STV9118 [STMICROELECTRONICS]

LOW-COST I2C CONTROLLED DEFLECTION PROCESSOR FOR MULTISYNC MONITOR; 低成本I2C可控弯曲处理器的MultiSync显示器
STV9118
型号: STV9118
厂家: ST    ST
描述:

LOW-COST I2C CONTROLLED DEFLECTION PROCESSOR FOR MULTISYNC MONITOR
低成本I2C可控弯曲处理器的MultiSync显示器

显示器 监视器
文件: 总46页 (文件大小:578K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STV9118  
2
LOW-COST I C CONTROLLED DEFLECTION PROCESSOR  
FOR MULTISYNC MONITOR  
DATASHEET  
FEATURES  
General  
ADVANCED I C BUS CONTROLLED  
DEFLECTION PROCESSOR DEDICATED  
FOR HIGH-END CRT MONITORS  
Dynamic correction section  
Output with vertical dynamic correction  
waveform for dynamic corrections like focus,  
brightness uniformity, ...  
2
Fixed on screen by means of tracking system  
SINGLE SUPPLY VOLTAGE 12V  
VERY LOW JITTER  
DC/DC controller section  
N-MOS transistor drive  
DC/DC CONVERTER CONTROLLER  
ADVANCED EW DRIVE  
External sawtooth configuration  
Bus-controlled output voltage  
ADVANCED ASYMMETRY CORRECTIONS  
Synchronization on hor. frequency with phase  
selection  
AUTOMATIC MULTISTANDARD  
SYNCHRONIZATION  
DESCRIPTION  
VERTICAL DYNAMIC CORRECTION  
The STV9118 is a monolithic integrated circuit as-  
sembled in a 32-pin shrink dual-in-line plastic  
package. This IC controls all the functions related  
to horizontal and vertical deflection in multimode  
or multi-frequency computer display monitors.  
WAVEFORM OUTPUT  
X-RAY PROTECTION AND SOFT-START &  
STOP ON HORIZONTAL AND DC/DC DRIVE  
OUTPUTS  
2
I C BUS STATUS REGISTER  
The internal sync processor, combined with the  
powerful geometry correction block, makes the  
STV9118 suitable for very high performance mon-  
itors, using few external components.  
Horizontal section  
100 kHz maximum frequency  
Corrections of geometric asymmetry:  
Pin cushion asymmetry, Parallelogram  
Combined with other ST components dedicated  
for CRT monitors (microcontroller, video preampli-  
fier, video amplifier, OSD controller) the STV9118  
Tracking of asymmetry corrections with vertical  
size and position  
2
allows fully I C bus-controlled computer display  
Fully integrated internal horizontal moiré  
monitors to be built with a reduced number of ex-  
ternal components.  
cancellation and moiré cancellation output  
Vertical section  
200 Hz maximum frequency  
Vertical ramp for DC-coupled output stage with  
adjustments of: C-correction, S-correction for  
super-flat CRT, Vertical size, Vertical position  
Vertical moiré cancellation through vertical  
ramp waveform  
Compensation of vertical breathing with EHT  
variation  
SHRINK 32 (Plastic Package)  
ORDER CODE: STV9118  
EW section  
Symmetrical geometry corrections: Pin cushion,  
Keystone, Top/Bottom corners separately  
Horizontal size adjustment  
Tracking of EW waveform with Vertical size and  
position and adaptation to frequency  
Compensation of horizontal breathing through  
EW waveform  
November 2003  
1/46  
1
Table of Contents  
1 - GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2 - PIN CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3 - BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4 - PIN FUNCTION REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
5 - QUICK REFERENCE DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
6 - ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
7 - ELECTRICAL PARAMETERS AND OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . 10  
7.1 -THERMAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
7.2 -SUPPLY AND REFERENCE VOLTAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
7.3 -SYNCHRONIZATION INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
7.4 -HORIZONTAL SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
7.5 -VERTICAL SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
7.6 -EW DRIVE SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
7.7 -DYNAMIC CORRECTION OUTPUT SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
7.8 -DC/DC CONTROLLER SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
7.9 -MISCELLANEOUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
8 - TYPICAL OUTPUT WAVEFORMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2
9 - I C BUS CONTROL REGISTER MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
10 - OPERATING DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
10.1 -SUPPLY AND CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
10.1.1 -Power supply and voltage references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2
10.1.2 -I C Bus Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
10.2 -SYNC. PROCESSOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
10.2.1 -Synchronization signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
10.2.2 -Sync. presence detection flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10.2.3 -MCU controlled sync. selection mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10.2.4 -Automatic sync. selection mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10.3 -HORIZONTAL SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10.3.1 -General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10.3.2 -PLL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10.3.3 -Voltage controlled oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
10.3.4 -PLL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
10.3.5 -Dynamic PLL2 phase control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
10.3.6 -Output Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
10.3.7 -Soft-start and soft-stop on H-drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
10.3.8 -Horizontal moiré cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
2/46  
10.4 -VERTICAL SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
10.4.1 -General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
10.4.2 -Vertical moiré . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
10.5 -EW DRIVE SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
10.6 -DYNAMIC CORRECTION OUTPUT SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10.6.1 -Vertical dynamic correction output VDyCor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10.7 -DC/DC CONTROLLER SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10.8 -MISCELLANEOUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
10.8.1 -Safety functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
10.8.2 -Soft start and soft stop functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
10.8.3 -X-ray protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
10.8.4 -Composite output HLckVBk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
11 - INTERNAL SCHEMATICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
12 - PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3/46  
STV9118  
1 - GLOSSARY  
AC  
Alternate Current  
2
ACK  
AGC  
COMP  
CRT  
DC  
ACKnowledge bit of I C-bus transfer  
Automatic Gain Control  
COMParator  
Cathode Ray Tube  
Direct Current  
EHT  
EW  
Extra High Voltage  
East-West  
H/W  
HardWare  
HOT  
Horizontal Output Transistor  
Inter-Integrated Circuit  
Inter-Integrated Circuit  
Micro-Controller Unit  
Negated AND (logic operation)  
Negative-Positive-Negative  
OSCillator  
2
I C  
IIC  
MCU  
NAND  
NPN  
OSC  
PLL  
Phase-Locked Loop  
Positive-Negative-Positive  
REFerence  
PNP  
REF  
RS, R-S  
S/W  
Reset-Set  
SoftWare  
TTL  
Transistor Transistor Logic  
Voltage-Controlled Oscillator  
VCO  
4/46  
STV9118  
2 - PIN CONFIGURATION  
H/HVSyn  
VSyn  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VDyCor  
SDA  
1
2
HLckVBk  
HOscF  
HPLL2C  
CO  
3
SCL  
Vcc  
4
BOut  
5
GND  
6
HGND  
RO  
7
HOut  
XRay  
8
HPLL1F  
HPosF  
HMoiré  
HFly  
EWOut  
VOut  
9
10  
11  
12  
13  
14  
15  
16  
VCap  
VGND  
VAGCCap  
VOscF  
VEHTIn  
HEHTIn  
RefOut  
BComp  
BRegIn  
BISense  
5/46  
HGND  
HPosF  
HPLL1F  
R0 C0 HOscF  
HFly  
HPLL2C  
10  
9
8
6
4
12  
5
7
H-drive  
buffer  
H-sync  
detection  
26  
25  
HOut  
Horizontal  
VCO  
Phase/frequency  
comparator  
1
H/HVSyn  
Phase comparator  
Phase shifter  
H duty controller  
Pin cushion asymm.  
Parallelogram  
Polarity  
handling  
Horizontal position  
Safety  
processor  
XRay  
Lock detection  
Hor. duty cycle  
PLL1  
V-blank  
H-lock  
3
HLckVBk  
28  
16  
15  
14  
BOut  
Int./Ext. H-moiré  
B+  
H-moiré amplitude  
Control voltage level  
PLL2  
BISense  
BRegIn  
BComp  
DC/DC  
converter  
controller  
B+ ref.  
31  
30  
2
SDA  
SCL  
I C Bus  
2
I C Bus registers  
Functions controlled via I2C Bus  
interface  
:
29  
13  
Vcc  
Supply  
supervision  
11  
V-dynamic  
correction  
(focus, bright.)  
HMoiré  
Geometry  
tracking  
V-sync  
extraction  
& detection  
Reference  
generation  
RefOut  
VDyCor amplitude  
Internal  
ref.  
EW generator  
V-ramp control  
H size  
27  
GND  
Tracking EHT  
Vertical size  
Vertical position  
Vertical moiré  
Pin cushion  
Keystone  
Top corners  
Bottom corners  
Vertical oscillator  
V-sync detection  
Input selection  
Polarity handling  
24  
EWOut  
with AGC  
S-correction  
C-correction  
STV9118  
21  
19  
20  
22  
32  
23  
17  
2
18  
VGND  
VOscF  
VSyn  
VDyCor  
VOut  
VEHTIn  
HEHTIn  
VCap  
VAGCCap  
STV9118  
4 - PIN FUNCTION REFERENCE  
Pin  
1
Name  
H/HVSyn  
VSyn  
Function  
TTL compatible Horizontal / Horizontal and Vertical Sync. input  
TTL compatible Vertical Sync. input  
2
3
HLckVBk  
HOscF  
HPLL2C  
CO  
Horizontal PLL1 Lock detection and Vertical early Blanking composite output  
High Horizontal Oscillator sawtooth threshold level Filter input  
Horizontal PLL2 loop Capacitive filter input  
Horizontal Oscillator Capacitor input  
4
5
6
7
HGND  
RO  
Horizontal section GrouND  
8
Horizontal Oscillator Resistor input  
9
HPLL1F  
HPosF  
HMoiré  
HFly  
Horizontal PLL1 loop Filter input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Horizontal Position Filter and soft-start time constant capacitor input  
Horizontal Moiré output  
Horizontal Flyback input  
RefOut  
BComp  
BRegIn  
BISense  
HEHTIn  
VEHTIn  
VOscF  
VAGCCap  
VGND  
VCap  
Reference voltage Output  
B+ DC/DC error amplifier (Comparator) output  
Regulation feedback Input of the B+ DC/DC converter controller  
B+ DC/DC converter current (I) Sense input  
Input for compensation of Horizontal amplitude versus EHT variation  
Input for compensation of Vertical amplitude versus EHT variation  
Vertical Oscillator sawtooth low threshold Filter (capacitor to be connected to VGND)  
Input for storage Capacitor for Automatic Gain Control loop in Vertical oscillator  
Vertical section GrouND  
Vertical sawtooth generator Capacitor  
Vertical deflection drive Output for a DC-coupled output stage  
E/W Output  
VOut  
EWOut  
XRay  
X-Ray protection input  
HOut  
Horizontal drive Output  
GND  
Main GrouND  
BOut  
B+ DC/DC converter controller Output  
Supply voltage  
Vcc  
2
SCL  
I C bus Serial CLock Input  
2
SDA  
I C bus Serial DAta input/output  
VDyCor  
Vertical Dynamic Correction output  
7/46  
STV9118  
5 - QUICK REFERENCE DATA  
Characteristic  
Value  
Unit  
General  
Package  
Supply voltage  
SDIP 32  
12  
V
Supply current  
65  
mA  
Application category  
Mid-range  
2
Means of control/Maximum clock frequency  
EW drive  
I C bus/400  
kHz  
Yes  
Yes  
No  
DC/DC converter controller  
Adjustable DC level output  
Horizontal section  
Frequency range  
15 to 100  
4.28  
Yes/Yes/Yes  
30 to 65  
±10  
kHz  
Autosync frequency ratio (can be enlarged in application)  
Positive/Negative polarity of horizontal sync signal/Automatic adaptation  
Duty cycle range of the drive signal  
Position adjustment range with respect to H period  
Soft start/Soft stop feature  
%
%
Yes/Yes  
Yes/Yes  
Yes  
Hardware/Software PLL lock indication  
Parallelogram  
Pin cushion asymmetry correction (also called Side pin balance)  
Top/Bottom/Common corner asymmetry correction  
Tracking of asymmetry corrections with vertical size & position  
Horizontal moiré cancellation (int./ext.) for Combined/Separated architecture  
Vertical section  
Yes  
No/No/No  
Yes  
Yes/Yes  
Frequency range  
35 to 200  
50 to 180  
Yes/Yes/Yes  
Yes/Yes/Yes  
Yes/Yes  
Yes  
Hz  
Hz  
Autosync frequency range (150nF at VCap and 470nF at VAGCCap)  
Positive/Negative polarity of vertical sync signa/Automatic adaptationl  
S-correction/C-correction/Super-flat tube characteristic  
Vertical size/Vertical position adjustment  
Vertical moiré cancellation (internal)  
Vertical breathing compensation  
Yes  
EW section  
Pin cushion correction  
Yes  
Yes  
Keystone correction  
Top/Bottom/Common corner correction  
Horizontal size adjustment  
Yes/Yes/No  
Yes  
Tracking of EW waveform with Frequency/Vertical size & position  
Breathing compensation on EW waveform  
Dynamic correction section (dyn. focus, dyn. brightness,...)  
