAL  
SERCAL  
SELEXTCAL  
CAL4  
CAL3  
CAL2  
CAL1  
CAL0  
VCO Amplitude Control  
Charge Pump output current Control  
[8]  
Prescaler Modulus select (‘0’ for P=16, ‘1’ for P=19)  
test purpose only; must be set to ‘0’  
[7]  
[6]  
Enable VCO calibration (see Section 6.4)  
test purpose only; must be set to ‘0’  
[5]  
[4]  
[3]  
[2]  
test purpose only; must be set to ‘0’  
[1]  
[0]  
32/43  
STW81102  
SPI digital interface  
Table 22. Bits (Serial Interface Address = 01h; Register name = ST2)  
Bit  
Name  
Description  
DEVICE FUNCTIONAL MODES  
0. Power down  
[23]  
[22]  
[21]  
[20]  
[19]  
[18]  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
1. Enable VCO A, output frequency divided by 2  
2. Enable VCO B, output frequency divided by 2  
3. Enable external VCO, output frequency divided by 2  
4. Enable VCO A, output frequency divided by 4  
5. Enable VCO B, output frequency divided by 4  
6. Enable external VCO, output frequency divided by 4  
7. Enable VCO A, direct output  
[17]  
PD0  
8. Enable VCO B, direct output  
9. Enable external VCO, direct output  
[16]  
[15]  
[14]  
[13]  
[12]  
[11]  
[10]  
[9]  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
A4  
A3  
A2  
A1  
A0  
B Counter Bits  
[8]  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
A Counter Bits  
[1]  
[0]  
The LO output frequency is programmed by setting the proper value for A,B and R  
according to the following formula:  
F
REF_CLK  
---------------------------  
F
= D ⋅ (B P + A) ⋅  
OUT  
R
R
1
for Direct Output  
where DR equals  
0.5  
for Output Divided by 2  
{
0.25 for Output Divided by 4  
and P is the selected Prescaler Modulus  
33/43  
SPI digital interface  
STW81102  
6.3.1  
Default configuration  
At Power On Reset the following configuration is automatically loaded:  
FUNCTIONAL MODE = 1 (VCOA with divided by 2 output)  
A COUNTER = 8  
B COUNTER = 562  
R DIVIDER = 192  
PLL_A[1:0] = [10]  
CP_SEL[2:0] = [111]  
PSC_MOD_SEL set to "0" (Modulus = 16)  
This is corresponding to an output frequency of 1800MHz and a PFD frequency of 400KHz  
using a 76.8MHz reference clock (calibration algorithm of the VCO is automatically started).  
6.4  
VCO calibration procedure  
The calibration of the VCO center frequency is activated by a '0' to '1' transition of the  
SERCAL bit (ST1 Register bit[6]).  
In order to program properly the device, ensuring the VCO calibration, the following  
procedure is required before every channel change:  
a) Program the ST1 Register with the desired settings (R counter, VCO amplitude,  
Charge Pump, Prescaler Modulus) and SERCAL bit set to '0'  
b) Program the ST2 Register with the desired settings (Functional mode, B and A  
counters)  
c) Program the ST1 Register with the desired settings (R counter, VCO amplitude,  
Charge Pump, Prescaler Modulus) and SERCAL bit set to '1'  
The maximum allowed PFD frequency (f  
) to perform the calibration process is 1 MHz; if  
PFD  
the desired f  
is higher than 1MHz the following steps are needed:  
PFD  
Perform all the steps of the calibration procedure programming the desired VCO  
frequency with a proper setting of R, B and A counter so that f is 1MHz.  
PFD  
Program the device with the proper setting for the desired VCO and PFD  
frequencies according to the above step a) and b) only.  
34/43  
STW81102  
Application information  
7
Application information  
The STW81102 features three different alternatively selectable bands: direct output (3.0 to  
3.62GHz and 4.0 to 4.65GHz), divided by 2 (1.5 to 1.81GHz and 2.0 to 2.325GHz) and  