Vertical dynamic correction output  
Horizontal dynamic correction output  
Composite HV dynamic correction output  
Tracking of vertical waveform with V. size & position  
DC/DC controller section  
Yes/Yes  
Yes  
Yes  
No  
No  
Yes  
Step-up/Step-down conversion mode  
Internal/External sawtooth configuration  
Bus-controlled output voltage  
Yes/Yes(ext)  
No/Yes  
Yes  
Soft start/Soft stop feature  
Yes/Yes  
Yes/No  
Positive(N-MOS)/Negative(P-MOS) polarity of BOut signal  
8/46  
STV9118  
6 - ABSOLUTE MAXIMUM RATINGS  
All voltages are given with respect to ground.  
Currents flowing from the device (sourced) are signed negative. Currents flowing to the device are signed  
positive.  
The value ranges must be absolutely respected, any excess thereof may cause permanent damage to the  
device.  
Value  
Symbol  
Parameter  
Unit  
Min  
-0.4  
Max  
13.5  
V
Supply voltage (pin Vcc)  
V
CC  
Pins HEHTIn, VEHTIn, XRay, HOut, BOut  
Pins H/HVSyn, VSyn, SCL, SDA  
Pins HLckVBk, CO, RO, HPLL1F, HPosF, HMoiré, BRegIn, BI-  
Sense, VAGCCap, VCap, VDyCor, HOscF, VOscF  
Pin HPLL2C  
-0.4  
-0.4  
-0.4  
V
5.5  
V
V
V
CC  
V
RefO  
V
(pin)  
(pin)  
-0.4  
-0.4  
V
/2  
V
V
RefO  
Pin HFly  
V
RefO  
Pin HMoiré  
-200  
-200  
100  
200  
mA  
mA  
I
Pins other than HMoiré  
ESD susceptibility  
(human body model: discharge of 100pF through 1.5k)  
V
ESD  
-2000  
-40  
2000  
150  
V
T
Storage temperature  
Junction temperature  
°C  
°C  
stg  
T
150  
j
9/46  
STV9118  
7 - ELECTRICAL PARAMETERS AND OPERATING CONDITIONS  
2
The medium (middle) value of an I C Bus control  
or adjustment register composed of bits D0,  
D1,...,Dn is the one having Dn at "1" and all other  
bits at "0". The minimum value is the one with all  
bits at 0, maximum value is the one with all at "1".  
Currents flowing from the device (sourced) are  
signed negative. Currents flowing to the device are  
signed positive.  
T is the period of horizontal deflection.  
H
7.1 - THERMAL DATA  
Value  
Symbol  
Parameter  
Unit  
Min.  
0
Typ.  
Max.  
70  
T
Operating ambient temperature  
Junction-ambience thermal resistance  
°C  
amb  
R
65  
°C/W  
th(j-a)  
7.2 - SUPPLY AND REFERENCE VOLTAGES  
= 25°C  
T
amb  
Value  
Symbol  
Parameter  
Test Conditions  
Units  
Min.  
Typ.  
12  
Max.  
V
Supply voltage at Vcc pin  
10.8  
13.2  
V
CC  
I
Supply current to Vcc pin  
V
V
= 12V  
65  
mA  
V
CC  
CC  
CC  
V
Reference output voltage at RefOut pin  
Current sourced by RefOut output  
= 12V, I  
= -2mA  
RefO  
7.65  
-5  
7.9  
8.2  
0
RefO  
RefO  
I
mA  
7.3 - SYNCHRONIZATION INPUTS  
Vcc = 12V, T  
= 25°C  
amb  
Value  
Typ.  
Symbol  
Parameter  
Test Conditions  
Units  
Min.  
0
Max.  
0.8  
5
V
LOW level voltage on H/HVSyn  
HIGH level voltage on H/HVSyn  
LOW level voltage on VSyn  
V
V
LoH/HVSyn  
V
2.2  
0
HiH/HVSyn  
V
0.8  
5
V
LoVSyn  
V
HIGH level voltage on VSyn  
2.2  
100  
0.5  
V
HiVSyn  
R
Internal pull-down on H/HVSyn, VSyn  
H sync. pulse duration on H/HVSyn pin  
Proportion of H sync pulse to H period  
V sync. pulse duration  
175  
0.3  
250  
kΩ  
µs  
PdSyn  
PulseHSyn  
t
t
t
/T  
Pin H/HVSyn  
0.2  
750  
0.15  
PulseHSyn  
H
V
t
Pins H/HVSyn, VSyn  
Pins H/HVSyn, VSyn  
0.5  
µs  
PulseVSyn  
/T  
Proportion of V sync pulse to V period  
PulseVSyn  
Proportion of sync pulse length to H peri- Pin H/HVSyn,  
od for extraction as V sync pulse  
t
/T  
0.21  
0.75  
extrV  
H
cap. on pin CO = 820pF  
t
Polarity detection time (after change)  
Pin H/HVSyn  
ms  
HPolDet  
10/46  
STV9118  
7.4 - HORIZONTAL SECTION  
Vcc = 12V, T  
Symbol  
= 25°C  
amb  
Value  
Typ.  
Parameter  
Test Conditions  
Units  
Min.  
390  
Max.  
PLL1  
I
Current load on RO pin  
1.5  
mA  
pF  
RO  
C
Capacitance on CO pin  
CO  
HO  
f
Frequency of hor. oscillator  
Free-running frequency of hor. oscill.  
100  
29.9  
122  
kHz  
kHz  
kHz  
(1)  
f
R
=5.23k, C =820pF 27  
28.5  
-150  
HO(0)  
RO  
CO  
(4)  
f
Hor. PLL1 capture frequency  
f
= 28.5kHz  
29  
HOCapt  
HO(0)  
f  
(3)  
HO(0)  
Temperature drift of free-running freq.  
ppm/°C  
----------------------------  
f
T  
HO(0)  
f /∆V  
Average horizontal oscillator sensitivity  
f
= 28.5kHz  
=8V  
19.6  
5.0  
kHz/V  
V
HO  
HO  
HO(0)  
V
H. oscill. control voltage on pin HPLL1F  
V
1.4  
6.0  
HO  
RefO  
RefO  
Threshold on H. oscill. control voltage on  
HPLL1F pin for tracking of EW with freq.  
V
V
=8V  
V
HOThrfr  
HPOS (Sad01):  
1111111xb  
1000000xb  
2.8  
3.4  
4.0  
V
V
V
V
Control voltage on HPosF pin  
HPosF  
0000000xb  
(6)  
V
Bottom of hor. oscillator sawtooth  
1.6  
6.4  
V
V
HOThrLo  
(6)  
V
Top of hor. oscillator sawtooth  
HOThrHi  
PLL2  
(2)  
R
I
Input impedance on HFly input  
Current into HFly input  
V
>V  
ThrHFly  
300  
0.6  
500  
700  
5
mA  
V
In(HFly)  
InHFly  
(HFly)  
At top of H flyback pulse  
V
Voltage threshold on HFly input  
0.7  
4.0  
ThrHFly  
No PLL2 phase modula-  
tion  
(6)  
V
H flyback lock middle point  
V
S(0)  
(5)  
V
Low clamping voltage on HPLL2C pin  
1.6  
4.0  
V
V
BotHPLL2C  
(5)  
V
High clamping voltage on HPLL2C pin  
TopHPLL2C  
Min. advance of H-drive OFF before  
middle of H flyback  
t
(min)/T  
Null asym. correction  
Null asym. correction  
0
%
%
(7)  
ph  
H
Max. advance of H-drive OFF before  
t
(max)/T  
44  
(8)  
ph  
H
middle of H flyback  
H-drive output on pin HOut  
I
Current into HOut output  
Output driven LOW  
30  
mA  
HOut  
HDUTY (Sad00):  
x1111111b  
x0000000b  
27  
65  
85  
%
%
%
t
/T  
Duty cycle of H-drive signal  
Hoff  
H
Soft-start/Soft-stop value  
Picture geometry corrections through PLL1 & PLL2  
HPOS (Sad01):  
1111111xb  
0000000xb  
H-flyback (center) static phase vs. sync  
signal (via PLL1), see Figure 7  
t
/T  
+11  
-11  
%
%
Hph  
H
11/46  
STV9118  
Value  
Typ.  
Symbol  
Parameter  
Test Conditions  
Units  
Min.  
Max.  
PCAC (Sad11h) full span  
(9)  
Contribution of pin cushion asymmetry  
correction to phase of H-drive vs. static  
phase (via PLL2), measured in corners  
VPOS at medium  
VSIZE at minimum  
VSIZE at medium  
VSIZE at maximum  
t
/T  
H
PCAC  
±1.0  
±1.8  
±2.8  
%
%
%
PARAL (Sad12h) full span  
(9)  
VPOS at medium  
VSIZE at minimum  
VSIZE at medium  
VSIZE at maximum  
VPOS at max. or min.  