divided by 4 (750 to 905MHz and 1000 to 1162.5MHz). In order to achieve a suitable power  
level, a good matching network is needed to adapt the output stage to a 50load.  
Moreover, since most of commercial RF components have single ended input and output  
terminations, a differential to single ended conversion could be required.  
Below different matching configurations for the three bands are suggested as a guideline for  
the design of own application board.  
The user can find in the Evaluation Kit the ADS Design for each matching configuration  
suggested in this section. The name of the corresponding ADS Design is reported in each  
figure.  
The ADS designs provide only a first indication of the output stage matching and they  
should be reworked according to the user choice for layout, board substrate, components  
and so on.  
The ADS designs of the Evaluation Boards are provided with a complete electromagnetic  
modelling (board, components, ...).  
7.1  
Direct Output  
If a differential to single conversion is not needed it is possible to match the output buffer of  
the STW81102 in the simple way shown in Figure 28.  
Figure 28. Differential/single ended output network in the 3.0 - 4.65GHz range  
(MATCH_LC_LUMP_4G_DIFF.dsn)  
V
CC  
100 Ohm  
5.5nH  
50 Ohm  
10pF  
RFOUTP  
10pF  
RFOUTN  
50 Ohm  
100 Ohm  
5.5nH  
VCC  
Since most of discrete components for microwave applications are single ended, the user  
can easily use one of the two outputs and terminate the other one to 50with a 3dB power  
loss.  
35/43  
Application information  
STW81102  
Alternatively it is possible to combine the 2 outputs in different ways. A first topology for the  
direct output (3GHz to 4.65GHz) is suggested in Figure 29. It basically consists of a simple  
LC balun and a matching network to adapt the output to a 50load. The two LC networks  
shift output signal phase of -90° and +90° thus combining the 2 outputs. This topology,  
designed for a center frequency of 4GHz, is intrinsically narrow band, since the LC balun is  
tuned at a single frequency. If the application requires a different sub-band, the LC combiner  
could be easily adjusted to be tuned at the frequency of interest.  
Figure 29. LC lumped balun and matching network (MATCH_LC_LUMP_4G.dsn)  
VCC  
0.8pF  
50 Ohm  
1.9nH  
1.9nH  
0.8pF  
RFOUTP  
2.5pF  
1.9nH  
0.8pF  
50 Ohm  
RFOUTN  
1.9nH  
0.8pF  
50 Ohm  
VCC  
The 1.9nH shunt inductor works as a DC feed for one of the open collector terminal as well  
as a matching element along with the other components. The 1.9nH series inductors are  
used to resonate the parasitic capacitance of the chip.  
For an optimum output matching it is recommended to use 0402 Murata or AVX capacitors  
and 0403 or 0604 HQ Coilcraft inductors. It is also advisable to use short interconnection  
paths to minimize losses and undesired impedance shift.  
An alternative topology, which allows for a more broadband matching and balanced to  
unbalanced conversion, is shown it Figure 30.  
Figure 30. Evaluation Board (EVB4G) matching network (MATCH_EVB4G.dsn)  
VCC  
50 Ohm  
5.5nH  
12pF  
12pF  
4.7pF  
RFOUTP  
2:1  
50 Ohm  
1pF  
1pF  
1.2pF  
1.2pF  
12pF  
RFOUTN  
50 Ohm  
5.5nH  
VCC  
For the differential to single conversion the 50 to 100Johanson balun is recommended  
(3700BL15B100).  
36/43  
STW81102  
Application information  
7.2  
Divided by 2 Output  
If the user's application does not require a balanced to unbalanced conversion, the output  
matching reduces to the simple circuit shown below (Figure 31).  