VSIZE at minimum  
Contribution of parallelogram correction  
to phase of H-drive vs. static phase (via  
PLL2), measured in corners  
±1.75  
±2.2  
±2.8  
%
%
%
t
/T  
H
ParalC  
±1.75  
%
Note 1: Frequency at no sync signal condition. For correct operation, the frequency of the sync signal applied must  
always be higher than the free-running frequency. The application must consider the spread of values of real  
electrical components in R and C positions so as to always meet this condition. The formula to calculate  
RO  
CO  
the free-running frequency is  
f
=0.12125/(R  
C
)
HO(0)  
RO CO  
Note 2: Base of NPN transistor with emitter to ground is internally connected on pin HFly through a series resistance of  
about 500and a resistance to ground of about 20kΩ.  
Note 3: Evaluated and figured out during the device qualification phase. Informative. Not tested on every single unit.  
Note 4: This capture range can be enlarged by external circuitry.  
Note 5: The voltage on HPLL2C pin corresponds to immediate phase of leading edge of H-drive signal on HOut pin with  
respect to internal horizontal oscillator sawtooth. It must be between the two clamping levels given. Voltage  
equal to one of the clamping values indicates a marginal operation of PLL2 or non-locked state.  
Note 6: Internal threshold. See Figure 10.  
Note 7: The t (min)/T parameter is fixed by the application. For correct operation of asymmetry corrections through  
ph  
H
dynamic phase modulation, this minimum must be increased by maximum of the total dynamic phase required  
in the direction leading to bending of corners to the left. Marginal situation is indicated by reach of V  
TopHPLL2C  
high clamping level by waveform on pin HPLL2C. Also refer to Note 5 and Figure 10.  
Note 8: The t (max)/T parameter is fixed by the application. For correct operation of asymmetry corrections through  
ph  
H
dynamic phase modulation, this maximum must be reduced by maximum of the total dynamic phase required in  
the direction leading to bending of corners to the right. Marginal situation is indicated by reach of V  
BotHPLL2C  
low clamping level by waveform on pin HPLL2C. Also refer to Note 5 and Figure 10 .  
Note 9: All other dynamic phase corrections of picture asymmetry set to their neutral (medium) positions.  
7.5 - VERTICAL SECTION  
V
= 12V, T  
= 25°C  
CC  
amb  
Value  
Typ.  
Symbol  
Parameter  
Test Conditions  
Units  
Min.  
Max.  
AGC-controlled vertical oscillator sawtooth; V  
= 8V  
RefO  
Ext. load resistance on  
VAGCCap pin  
R
V  
/V (R=) 1%  
amp amp  
65  
MΩ  
(10)  
L(VAGCCap)  
Sawtooth bottom voltage on  
VCap pin  
(11)  
V
No load on VOscF pin  
2
V
(11)  
VOB  
AGC loop stabilized  
V sync present  
No V sync  
Sawtooth top voltage on VCap  
pin  
V
5
4.9  
V
V
VOT  
12/46  
STV9118  
Value  
Symbol  
Parameter  
Test Conditions  
Units  
Min.  
50  
Typ.  
80  
Max.  
t
Sawtooth Discharge time  
Free-running frequency  
AGC loop capture frequency  
C
C
C
=150nF  
=150nF  
=150nF  
µs  
Hz  
Hz  
VODis  
VCap  
VCap  
VCap  
f
100  
VO(0)  
f
185  
VOCapt  
V  
VOdev  
(12)  
(12)  
(13)  
--------------------------------  
Sawtooth non-linearity  
AGC loop stabilized,  
0.5  
%
V
(16)  
VOamp  
AGC loop stabilized,  
V  
VOS cor  
(15)  
--------------------------------  
S-correction range  
-5  
+5  
%
%
t
t
=1/4 T  
=3/4 T  
VR  
VR  
VR  
VR  
V
VOamp  
(14)  
AGC loop stabilized,  
(15)  
t
=1/2 T  
VR  
VR  
V  
VOC cor  
CCOR(Sad0A):  
x0000000b  
x1000000b  
x1111111b  
--------------------------------  
C-correction range  
-3  
0
+3  
%
%
%
V
VOamp  
V  
Frequency drift of sawtooth  
amplitude  
AGC loop stabilized  
ppm/  
Hz  
VOamp  
200  
----------------------------------------  
(17)(18)  
f
(min)f f (max)  
V
f  
VO  
VOCapt  
VO VOCapt  
VOamp  
Vertical output drive signal (on pin VOut);V  
= 8V  
RefO  
VPOS (Sad08):  
x0000000b  
x1000000b  
x1111111b  
3.2  
3.5  
3.8  
3.3  
2.5  
V
V
V
V
Middle point on VOut sawtooth  
mid(VOut)  
3.65  
3.5  
VSIZE (Sad07):  
x0000000b  
x1000000b  
x1111111b  
2
Amplitude of VOut sawtooth  
(peak-to-peak voltage)  
2.25  
3.0  
3.75  
V
V
V
V
amp  
V
Level on VOut pin at V-drive "off" I Cbit VOutEn at 0  
3.8  
V
offVOut  
Current delivered by VOut out-  
put  
I
-5  
1
5
mA  
VOut  
Control input voltage range on  
VEHTIn pin  
V
V
V
VEHT  
RefO  
V  
V
V
>
0
2.5  
%/V  
%/V  
amp  
VEHT  
VEHT  
VRefO  
(min)V  
-----------------------------------------  
V  
Breathing compensation  
V  
V
VEHT  
RefO  
amp  
VEHT  
Note 10: Value of acceptable cumulated parasitic load resistance due to humidity, AGC storage capacitor leakage, etc.,  
for less than 1% of V change.  
amp  
is generated internally and routed to VOscF pin. Any DC current on this pin will  
Note 11: The threshold for V  
VOB  
influence the value of V  
.
VOB  
Note 12: Maximum of deviation from an ideally linear sawtooth ramp at null SCOR (Sad09 at x0000000b) and null  
CCOR (Sad0A at x1000000b). The same rate applies to V-drive signal on VOut pin.  
Note 13: Maximum SCOR (Sad09 at x1111111b), null CCOR (Sad0A at x1000000b).  
Note 14: Null SCOR (Sad09 at x0000000b).  
Note 15: "t " is time from the beginning of vertical ramp of V-drive signal on VOut pin. "T " is duration of this ramp, see  
VR  
VR  
chapter TYPICAL OUTPUT WAVEFORMS and Figure 13.  
Note 16: V  
= V  
-V  
VOT VOB  
VOamp  
Note 17: The same rate applies to V-drive signal on VOut pin.  
Note 18: Informative, not tested on each unit.  
13/46  
STV9118  
7.6 - EW DRIVE SECTION  
V
= 12V, T  
= 25°C  
amb  
CC  
Value  
Typ.  
Symbol  
Parameter  
Test Conditions  
Units  
Min.  
1.8  
Max.  
6.5  
V
Output voltage on EWOut pin  
V
EW  
Current sourced by EWOut out-  
put  
I
-1.5  
1
TBD  
mA  
EWOut  
Control voltage range on HEH-  
TIn pin  
V
V
V
HEHT  
RefO  
(19)(22)(23)(30)  
(15)  
t
=1/2 T  
VR  
VR  
DC component of the EW-drive  
signal on EWOut pin  
HSIZE (Sad10h):  
0000000xb  
1000000xb  
V
EW-DC  
2
3.25  
4.5  
V
V
V
1111111xb  
(19)(20)(21)(22)  
(15)  
VR  
V  
Breathing compensation on  
t
V
V
=1/2 T  
EW DC  
VR  
-----------------------------  
V
>V  
0
V/V  
V/V  
V  
EW-DC  
HEHT  
HEHT  
RefO  
HEHT  
(min)V  
-0.125  
HEHT  
VRefO  
Temperature drift of DC compo-  
nent of the EW-drive signal on  
EWOut pin  
(15)  
VR  
(18)(19)(21)(23)(30)  
V  
t
=1/2 T  
EW DC  
VR  
-------------------------------------  
100  
ppm/°C  
V
T  
Notes  
EW DC  
(19)(20)(21)(23)(24)(25)(26)(30)  
VSIZE at maximum  
PCC (Sad0C):  
x0000000b  
x1000000b  
x1111111b  
0
0.7  
1.5  
V
V
V
Pin cushion correction compo-  
nent of the EW-drive signal on  
EWOut pin  
V
EW-PCC  
Tracking with VSIZE :  
PCC at x1000000b  
VSIZE (Sad07):  
x0000000b  
0.25  
0.5  
V
V
x1000000b  
(19)(20)(21)(24)(27)(29)(30)  
Tracking of PCC component of PCC at x1111111b  
the EW-drive signal with vertical VPOS (Sad08):  
V
[t = 0]  
EW PCC vr  
-------------------------------------------------------  
[t = T  
]
VR  
position adjustment  
x0000000b  
0.52  
1.92  
EW PCC vr  
x1111111b  
(20)(21)(22)(23)(24)(27)(28)(30)  
Keystone correction component  
of the EW-drive signal on  
EWOut pin  
KEYST (Sad0D):  
x0000000b  
x1111111b  
V
EW-Key  
0.4  
-0.4  
V
V
(19)(21)(22)(23)(24)(25)(27)(30)  
Top corner correction compo-  
nent of the EW-drive signal on  
EWOut pin  
TCC (Sad0E):  
x0000000b  
x1000000b  
x1111111b  
(19)(20)(22)(23)(24)(26)(27)(30)  
V
-1.25  
0
+1.25  
V
V
V
EW-TCor  
EW-BCor  
Bottom corner correction compo- BCC (Sad0F):  
nent of the EW-drive signal on  
EWOut pin  
V
x0000000b  
x1000000b  
x1111111b  
-1.25  
0
+1.25  
V
V
V
14/46  
STV9118  
Value  
Typ.  
Symbol  
Parameter  
Test Conditions  
Units  
Min.  
Max.  
V  
V
V
>
0
20  
%/V  
%/V  
EW  
HO  
HO  
VHOThrfr  
----------------------------------------------------------  
Tracking of EW-drive signal with  
horizontal frequency  
(min)V V  
(32)  
HO  
HOThrfr  
V
EW[f  
]
V  
max  
HO  
(25)(26)  
V  
Breathing compensation on  
EW AC  
----------------------------------------------------  
V
>
0
1.75  
%/V  
%/V  
(31)  
HEHT  
VRefO  
(min)V  
V
V
V  
HEHT  
EW-AC  
EW AC  
V
HEHT  
VRefO  
HEHT  
Note 19: KEYST at medium (neutral) value.  
Note 20: TCC at medium (neutral) value.  
Note 21: BCC at medium (neutral) value.  
Note 22: PCC at minimum value.  
Note 23: VPOS at medium (neutral) value.  
Note 24: HSIZE at minimum value.  
Note 25: Defined as difference of (voltage at t =0) minus (voltage at t =1/2 T ).  
VR  
VR  
VR  
Note 26: Defined as difference of (voltage at t =T ) minus (voltage at t =1/2 T ).  
VR VR  
VR  
VR  
Note 27: VSIZE at maximum value.  
Note 28: Difference (voltage at t =0) minus (voltage at t =T ).  
VR  
VR VR  
Note 29: Ratio "A/B"of parabola component voltage at t =0 versus parabola component voltage at t =T .  
VR  
VR  
VR  
Note 30: V  
>
, V  
>
VEHT  
VRefO  
HEHT  
VRefO  
Note 31: V  
is sum of all components other than V  
(contribution of PCC, keystone correction and corner  
EW-AC  
EW-DC  
corrections).  
Note 32: More precisely tracking with voltage on HPLL1F pin which itself depends on frequency at a rate given by  
external components on PLL1 pins. V [fmax] is the value at condition V >V .  
HOThrfr  
EW  
HO  
7.7 - DYNAMIC CORRECTION OUTPUT SECTION  
V
= 12V, T  
= 25°C  
amb  
CC  
Value  
Typ.  
Symbol  
Parameter  
Test Conditions  
Units  
Min.  
-1.5  
Max.  
TBD  
Vertical Dynamic Correction output VDyCor  
Current delivered by VDyCor out-  
I
mA  
V
VDyCor  
put  
DC component of the drive signal  
on VDyCor output  
V
R
=10kΩ  
4
VD-DC  
L(VDyCor)  
(23)  
VSIZE at medium  
VDC-AMP (Sad15h):  
x0000000b  
x1000000b  
x1111111b  
0
0.5  
1
V
V
V
Amplitude of V-parabola on VDy-  
Cor output  
IVVD-V  
I
(34)  
VDC-AMP at maximum  
VSIZE (Sad07):  
x0000000b  
0.6  
1.6  
V
V
x1111111b  
VDC-AMP at maximum  
Tracking of V-parabola on VDyCor VPOS (Sad08):  
V
[t = 0]  
VD V vr  
-------------------------------------------------  
[t = T  
(33)  
output with vertical position  
x0000000b  
x1111111b  
0.52  
1.92  
V
]
VR  
VD V vr  
15/46  
STV9118  
Note 33: Ratio "A/B"of vertical parabola component voltage at t =0 versus vertical parabola component voltage at  
VR  
t
=T  
.
VR VR  
2
2
Note 34: Unsigned value. Polarity selection by VDyCorPol I C Bus bit. Refer to section I C Bus control register map.  
7.8 - DC/DC CONTROLLER SECTION  
V
= 12V, T  
Symbol  
= 25°C  
amb  
CC  
Value  
Typ.  
Parameter  
Test Conditions  
Units  
Min.  
Max.  
Ext. resistance applied between  
BComp output and BRegIn input  
R
5
kΩ  
dB  
B+FB  
Open loop gain of error amplifier  
on BRegIn input  
(18)  
A
Low frequency  
100  
6
OLG  
Unity gain bandwidth of error am-  
plifier on BRegIn input  
(18)  
f
MHz  
µA  
UGBW  
Bias current delivered by regula-  
tion input BRegIn  
I
-0.2  
RI  
Output current capability of BComp  
output.  
HBOutEn = "Enable"  
HBOutEn = "Disable"  
-0.5  
2.0  
mA  
mA  
I
(35)  
BComp  
0.5  
3
A
Voltage gain on BISense input  
BISense  
Threshold voltage on BISense input  
corresponding to current limitation  
V
TBD  
2.1  
-1  
V
ThrBIsCurr  
I
Input current sourced by BISense input  
µA  
BISense  
(38)  
t
Conduction time of the power transistor  
T - t  
H inh  
BOn  
Output current capability of BOut  
output  
I
0
10  
mA  
BOut  
Saturation voltage of the internal output  
transistor on BOut  
V
I
=10mA  
BOut  
0.25  
V
BOSat  
V
=8V  
RefO  
BREF (Sad03):  
x0000000b  
x1000000b  
x1111111b  
Regulation reference for BRegIn  
voltage  
V
3.8  
4.9  
6.0  
V
V
V
(36)  
BReg  
Delay of BOut “Off-to-On” edge after  
t
/ T  
middle of flyback pulse, as part of T  
BOutPh = "0"  
16  
%
BTrigDel  
H
H
(37)  
Note 35: A current sink is provided by the BComp output while BOut is disabled:  
Note 36: Internal reference related to V  
stabilized.  
. The same values to be found on pin BRegIn, while regulation loop is  
RefO  
Note 37: Only applies to configuration specified in "Test conditions" column, i.e. synchronization of BOut “Off-to-On”  
edge with horizontal flyback signal. Refer to chapter "DC/DC controller" for more details.  
Note 38: t is about 300ns regardless of the H frequency  
inh  
16/46  
STV9118  
7.9 - MISCELLANEOUS  
V
= 12V, T  
Symbol  
= 25°C  
amb  
CC  
Value  
Typ.  
Parameter  
Test Conditions  
Units  
Min.  
Max.  
Vertical blanking and horizontal lock indication composite output HLckVBk  
(39)  
I
Sink current to HLckVBk pin  
TBD  
µA  
SinkLckBk  
V.blank  
No  
Yes  
No  
H.lock  
Yes  
Yes  
No  
0.1  
1.1  
5
V
V
V
V
V
Output voltage on HLckVBk output  
OLckBk  
Yes  
No  
6
Horizontal moiré canceller  
HMoiMode=0 (internal)  
HMOIRE (Sad02):  
x0000000b  
T  
H(H moire)  
-------------------------------------- Modulation of T by H-moiré function  
H
0
0.04  
%
%
T
H
x1111111b  
HMoiMode=1 (external)  
Rext=10kΩ  
V
H-moiré pulse amplitude on HMoiré pin HMOIRE (Sad02):  
HMoiré  
x0000000b  
x1111111b  
0.1  
2.1  
V
V
Vertical moiré canceller  
VMOIRE (Sad0Bh):  
x0000000b  
x1111111b  
Amplitude of modulation of V-drive sig-  
nal on VOut pin by vertical moiré.  
V
0
3
mV  
mV  
V-moiré  
Protection functions  
Input threshold on XRay input  
(40)  
V
7.65  
7.9  
8.2  
V
ThrXRay  
Delay time between XRay detection  
event and protection action  
t
2T  
H
XRayDelay  
V
value for start of operation at V  
CC  
CC  
V
8.5  
6.5  
V
V
(41)  
CCEn  
ramp-up  
V
value for stop of operation at V  
CC  
CC  
V
(41)  
CCDis  
ramp-down  
(18)(42)  
Control voltages on HPosF pin for Soft start/stop operation  
Threshold for start/stop of H-drive sig-  
nal  
V
1
V
V
HOn  
BOn  
Threshold for start/stop of B-drive sig-  
nal  
V
1.7  
2.4  
Threshold for full operational duty cycle  
of H-drive and B-drive signals  
V
HBNorm f  
Normal operation  
Voltage on HPosF pin as function of ad- HPOS (Sad01)  
V
HPos  
justment of HPOS register  
0000000xb  
4.0  
2.8  
V
V
1111111xb  
Note 39: Current sunk by the pin if the external voltage is higher than one the circuit tries to force.  
Note 40: The threshold is equal to actual V  
.
RefO  
Note 41: In the regions of V where the device’s operation is disabled, the H-drive, V-drive and B+-drive signals on  
CC  
2
HOut, VOut and BOut pins, resp., are inhibited, the I C Bus does not accept any data and the XRayAlarm  
flag is reset. Also see Figure 15  
Note 42: See Figure 10  
17/46  
STV9118  
8 - TYPICAL OUTPUT WAVEFORMS  
43  
Note ( )  
Function  
Sad  
Pin  
Byte  
Waveform  
Effect on Screen  
V
V
amp(min)  
x0000000  
V
mid(VOut)  
mid(VOut)  
Vertical Size  
07  
VOut  
amp(max)  
x1111111  
x0000000  
x1000000  
x1111111  
V
3.5V  
3.5V  
3.5V  
V
mid(VOut)  
Vertical  
Position  
08  
VOut  
V
mid(VOut)  
V
mid(VOut)  
x0000000:  
Null  
VVOamp  
VVOS-cor  
S-correction  
09  
VOut  
VVOamp  
x1111111:  
Max.  
0
¼
TVR  
¾TVR TVR  
tVR  
VVOamp  
VVOC-cor  
TVR TVR  
tVR  
x0000000  
0
½
x1000000 :  
Null  
VVOamp  
C-correction  
0A  
VOut  
VVOamp  
VVOC-cor  
TVR TVR  
tVR  
x1111111  
0
½
18/46  
STV9118  
Function  
Sad  
Pin  
Byte  
Waveform  
Effect on Screen  
V
amp  
x0000000:  
Null  
(n-1)TV  
nTV  
(n+1)TV  
t
Vertical moiré  
amplitude  
0B  
VOut  
V
V-moiré  
V
amp  
x1111111:  
Max.  
(n-1)TV  
nTV  
(n+1)TV  
t
V
V
EW-DC(min)  
0000000x  
1111111x  
0
½
½
TVR  
TVR  
tVR  
Horizontal size 10h  
EWOut  
EWOut  
EWOut  
EW-DC(max)  
0
TVR  
TVR  
tVR  
V
VEW-key  
EW-DC  
x0000000  
x1111111  
x0000000  
Keystone  
0D  
correction  
VEW-key  
V
EW-DC  
V
V
EW-PCC(min)  
0
½
TVR  
TVR  
tVR  
Pin cushion  
0C  
correction  
EW-PCC(max)  
x1111111  
0
½
TVR  
TVR  
tVR  
V
EW-TCor(max)  
x1111111  
x0000000  
x1111111  
x0000000  
0
½
TVR  
TVR  
tVR  
Top corner  
0E  
EWOut  
correction  
V
EW-TCor(min)  
0
TVR  
tVR  
½
TVR  
V
EW-TBot(max)  
0
½
TVR  
TVR  
tVR  
Bottom corner  
0F  
EWOut  
correction  
V
EW-TBot(min)  
0
½
TVR  
TVR  
tVR  
19/46  
STV9118  
Function  
Sad  
12h  
Pin  
Byte  
Waveform  
Effect on Screen  
static phase  
tParalC(min)  
x0000000  
0
tParalC(max)  
0
½
½
TVR  
TVR  
tVR  
Parallelogram  
correction  
static phase  
x1111111  
x0000000  
x1111111  
TVR  
TVR  
tVR  
t
PCAC(max)  
static  
H-phase  
0
TVR  
tVR  
½
TVR  
Pin cushion  
asymmetry  
correction  
11h  
t
PCAC(max)  
static  
H-phase  
0
½
TVR  
TVR  
tVR  
V
VDyCorPol=0  
VD-V(max)  
V
VD-DC  
01111111  
0
½
TVR  
TVR  
tVR  
Vertical  
dynamic  
correction  
amplitude  
V
VD-V(max)  
V
VD-DC  
15h  
VDyCor  
Application dependent  
x0000000  
11111111  
0
½
TVR  
TVR  
tVR  
VDyCorPol=1  
V
VD-V(max)  
V
VD-DC  
0
½
TVR  
TVR  
tVR  
Note 43: For any H and V correction component of the waveforms on EWOut and VOut pins and for internal waveform  
for corrections of H asymmetry, displayed in the table, weight of the other relevant components is nullified  
(minimum for parabola, S-correction, medium for keystone, all corner corrections, C-correction, parallelogram,  
parabola asymmetry correction, written in corresponding registers).  