This solution can be easily used to provide one single ended output just terminating the  
other output at 50with a 3dB power loss.  
Figure 31. Differential/single ended output network in the 1.5 - 2.325GHz range  
(MATCH_LC_LUMP_2G_DIFF.dsn)  
VCC  
50 Ohm  
22nH  
50 Ohm  
10pF  
RFOUTP  
RFOUTN  
10pF  
50 Ohm  
50 Ohm  
22nH  
VCC  
A first solution to combine the differential outputs is the lumped LC type balun tuned in the  
2GHz band (Figure 32).  
Figure 32. LC lumped balun for divided by 2 output (MATCH_LC_LUMP_2G.dsn)  
VCC  
2pF  
50 Ohm  
2.7nH  
2.7nH  
2pF  
RFOUTP  
3pF  
2.7nH  
2pF  
3nH  
50 Ohm  
RFOUTN  
50 Ohm  
2.7nH  
2pF  
V
CC  
The same recommendation for the SMD components applies also for the divided by 2  
output.  
Another topology suitable to combine the two outputs for the divided by 2 frequencies is  
represented in Figure 33.  
37/43  
Application information  
STW81102  
Figure 33. Evaluation Board (EVB2G) matching network (MATCH_EVB2G.dsn)  
VCC  
50 Ohm  
5.5nH  
22pF  
22pF  
1.9nH  
RFOUTP  
50 Ohm  
2:1  
1.2pF  
22pF  
RFOUTN  
50 Ohm  
5.5nH  
VCC  
For the differential to single conversion the 50 to 100Johanson balun (1600BL15B100) is  
recommended.  
7.3  
Divided by 4 Output  
The same topology, components values and considerations of Figure 31, applies also for the  
divided by 4 output (MATCH_LC_LUMP_1G_DIFF.dsn).  
As for the previous sections, a solution to combine the differential outputs is the lumped LC  
type balun tuned in the 1GHz band (Figure 34).  
Figure 34. LC lumped balun for the divided by 4 output (MATCH_LC_LUMP_1G.dsn)  
VCC  
25 Ohm  
5.5nH  
4pF  
5.5nH  
4pF  
RFOUTP  
6pF  
5.5nH  
4pF  
14nH  
50 Ohm  
RFOUTN  
5.5nH  
4pF  
25 Ohm  
VCC  
If the user prefers to use an RF balun it is possible to adopt the same topology depicted in  
Figure 33, just changing the balun and the matching components (Figure 35). The  
suggested balun for the 0.75 - 1.17GHz frequency range is the 1:1 Johanson  
900BL15C050.  
38/43  
STW81102  
Application information  
Figure 35. Evaluation Board (EVB1G) matching network (MATCH_EVB1G.dsn)  
VCC  
25 Ohm  
18nH  
8.2pF  
22pF  
2.1nH  
RFOUTP  
50 Ohm  
1:1  
0.5pF  
8.2pF  
RFOUTN  
25 Ohm  
18nH  
VCC  
7.4  
Evaluation Kit  
Upon request an Evaluation Kit can be delivered. It includes:  
Evaluation Board  
GUI (Graphical User Interface) to program the device  
Measured S parameters of the RF output  
ADS2005 schematics providing guidelines for application board design  
STWPLLSim software for PLL loop filter design and noise simulation  
Three different Evaluation Kits are available, one optimized for 1GHz frequency range, one  
for 2GHz frequency range and the last one for 4GHz range.  
While ordering please specify the following order codes:  
Table 23. Order code of the evaluation kit  
Part Number  
STW81102-EVB1G  
Description  
1GHz frequency range - Divider by 4 output optimized  
2GHz frequency range - Divider by 2 output optimized  
4GHz frequency range - Direct output optimized  
STW81102-EVB2G  
STW81102-EVB4G  
The three Evaluation Kits differ only for the output stage network and can be adapted from  
one frequency band variant to a different one replacing properly the macthing components  
and the balun.  
39/43  
Application diagram  
STW81102  
8
Application diagram  
Figure 36. Application diagram  
µ–  
From/to  
controller  
100  
100  
100  
15p  
15p  
15p  
I2C  
SPI  
VDD1  
µ
10  
1n  
22p  
VDD_VCOA  
DBUS_SEL  
VDD_BUFVCO  
VDD_DIV2  
VDD2  
VDD1  
VDD_OUTBUF  
EXTVCO_INP  
EXTVCO_INN  
RF Out  
µ
10  
1n  
22p  
OUTBUFP  
OUTBUFN  
STW81102  
VDD_PLL  
ref clk  
REF_CLK  
TEST2  
VDD_DIV4  
VDD1  
1.8n  
51  
VDD_VCOB  
VDD1  
µ
10  
1n  
22p  
4.7K  
VDD1  
2.2K  
2.7n  
8.2K  
68p  
µ
10  
1n  
22p  
270p  
µ–  
to controller  
loop filter  
Note:  
1
2
See Application Information (Section 7) for further information on Output Matching topology.  
2
EXT_PD, ADD2, ADD1 (and ADD0 when I C Bus is selected) can be hard wired directly on  
the board.  
3
Loop Filter values are for 200KHz frequency step.  
40/43  
STW81102  
Package information  
9
Package information  
In order to meet environmental requirements, ST offers these devices in ECOPACK®  
packages. These packages have a Lead-free second level interconnect. The category of  
second Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at: http://www.st.com.  
Figure 37. VFQFPN28 Mechanical Data & Package Dimensions  
mm  
inch  
REF.  
MIN.  
TYP. MAX. MIN.  
TYP. MAX.  
OUTLINE AND  
MECHANICAL DATA  
A
A1  
A2  
A3  
b
0.800 0.900 1.000 0.031 0.035 0.039  
0.020 0.050  
0.650 1.000  
0.200  
0.0008 0.0019  
0.025 0.039  
0.0078  
0.180 0.250 0.300 0.007 0.0098 0.012  
4.850 5.000 5.150 0.191 0.197 0.203  
D
D1  
D2  
E
4.750  
0.187  
2.950 3.100 3.250 0.116 0.122 0.128  
4.850 5.000 5.150 0.191 0.197 0.203  
E1  
E2  
e
4.750  
2.950 3.100 3.250 0.116 0.122 0.128  
0.500 0.020  
0.350 0.550 0.750 0.014 0.022 0.029  
0.187  
L
P
0.60  
14˚  
0.0236  
14˚  
K
ddd  
0.080  
0.003  
Notes: 1) VFQFPN stands for Thermally Enhanced Very thin Fine  
pitch Quad Packages No lead.  
Very thin: A = 1.00 Max.  
2) The pin #1 identifier must be existed on the top surface  
of the package by using indentation mark or other fea-  
ture of package body.  
VFQFPN-28 (5x5x1.0mm)  
Very Fine Quad Flat Package No lead  
Exact shape and size of this feature is optional.  
7655832  
A
41/43  
Revision history  
STW81102  
10  
Revision history  
Table 24. Document revision history  
Date  
Revision  
Changes  
06-Mar-2006  
1
Initial release.  
Changed from preliminary data to maturity.  
16-Jun-2006  
2
Updated Section 2: Electrical specifications; Section 7: Application  
information and Section 8: Application diagram.  
42/43  
STW81102  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,  
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,  
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR  
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
43/43  

相关型号:

STW81102-EVB4G

Multi-band RF frequency synthesizer with integrated VCOs
STMICROELECTR

STW81102AT

Multi-band RF frequency synthesizer with integrated VCOs
STMICROELECTR

STW81102ATR

Multi-band RF frequency synthesizer with integrated VCOs
STMICROELECTR

STW81103

Multi-band RF frequency synthesizer with integrated VCOs
STMICROELECTR

STW81103AT

Multi-band RF frequency synthesizer with integrated VCOs
STMICROELECTR

STW81103ATR

Multi-band RF frequency synthesizer with integrated VCOs
STMICROELECTR

STW81200

Wideband RF PLL fractional/integer frequency synthesizer with integrated VCOs and LDOs
STMICROELECTR

STW81200T

Wideband RF PLL fractional/integer frequency synthesizer with integrated VCOs and LDOs
STMICROELECTR

STW81200TR

Wideband RF PLL fractional/integer frequency synthesizer with integrated VCOs and LDOs
STMICROELECTR

STW82100B

RF down converter with embedded integer-N synthesizer
STMICROELECTR

STW82101B

RF down converter with embedded integer-N synthesizer
STMICROELECTR

STW82102B

RF down converter with embedded integer-N synthesizer
STMICROELECTR