20/46  
STV9118  
9 - I2C BUS CONTROL REGISTER MAP  
The device slave address is 8C in write mode and 8D in read mode.  
Bold weight denotes default value at Power-On-Reset.  
2
I C Bus data in the adjustment register is buffered and internally applied with discharge of the vertical os-  
(44)  
cillator  
.
In order to ensure compatibility with future devices, all “Reserved” bits should be set to 0.  
Sad  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
WRITE MODE (SLAVE ADDRESS = 8C)  
HDutySyncV  
HDUTY (Horizontal duty cycle)  
00  
01  
02  
1: Synchro.  
0: Asynchro.  
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
HPOS (Horizontal position)  
Reserved  
1
0
0
0
HMoiré  
1: Separated  
0: Combined  
HMOIRE (Horizontal moiré amplitude)  
0
0
0
0
0
0
BREF (B+reference)  
B+SyncV  
0: Asynchro.  
03  
04  
0
0
Reserved  
Reserved  
Reserved  
05  
06  
Reserved  
Reserved  
BOutPh  
Reserved  
VSIZE (Vertical size)  
07  
0: H-flyback  
1: H-drive  
1
0
0
0
0
0
0
VPOS (Vertical position)  
EWTrHFr  
0: No tracking  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
1
1
1
0
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SCOR (S-correction)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
CCOR (C-correction)  
0
0
VMOIRE (Vertical moiré amplitude)  
0
0
0
PCC (Pin cushion correction)  
0
0
0
KEYST (Keystone correction)  
0
0
0
0
0
TCC (Top corner correction)  
0
0
BCC (Bottom corner correction)  
0
0
0
0
HSIZE (Horizontal size)  
Reserved  
1
0
0
PCAC (Pin cushion asymmetry correction)  
Reserved  
0
0
0
0
0
21/46  
STV9118  
Sad  
D7  
D6  
1
D5  
0
D4  
D3  
D2  
D1  
0
D0  
0
PARAL (Parallelogram correction)  
12  
Reserved  
0
0
0
13  
14  
Reserved  
Reserved  
VDC-AMP (Vertical dynamic correction amplitude)  
VDyCorPol  
15  
16  
17  
0: ” "  
1
0
0
0
0
0
0
XRayReset  
0: No effect  
1: Reset  
VSyncAuto VSyncSel SDetReset HMoiMode PLL1Pump PLL1InhEn  
HLockEn  
1: On  
1: On  
0:Comp  
1:Sep  
0: No effect 0: Internal  
1: Fast  
1: On  
1: Reset  
1: External 0: Slow  
TV  
TH  
0: Off  
TVM  
0: Off  
THM  
0: Off  
BOHEdge  
0: Falling  
HBOutEn  
0: Disable  
VOutEn  
0: Disable  
BlankMode  
1: Perm.  
(46)  
(46)  
(46)  
(46)  
0: Off  
READ MODE (SLAVE ADDRESS = 8D)  
XX  
Polarity detection  
Sync detection  
HVDet  
HLock  
VLock  
XRayAlarm  
0: Locked  
0: Locked  
1: On  
HVPol  
VPol  
VExtrDet  
VDet  
(45)  
1: Not locked 1: Not lock. 0: Off  
1: Negative 1: Negative 0: Not det.  
0: Not det. 0: Not det.  
Note 44: With exception of HDUTY and BREF adjustments data that can take effect instantaneously if switches  
HDutySyncV and B+SyncV are at 0 respectively.  
Note 45: In Read Mode, the device always outputs data of the status register, regardless of sub address previously  
selected.  
Note 46: The TV, TH, TVM and THM bits are for testing purposes and must be kept at 0 by application.  
2
Description of I C Bus switches and flags  
Sad07/D7 - BOutPh  
Phase of start of B+ drive signal on BOut pin  
Write-to bits  
0: Just after horizontal flyback pulse  
1: With one of edges of line drive signal on  
HOut pin, selected by BOHEdge bit  
Sad00/D7 - HDutySyncV  
Synchronization of internal application of Hori-  
zontal Duty cycle data, buffered in I C Bus latch,  
2
Sad08/D7 - EWTrHFr  
with internal discharge of Vertical oscillator  
Tracking of all corrections contained in wave-  
form on pin EWOut with Horizontal Frequency  
0: Not active  
0: Asynchronous mode, new data applied  
2
with ACK bit of I C Bus transfer on this sub  
address  
1: Synchronous mode  
1: Active  
Sad15/D7 - VDyCorPol  
Polarity of Vertical Dynamic Correction wave-  
form (parabola)  
Sad02/D7 - HMoiré  
Horizontal Moiré characteristics  
0: Adapted to an architecture with EHT gener-  
ated in deflection section  
1: Adapted to an architecture with separated  
deflection and EHT sections  
0: Concave (minimum in the middle of the pa-  
rabola)  
1: Convex (maximum in the middle of the pa-  
rabola)  
Sad03/D7 - B+SyncV  
Sad16/D0 - HLockEn  
Same as HDutySyncV, applicable for B+ refer-  
ence data  
Enable of output of Horizontal PLL1 Lock/unlock  
status signal on pin HLckVBk  
0: Disabled, vertical blanking only on the pin  
HLckVBk  
1: Enabled  
22/46  
STV9118  
Sad16/D1 - PLL1InhEn  
Sad16/D7 - XRayReset  
Enable of Inhibition of horizontal PLL1 during  
extracted vertical synchronization pulse  
0: Disabled, PLL1 is never inhibited  
1: Enabled  
Reset to 0 of XRay flag of status register effect-  
ed with ACK bit of I C Bus data transfer into reg-  
ister containing the XRayReset bit. Also see de-  
scription of the flag.  
2
0: No effect  
1: Reset with automatic return of the bit to 0  
Sad16/D2 - PLL1Pump  
Horizontal PLL1 charge Pump current  
0: Slow PLL1, low current  
Sad17/D0 - BlankMode  
Blanking operation Mode  
1: Fast PLL1, high current  
0: Blanking pulse starting with detection of  
vertical synchronization pulse and ending  
with end of vertical oscillator discharge  
(start of vertical sawtooth ramp on the VOut  
pin)  
1: Permanent blanking - high blanking level in  
composite signal on pin HLckVBk is per-  
manent  
Sad16/D3 - HMoiMode  
Horizontal MoiMode. In position “Internal”, the  
H-moiré signal affects timing of H-drive signal on  
HOut pin. In position “External”, the H-moiré sig-  
nal is output on HMoiré pin and has no effect on  
H-drive. In both cases, the amplitude of H-moiré  
2
signal is adjusted through I C Bus register  
HMOIRE.  
Sad17/D1 - VOutEn  
Vertical Output Enable  
0: Internal  
1: External  
0: Disabled, V  
on VOut pin (see 7.5 -  
offVOut  
Vertical section)  
Sad16/D4 - SDetReset  
Reset to 0 of Synchronization Detection flags  
VDet, HVDet and VExtrDet of status register ef-  
fected with ACK bit of I C Bus data transfer into  
register containing the SDetReset bit. Also see  
description of the flags.  
1: Enabled, vertical ramp with vertical position  
offset on VOut pin  
2
Sad17/D2 - HBOutEn  
Horizontal and B+ Output Enable  
0: Disabled, levels corresponding to “power  
transistor off” on HOut and BOut pins (high  
for HOut, low for BOut).  
0: No effect  
1: Reset with automatic return of the bit to 0  
1: Enabled, horizontal deflection drive signal  
on HOut pin providing that it is not inhibited  
by another internal event (activated XRay  
protection). B+ drive signal on BOut pin.  
Sad16/D5 - VSyncSel  
Vertical Synchronization input Selection be-  
tween the one extracted from composite HV sig-  
nal on pin H/HVSyn and the one on pin VSyn.  
No effect if VSyncAuto bit is at 1.  
Programming the bit to 1 after prior value of 0,  
will initiate soft start mechanism of horizontal  
drive and of B+ DC/DC convertor if this is in ex-  
ternal sawtooth configuration.  
0: V. sync extracted from composite signal on  
H/HVSyn pin selected  
1: V. sync applied on VSyn pin selected  
Sad17/D3 - BOHEdge  
Sad16/D6 - VSyncAuto  
Selection of Edge of Horizontal drive signal to  
phase B+ drive Output signal on BOut pin. Only  
applies if the bit BOutPh is set to 1, otherwise  
BOHEdge has no effect.  
Vertical Synchronization input selection Auto-  
matic mode. If enabled, the device automatically  
selects between the vertical sync extracted from  
composite HV signal on pin H/HVSyn and the  
one on pin VSyn, based on detection mecha-  
nism. If both are present, the one coming first is  
kept.  
0: Falling edge  
1: Rising edge  
Sad17/D4,D5,D6,D7 - THM, TVM, TH, TV  
Test bits. They must be kept at 0 level by appli-  
cation S/W.  
0: Disabled, selection done according to bit  
VSyncSel  
1: Enabled, the bit VSyncSel has no effect  
Read-out flags  
23/46  
STV9118  
(47)  
SadXX/D0 - VDet  
SadXX/D4 - HVPol  
Flag indicating Detection of V synchronization  
pulses on VSyn pin.  
Flag indicating Polarity of H or HV synchroniza-  
tion pulses applied on H/HVSyn pin with respect  
to mean level of the sync signal  
0: Positive  
0: Not detected  
1: Detected  
1: Negative  
(47)  
SadXX/D1 - HVDet  
SadXX/D5 - XRayAlarm  
Alarm indicating that an event of excessive volt-  
Flag indicating Detection of H or HV synchroni-  
zation pulses applied on H/HVSyn pin. Once the  
sync pulses are detected, the flag is set and  
latched. Disappearance of the sync signal will  
not lead to reset of the flag.  
age has passed on XRay pin. Can only be reset  
2
to 0 through I C Bus bit XRayReset or by power-  
on reset.  
0: Not detected  
1: Detected.  
0: No excess since last reset of the bit  
1: At least one event of excess appeared  
since the last reset of the bit, HOut inhibited  
(47)  
SadXX/D2 - VExtrDet  
SadXX/D6 - VLock  
Flag indicating Detection of Extracted Vertical  
synchronization signal from composite H+V sig-  
nal applied on H/HVSyn pin  
0: Not detected  
Status of “Locking” or stabilization of Vertical os-  
cillator amplitude to an internal reference by  
AGC regulation loop.  
0: Locked (amplitude stabilized)  
1: Not locked (amplitude non-stabilized)  
1: Detected  
SadXX/D3 - VPol  
SadXX/D7 - HLock  
Status of Locking of Horizontal PLL1  
0: Locked  
Flag indicating Polarity of V synchronization  
pulses applied on VSyn pin with respect to mean  
level of the sync signal  
0: Positive  
1: Not locked  
1: Negative  
Note 47: This flag, by its value of 1, indicates an event of detection of at least one synchronization pulse since its last  
2
reset (by means of the SDetReset I C Bus bit). This is to be taken into account by application S/W in a way  
that enough time (at least the period between 2 synchronization pulses of analyzed signal) must be provided  
between reset of the flag through SDetReset bit and validation of information provided in the flag after read-  
out of status register.  
24/46  
STV9118  
10 - OPERATING DESCRIPTION  
10.1 - SUPPLY AND CONTROL  
10.1.1 - Power supply and voltage references  
tering against ground as well as for external use  
with load currents limited to I  
. The filtering is  
The device is designed for a typical value of power supply  
RefO  
voltage of 12 V.  
necessary to minimize interference in output sig-  
nals, causing adverse effects like e.g. jitter.  
10.1.2 - I2C Bus Control  
In order to avoid erratic operation of the circuit at  
power supply ramp-up or ramp-down, the value of  
V
is monitored. See Figure 1 and electrical  
2
CC  
The I C bus is a 2 line bi-directional serial commu-  
specifications. At switch-on, the device enters a  
nication bus introduced by Philips. For its general  
“normal operation” as the supply voltage exceeds  
2
description, refer to corresponding Philips I C bus  
V
V
and stays there until it decreases bellow  
. The two thresholds provide, by their differ-  
CCEn  
CCDis  
specification.  
2
This device is an I C bus slave, compatible with  
fast (400kHz) I C bus protocol, with write mode  
ence, a hysteresis to bridge potential noise. Out-  
side the “normal operation”, the signals on HOut,  
BOut and VOut outputs are inhibited and the I2C  
bus interface is inactive (high impedance on SDA,  
SCL pins, no ACK), all I2C bus control registers  
2
slave address of 8C (read mode slave address  
8D). Integrators are employed at the SCL (Serial  
Clock) input and at the input buffer of the SDA (Se-  
rial Data) input/output to filter off the spikes of up to  
50ns.  
2
being reset to their default values (see chapter I C  
BUS CONTROL REGISTER MAP on page 21).  
The device supports multiple data byte messages  
(with automatic incrementation of the I C bus sub-  
Figure 1. Supply voltage monitoring  
2
V
address) as well as repeated Start Condition for  
CC  
2
2
V
(Vcc)  
I C bus subaddress change inside the I C bus  
2
2
messages. All I C bus registers with specified I C  
bus subaddress are of WRITE ONLY type, where-  
as the status register providing a feedback infor-  
mation to the master I C bus device has no attrib-  
uted I C bus subaddress and is of READ ONLY  
V
CCEn  
hysteresis  
V
CCDis  
2
2
2
type. The master I C bus device reads this register  
sending directly, after the Start Condition, the  
READ device I C bus slave address (8D) followed  
2
Disabled  
Normal operation  
Disabled  
by the register read-out, NAK (No Acknowledge)  
signal and the Stop Condition.  
t
2
For the I C bus control register map, refer to chap-  
2
ter I C BUS CONTROL REGISTER MAP on  
Internal thresholds in all parts of the circuit are de-  
rived from a common internal reference supply  
page 21.  
V
that is lead out to RefOut pin for external fil-  
RefO  
10.2 - SYNC. PROCESSOR  
10.2.1 - Synchronization signals  
The vertical sync. signal applied to the vertical de-  
flection processor is selected between the signal  
extracted from the composite signal on H/HVSyn  
input and the one applied on VSyn input. The se-  
The device has two inputs for TTL-level synchroni-  
zation signals, both with hysteresis to avoid erratic  
detection and with a pull-down resistor. On H/  
HVSyn input, pure horizontal or composite hori-  
zontal/vertical signal is accepted. On VSyn input,  
only pure vertical sync. signal is accepted. Both  
positive and negative polarities may be applied on  
either input, see Figure 2. Polarity detector and  
programmable inverter are provided on each of  
the two inputs. The signal applied on H/HVSyn pin,  
after polarity treatment, is directly lead to horizon-  
tal part and to an extractor of vertical sync. pulses,  
working on principle of integration, see Figure 3.  
2
lector is controlled by VSyncSel I C bus bit.  
Besides the polarity detection, the device is capa-  
ble of detecting the presence of sync. signals on  
each of the inputs and at the output of vertical  
sync. extractor. The information from all detectors  
2
is provided in the I C bus status register (5 flags:  
VDet, HVDet, VExtrDet, VPol, HVPol). The device  
is equipped with an automatic mode (switched on  
2
or off by VSyncAuto I C bus bit) that also uses the  
detection information.  
25/46  
STV9118  
Figure 2. Horizontal sync signal  
Positive  
t
T
PulseHSyn  
H
Negative  
10.2.2 - Sync. presence detection flags  
der to reset them to 0 (all at once), a 1 must be  
2
written into SDetReset I C bus bit, the reset action  
The sync. signal presence detection flags in the  
status register (VDet, HVDet, VExtrDet) do not  
show in real time the presence or absence of the  
corresponding sync. signal. They are latched to 1  
as soon as a single sync. pulse is detected. In or-  
2
taking effect with ACK bit of the I C bus transfer to  
the register containing the SDetReset bit. The de-  
tection circuits are then ready to capture another  
event (pulse). See Note 47.  
Figure 3. Extraction of V-sync signal from H/V-sync signal  
H/V-sync  
T
t
PulseHsyn  
H
Internal  
Integration  
t
extrV  
Extracted  
V-sync  
10.2.3 - MCU controlled sync. selection mode  
10.2.4 - Automatic sync. selection mode  
2
2
I C bus bit VSyncAuto is set to 0. The MCU reads  
I C bus bit VSyncAuto is set to 1. In this mode, the  
2
the polarity and signal presence detection flags,  
after setting the SDetReset bit to 1 and an appro-  
priate delay, to obtain a true information of the sig-  
nals applied, reads and evaluates this information  
and controls the vertical signal selector according-  
ly. The MCU has no access to polarity inverters,  
they are controlled automatically.  
device itself controls the I C bus bits switching the  
polarity inverters (HVPol, VPol) and the vertical  
sync. signal selector (VSyncSel), using the infor-  
mation provided by detection circuitry. If both ex-  
tracted and pure vertical sync. signals are present,  
the one already selected is maintained. No inter-  
vention of the MCU is necessary.  
2
See also chapter I C BUS CONTROL REGISTER  
MAP on page 21.  
10.3 - HORIZONTAL SECTION  
10.3.1 - General  
10.3.2 - PLL1  
The horizontal section consists of two PLLs with  
various adjustments and corrections, working on  
horizontal deflection frequency, then phase shift-  
ing and output driving circuitry providing H-drive  
signal on HOut pin. Input signal to the horizontal  
section is output of the polarity inverter on H/  
HVSyn input. The device ensures automatically  
that this polarity be always positive.  
The PLL1 block diagram is in Figure 5. It consists  
of a voltage-controlled oscillator (VCO), a shaper  
with adjustable threshold, a charge pump with inhi-  
bition circuit, a frequency and phase comparator  
and timing circuitry. The goal of the PLL1 is to  
make the VCO ramp signal match in frequency the  
sync. signal and to lock this ramp in phase to the  
sync. signal, with a possibility to adjust a perma-  
nent phase offset. On the screen, this offset re-  
26/46  
STV9118  
sults in the change of horizontal position of the pic-  
ture. The loop, by tuning the VCO accordingly,  
gets and maintains in coincidence the rising edge  
of input sync. signal with signal REF1, which is de-  
rived from the VCO ramp by a comparator with  
“CRC” filter is generally used (see Figure 4 on  
page 27).  
Figure 4. H-PLL1 filter configuration  
HPLL1F  
9
2
threshold adjustable through HPOS I C bus con-  
trol. The coincidence is identified and flagged by  
lock detection circuit on pin HLckVBk as well as by  
2
HLock I C bus flag.  
The charge pump provides positive and negative  
currents charging the external loop filter on HPosF  
pin. The loop is independent of the trailing edge of  
sync. signal and only locks to its leading edge. By  
design, the PLL1 does not suffer from any dead  
band even while locked. The speed of the PLL1  
depends on the current value provided by the  
charge pump. While not locked, the current is very  
low, to slow down the changes of VCO frequency  
and thus protect the external power components  
at sync. signal change. In locked state, the cur-  
rents are much higher, two different values being  
R
C
2
C
1
2
The PLL1 is internally inhibited during extracted  
vertical sync. pulse (if any) to avoid taking into ac-  
count missing or wrong pulses on the phase com-  
parator. Inhibition is obtained by forcing the charge  
pump output to high impedance state. The inhibi-  
tion mechanism can be disabled through  
2
selectable via PLL1Pump I C bus bit to provide a  
mean to control the PLL1 speed by S/W. Lower  
values make the PLL1 slower, but more stable.  
Higher values make it faster and less stable. In  
general, the PLL1 speed should be higher for high  
deflection frequencies. The response speed and  
stability (jitter level) depends on the choice of ex-  
ternal components making up the loop filter. A  
2
PLL1Pump I C bus bit.  
The Figure 7, in its upper part, shows the position  
of the VCO ramp signal in relation to input sync.  
pulse for three different positions of adjustment of  
horizontal position control HPOS.  
Figure 5. Horizontal PLL1 block diagram  
PLL1InhEn  
2
V-sync (extracted)  
(I C)  
Lock  
Status  
(pin & I C)  
PLL1  
HPLL1F  
9
HOscF  
4
R0 C0  
2
8
6
Sync  
Polarity  
LOCK  
DETECTOR  
PLL  
INHIBITION  
High  
Low  
H/HVSyn  
1
INPUT  
INTERFACE  
CHARGE  
PUMP  
VCO  
HOSC  
COMP  
REF1  
HPosF  
10  
Extracted  
V-sync  
PLL1Pump  
2
(I C)  
HPOS  
2
(I C)  
SHAPER  
27/46  
STV9118  
Figure 6. Horizontal oscillator (VCO) schematic diagram  
HOscF  
4
I
V
0
HOThrHi  
+
-
I
2
0
(PLL1 filter)  
HPLL1F  
V
RS  
HO  
+
-
9
Flip-Flop  
-
+
V
HOThrLo  
4 I  
0
8
RO  
VCO discharge  
control  
6
CO  
from charge pump  
V
V
HOThrHi  
HOThrLo  
10.3.3 - Voltage controlled oscillator  
the external filter on pin HPLL2C to obtain  
smoothed voltage, used, in comparison with VCO  
ramp, as a threshold for H-drive rising edge gener-  
ation.  
The VCO makes part of both PLL1 and PLL2  
loops, being an “output” to PLL1 and “input” to  
PLL2. It delivers a linear sawtooth. Figure 6 ex-  
plains its principle of operation. The linears are ob-  
tained by charging and discharging an external ca-  
pacitor on pin CO, with currents proportional to the  
current forced through an external resistor on pin  
RO, which itself depends on the input tuning volt-  
As both leading and trailing edges of the H-drive  
signal in the Figure 7 must fall inside the rising part  
of the VCO ramp, an optimum middle position of  
the threshold has been found to provide enough  
margin for horizontal output transistor storage time  
as well as for the trailing edge of H-drive signal  
with maximum duty cycle. Yet, the constraints  
thereof must be taken into account while consider-  
ing the application frequency range and H-flyback  
duration. The Figure 7 also shows regions for ris-  
ing and falling edges of the H-drive signal on HOut  
pin. As it is forced high during the H-flyback pulse  
and low during the VCO discharge period, no edge  
during these two events takes effect.  
age V  
(filtered charge pump output). The rising  
HO  
and falling linears are limited by V  
and  
HOThrLo  
V
thresholds filtered through HOscF pin.  
HOThrHi  
At no signal condition, the V  
tuning voltage is  
HO  
clamped to its minimum (see chapter ELECTRI-  
CAL PARAMETERS AND OPERATING CONDI-  
TIONS, part horizontal section), which corre-  
sponds to the free-running VCO frequency f  
.
HO(0)  
Refer to Note 1 for the formula to calculate this fre-  
quency using external components values. The ra-  
tio between the frequency corresponding to maxi-  
The flyback input configuration is in Figure 8.  
10.3.5 - Dynamic PLL2 phase control  
mum V  
and the one corresponding to minimum  
HO  
The dynamic phase control of PLL2 is used to  
compensate for picture asymmetry versus vertical  
axis across the middle of the picture. It is done by  
modulating the phase of the horizontal deflection  
with respect to the incoming video (synchroniza-  
V
(free-running frequency) is about 4.5. This  
HO  
range can easily be increased in the application.  
The PLL1 can only lock to input frequencies falling  
inside these two limits.  
10.3.4 - PLL2  
tion). Inside the device, the threshold V  
is com-  
S(0)  
The goal of the PLL2 is, by means of phasing the  
signal driving the power deflection transistor, to  
lock the middle of the horizontal flyback to a cer-  
tain threshold of the VCO sawtooth. This internal  
threshold is affected by geometry phase correc-  
tions, like e.g., parallelogram. The PLL2 is much  
faster than PLL1 to be able to follow the dynamism  
of this phase modulation. The PLL2 control current  
(see Figure 7) is significantly increased during dis-  
charge of vertical oscillator (during vertical retrace  
period) to be able to make up for the difference of  
dynamic phase at the bottom and at the top of the  
picture. The PLL2 control current is integrated on  
pared with the VCO ramp, the PLL2 locking the  
middle of H-flyback to the moment of their match.  
The dynamic phase is obtained by modulation of  
the threshold by correction waveforms. Refer to  
Figure 12 and to chapter TYPICAL OUTPUT  
WAVEFORMS. The correction waveforms have  
no effect in vertical middle of the screen (for mid-  
dle vertical position). As they are summed, their ef-  
fect on the phase tends to reach maximum span at  
top and bottom of the picture. As all the compo-  
nents of the resulting correction waveform (linear  
for parallelogram correction and parabola of 2nd  
order for Pin cushion asymmetry correction) are  
28/46  
STV9118  
generated from the output vertical deflection drive  
waveform, they both track with real vertical ampli-  
tude and position (including breathing compensa-  
The duty cycle of the H-drive signal is controlled  
via I C bus register HDUTY. This is overruled dur-  
ing soft-start and soft-stop procedures (see sub  
chapter Soft-start and soft-stop on H-drive on  
page 29 and Figure 10).  
2
2
tion), thus being fixed on the screen. Refer to I C  
BUS CONTROL REGISTER MAP on page 21 for  
2
details on I C bus controls.  
The PLL2 is followed by a rapid phase shifting  
which accepts the signal from H-moiré canceller  
(see sub chapter Horizontal moiré cancellation on  
page 29)  
Figure 7. Horizontal timing diagram  
tHph  
min max  
HPOS  
(I C)  
The output stage consists of a NPN bipolar tran-  
sistor, the collector of which is routed to HOut pin  
(see Figure 9).  
2
H-sync  
(polarized)  
max.  
med.  
min.  
PLL1  
lock  
Figure 9. HOut configuration  
REF1  
(internal)  
26  
HOut  
V
HOThrHi  
V
HPosF  
max.  
med.  
min.  
int. ext.  
V
S(0)  
H-Osc  
(VCO)  
V
HOThrLo  
7/8T  
H
T
Non-conductive state of HOT (Horizontal Output  
Transistor) must correspond to non-conductive  
state of the device output transistor.  
H
V
ThrHFly  
H-flyback  
10.3.7 - Soft-start and soft-stop on H-drive  
t
S
PLL2  
control  
current  
The soft-start and soft-stop procedure is carried  
out at each switch-on or switch-off of the H-drive  
+
-
2
signal, either via HBOutEn I C bus bit or after re-  
ON  
2
ON  
OFF  
H-drive  
(on HOut)  
set of XRayAlarm I C bus flag, to protect external  
t
power components. By its second function, the ex-  
ternal capacitor on pin HPosF is used to time out  
this procedure, during which the duty cycle of H-  
Hoff  
forced high forced low  
H-drive  
region  
t
ph(max)  
drive signal starts at its maximum (“t  
/T for soft  
Hoff H  
H-drive  
region  
start/stop” in electrical specifications) and slowly  
decreases to the value determined by the control  
inhibited  
2
I C bus register HDUTY (vice versa at soft-stop).  
t : HOT storage time  
S
This is controlled by voltage on pin HPosF. See  
Figure 10 and sub chapter Safety functions on  
page 36.  
Figure 8. HFly input configuration  
~500Ω  
10.3.8 - Horizontal moiré cancellation  
The horizontal moiré canceller is intended to blur a  
potential beat between the horizontal video pixel  
period and the CRT pixel width, which causes vis-  
ible moiré patterns in the picture.  
HFly  
12  
~20kΩ  
2
On pin HMoiré, in position “External” of I C bus bit  
HMoiMode, it generates a square line-synchro-  
ext. int.  
nized waveform with amplitude adjustable through  
GND  
2
HMOIRE I C bus control. In position “Internal” of  
2
I C bus bit HMoiMode, it introduces a microscopic  
10.3.6 - Output Section  
indent on horizontal scan lines by injecting little  
controlled phase shifts to output circuitry of the  
horizontal section. Their amplitude is adjustable  
The H-drive signal is inhibited (high level) during  
flyback pulse, and also when V is too low, when  
X-ray protection is activated (XRayAlarm I C bus  
flag set to 1) and when I C bus bit HBOutEn is set  
CC  
2
2
through HMOIRE I C bus control.  
2
Only one H-moiré, internal or external, is generat-  
ed at a time.  
to 0 (default position).  
29/46  
STV9118  
The behaviour of horizontal moiré is to be opti-  
mised for different deflection design configurations  
using HMoiré I C bus bit. This bit is to be kept at 0  
for common architecture (B+ and EHT common  
regulation) and at 1 for separated architecture (B+  
and EHT each regulated separately).  
2
Figure 10. Control of HOut and BOut at start/stop at nominal V  
cc  
minimum value  
V
HPosMin  
V
(HPosF)  
2
HPOS (I C)  
range  
V
HPosMax  
maximum value  
V
HBNorm  
V
BOn  
V
Normal operation  
Soft start  
Soft stop  
HOn  
Stop Stop  
Start  
BOut  
Start  
HOut  
BOut  
HOut  
t
HOut  
100%  
H-duty cycle  
BOut  
B-duty cycle  
0%  
10.4 - VERTICAL SECTION  
10.4.1 - General  
reference REF (V  
), the result thereof control-  
VOT  
ling the gain of the transconductance amplifier pro-  
viding the charging current. Speed of this AGC  
loop depends on the storage capacitance on pin  
VAGCCap. The VLock I C bus flag is set to 1  
when the loop is stabilized, i.e. when the voltage  
The goal of the vertical section is to drive vertical  
deflection output stage. It delivers a sawtooth  
waveform with an amplitude independent of de-  
flection frequency, on which vertical geometry cor-  
rections of C- and S-type are superimposed (see  
chapter TYPICAL OUTPUT WAVEFORMS).  
2
on pin VAGCCap matches V  
value. On the  
VOT  
screen, this corresponds to stabilized vertical size  
of picture. After a change of frequency on the  
sync. input, the stabilization time depends on the  
frequency difference and on the capacitor value.  
The lower its value, the shorter the stabilization  
time, but on the other hand, the lower the loop sta-  
bility. A practical compromise is a capacitance of  
470nF. The leakage current of this capacitor re-  
sults in difference in amplitude between low and  
high frequencies. The higher its parallel resistance  
Block diagram is in Figure 11. The sawtooth is ob-  
tained by charging an external capacitor on pin  
VCap with controlled current and by discharging it  
via transistor Q1. This is controlled by the CON-  
TROLLER. The charging starts when the voltage  
across the capacitor drops below V  
threshold.  
The discharging starts either when itVeOxBceeds V  
VOT  
threshold or a short time after arrival of synchroni-  
zation pulse. This time is necessary for the AGC  
loop to sample the voltage at the top of the saw-  
tooth. The VVOB reference is routed out onto VO-  
scF pin in order to allow for further filtration.  
R
, the lower this difference.  
L(VAGCCap)  
When the synchronization pulse is not present, the  
charging current is fixed. As a consequence, the  
The charging current influences amplitude and  
shape of the sawtooth. Just before the discharge,  
the voltage across the capacitor on pin VCap is  
sampled and stored on a storage capacitor con-  
nected on pin VAGCCap. During the following ver-  
tical period, this voltage is compared to internal  
free-running frequency f  
value of the capacitor on pin VCap. It can be  
roughly calculated using the following formula  
only depends on the  
VO(0)  
150nF  
.
100Hz  
f
=
VO(0)  
C
(VCap)  
30/46  
STV9118  
The frequency range in which the AGC loop can  
regulate the amplitude also depends on this ca-  
pacitor.  
The biasing voltage for external DC-coupled verti-  
cal power amplifier is to be derived from V  
RefO  
voltage provided on pin RefOut, using a resistor di-  
vider, this to ensure the same temperature drift of  
mean (DC) levels on both differential inputs and to  
The C- and S-corrections of shape serve to com-  
pensate for the vertical deflection system non-line-  
arity. They are controlled via CCOR and SCOR  
compensate for spread of V  
mean output value) between particular devices.  
value (and so  
RefO  
2
I C bus controls.  
10.4.2 - Vertical moiré  
Shape-corrected sawtooth with regulated ampli-  
tude is lead to amplitude control stage. The dis-  
To blur the interaction of deflection lines with CRT  
mask grid pitch that can generate moiré pattern,  
the picture position is to be alternated at half-frame  
frequency. For this purpose, a square waveform at  
half-frame frequency is superimposed on the out-  
put waveform’s DC value. Its amplitude is adjusta-  
charge exponential is replaced by V  
level,  
VOB  
which, under control of the CONTROLLER, cre-  
ates a rapid falling edge and a flat part before be-  
ginning of new ramp. Mean value of the waveform  
output on pin VOut is adjusted by means of VPOS  
2
2
2
I C bus control, its amplitude through VSIZE I C  
ble through VMOIRE I C bus control,.  
bus control. Vertical moiré is superimposed.  
Figure 11. Vertical section block diagram  
Transconductance amplifier  
REF  
Charge current  
OSC  
Cap.  
VCap  
22  
20  
VAGCCap  
Sampling  
Sampling  
Capacitance  
Discharge  
VSyn  
Synchro  
Polarity  
Controller  
Q1  
2
S-correction  
2
SCOR (I C)  
2
CCOR (I C)  
C-correction  
sawtooth  
discharge  
18  
VEHTIn  
23 VOut  
V
2
VOB  
VSIZE (I C)  
19  
2
VMOIRE (I C)  
VOscF  
2
VPOS (I C)  
31/46  
STV9118  
10.5 - EW DRIVE SECTION  
The goal of the EW drive section is to provide, on  
pin EWOut, a waveform which, used by an exter-  
nal DC-coupled power stage, serves to compen-  
sate for those geometry errors of the picture that  
are symmetric versus vertical axis across the mid-  
dle of the picture.  
be applied. As all the components of the resulting  
correction waveform are generated from the out-  
put vertical deflection drive waveform, they all  
track with real vertical amplitude and position (in-  
cluding breathing compensation), thus being fixed  
vertically on the screen. They are also affected by  
C- and S-corrections. The sum of components oth-  
The waveform consists of an adjustable DC value,  
corresponding to horizontal size, a parabola of 2nd  
order for “pin cushion” correction, a linear for “key-  
stone” correction and independent half-parabolas  
of 4th order for top and bottom corner corrections.  
2
er than DC is affected by value in HSIZE I C bus  
control in reversed sense. Refer to electrical spec-  
ifications for value. The DC value, adjusted via  
HSIZE control, is also affected by voltage on HE-  
HTIn input, thus providing a horizontal breathing  
compensation (see electrical specifications for val-  
ue). The resulting waveform is conditionally multi-  
plied with voltage on HPLL1F, which depends on  
frequency. Refer to electrical specifications for val-  
ue and more precision. This tracking with frequen-  
cy provides a rough compensation of variation of  
picture geometry with frequency and allows to fix  
2
2
All of them are adjustable via I C bus, see I C  
BUS CONTROL REGISTER MAP on page 21  
chapter.  
Refer to Figure 12, Figure 13 and to chapter TYP-  
ICAL OUTPUT WAVEFORMS. The correction  
waveforms have no effect in the vertical middle of  
the screen (if the VPOS control is adjusted to its  
medium value). As they are summed, the resulting  
waveform tends to reach its maximum span at top  
and bottom of the picture. The voltage at the  
EWOut is top and bottom limited (see parameter  
2
the adjustment ranges of I C bus controls through-  
out the operating range of horizontal frequencies.  
2
It can be switched off by EWTrHFr I C bus bit (off  
by default).  
V
). According to Figure 13, especially the bot-  
EW  
The EW waveform signal is buffered by an NPN  
emitter follower, the emitter of which is routed to  
EWOut output, with an internal resistor to ground.  
tom limitation seems to be critical for maximum  
horizontal size (minimum DC). Actually it is not  
critical since the parabola component must always  
32/46  
STV9118  
Figure 12. Geometric corrections’ schematic diagram  
2
Controls:  
VDC-AMP (I C)  
one-quadrant  
VDyCor  
32  
2
VDyCorPol (I C)  
two-quadrant  
V
mid(VOut)  
2
VOut  
23  
Top parabola  
generator  
2
2
(I C)  
PCC  
(I C)  
TCC  
BCC  
HSize  
Vertical ramp  
Tracking  
2
HEHTIn/HSize  
17  
2
(I C)  
2
Tracking  
with Hor  
Frequency  
KEYST  
(I C)  
2
HEHTIn  
2
(I C)  
PCAC  
Bottom parabola  
generator  
EWOut  
24  
To horizontal  
dyn. phase control  
2
(I C)  
PARAL  
33/46  
STV9118  
Figure 13. EWOut output waveforms  
V
(max)  
2
EW  
V
(EWOut)  
V
EW-DC  
HSIZE (I C)  
V
m
EW-TCor  
a
V
V
x
i
m
EW-PCC  
EW-Key  
u
m
V
EW-BCor  
m
m
e
d
i
u
m
i
n
i
m
u
m
V
(min)  
EW  
Top  
Bottom  
Keystone  
alone  
PCC  
alone  
Corners  
alone  
Breathing  
compensation  
V
(min)  
V
HEHT  
RefO  
V
(HEHT)  
V
(VCap)  
Vertical sawtooth  
TVR  
0
TVR  
TVR  
0
0
t
VR  
10.6 - DYNAMIC CORRECTION OUTPUT SECTION  
10.6.1 - Vertical dynamic correction output  
VDyCor  
compensation). It is also affected by C- and S-cor-  
rections.  
A parabola at vertical deflection frequency is avail-  
able on pin VDyCor. Its amplitude is adjustable via  
The signal is buffered by an NPN emitter follower,  
the emitter of which is routed to VDyCor output,  
with an internal resistor to ground  
The use of the correction waveform is up to the ap-  
plication (e.g. dynamic focus).  
2
VDC-AMP I C bus control and polarity controlled  
2
via VDyCorPol I C bus bit. It tracks with real verti-  
cal amplitude and position (including breathing  
10.7 - DC/DC CONTROLLER SECTION  
The section is designed to control a switch-mode  
DC/DC converter. A switch-mode DC/DC conver-  
tor generates a DC voltage from a DC voltage of  
different value (higher or lower) with little power  
losses. The DC/DC controller is synchronized to  
horizontal deflection frequency to minimize poten-  
tial interference into the picture.  
switching circuit (a MOS transistor) delivering  
pulses synchronized on horizontal deflection fre-  
quency, the phase of which depends on I C bus  
configuration, see the table at the end of this chap-  
ter. Their duration depends on feedback provided  
to the circuit, generally a copy of DC/DC converter  
output voltage and a copy of current passing  
through the DC/DC converter circuitry (e.g. current  
through external power component). A NPN tran-  
sistor open-collector is routed out to the BOut pin.  
2
Its operation is similar to that of standard UC3842.  
The schematic diagram of the DC/DC controller is  
in Figure 14. The BOut output controls an external  
34/46  
STV9118  
During the operation, a sawtooth is to be found on  
pin BISense, generated externally by the applica-  
tion. According to BOutPh I C bus bit, the R-S flip-  
with the one described before, is that the voltage  
on pin BISense exceeds the voltage V , which  
C1  
2
depends on the voltage applied on input BISense  
of the error amplifier O1. The two voltages are  
compared, and the reset signal generated by the  
comparator C1. The error amplifier amplifies (with  
a factor defined by external components) the dif-  
ference between the input voltage proportional to  
DC/DC convertor output voltage and internal refer-  
flop is set either at H-drive signal edge (rising or  
2
falling, depending on BOHEdge I C bus bit), or a  
certain delay (t  
/ T ) after middle of H-fly-  
BTrigDel  
H
back. The output is set On at the end of a short  
pulse generated by the monostable trigger.  
Timing of reset of the R-S flip-flop affects duty cy-  
cle of the output square signal and so the energy  
transferred from DC/DC converter input to its out-  
put. A reset edge is provided by comparator C2 if  
the voltage on pin BISense exceeds the internal  
ence V  
. The internal reference and so the out-  
BReg  
2
put voltage is I C bus adjustable by means of  
BREF I C bus control.  
2
DC/DC controller Off-to-On edge timing  
threshold V  
. This represents current limi-  
BOutPh BOHEdge  
ThrBIsCurr  
Timing of Off-to-On transition  
tation if a voltage proportional to the current  
through the power component or deflection stage  
is available on pin BISense. This threshold is af-  
fected by the voltage on pin HPosF, which rises at  
soft start and descends at soft stop. This ensures  
self-contained soft control of duty cycle of the out-  
put signal on pin BOut. Refer to Figure 10. Another  
condition for the reset of the R-S flip-flop, OR-ed  
(Sad07/  
D7)  
(Sad17/  
D3)  
on BOut output  
0
1
1
don’t care Middle of H-flyback plus t  
BTrigDel  
0
1
Falling edge of H-drive signal  
Rising edge of H-drive signal  
Figure 14. DC/DC converter controller block diagram  
BOHEdge  
2
BOutPh  
(I C)  
(I C)  
2
H-drive edge  
Monostable  
~500ns  
H-flyback  
I1  
(+delay)  
V
CC  
V
BReg  
Feedback  
+
V
C1  
2R  
R
-
O1  
S
R
-
C1  
C2  
Q
+
BOut  
BRegIn  
-
BComp  
V
+
HBOutEn  
ThrBIsCurr  
XRayAlarm  
2
(I C)  
Soft start  
HPosF  
BIsense  
35/46  
STV9118  
10.8 - MISCELLANEOUS  
10.8.1 - Safety functions  
signal, which is to better protect the power stages  
at abrupt changes like switch-on and off. The tim-  
ing of phase-in and phase-out only depends on  
the capacitance connected to HPosF pin which is  
virtually unlimited for this function. Yet it has a dual  
function (see paragraph PLL1 on page 26), so a  
compromise thereof is to be found.  
The safety functions comprise supply voltage  
monitoring with appropriate actions, soft start and  
soft stop features on H-drive and B-drive signals  
on HOut and BOut outputs and X-ray protection.  
For supply voltage supervision, refer to paragraph  
Power supply and voltage references on page 25  
and Figure 1. A schematic diagram putting togeth-  
er all safety functions and composite PLL1 lock  
and V-blanking indication is in Figure 15.  
10.8.3 - X-ray protection  
The X-ray protection is activated if the voltage lev-  
el on XRay input exceeds V  
threshold. As a  
ThrXRay  
consequence, the H-drive and B-drive signals on  
HOut and BOut outputs are inhibited (switched off)  
after a 2-horizontal deflection line delay provided  
to avoid erratic excessive X-ray condition detec-  
tion at short parasitic spikes. The XRayAlarm I C  
bus flag is set to 1 to inform the MCU.  
10.8.2 - Soft start and soft stop functions  
For soft start and soft stop features for H-drive and  
B-drive signal, refer to paragraph Soft-start and  
soft-stop on H-drive on page 29 and sub chapter-  
DC/DC CONTROLLER SECTION on page 34, re-  
spectively. See also the Figure 10. Regardless  
why the H-drive or B-drive signal are switched on  
2
This protection is latched; it may be reset either by  
2
2
V
drop or by I C bus bit XRayReset (see chap-  
CC  
or off (I C bus command, power up or down, X-ray  
2
ter I C BUS CONTROL REGISTER MAP on  
page 21).  
protection), the signals always phase-in and  
phase-out in the way drawn in the figure, the first  
to phase-in and last to phase-out being the H-drive  
36/46  
STV9118  
Figure 15. Safety functions - block diagram  
HBOutEn  
HPosF  
(timing)  
10  
2
I C  
V
supervision  
CC  
V
CCEn  
+
_
V
SOFT START  
& STOP  
CCDis  
29  
Vcc  
2
R
S
Q
XRayReset  
I C  
2
I C  
XRayAlarm  
Out  
In  
XRay  
25  
:2  
+
_
B-drive inhibit  
H-drive inhibit  
R
V
H-VCO  
ThrXRay  
discharge  
control  
H-drive inhibition  
HFly  
12  
(overrule)  
+
_
V
ThrHFly  
V-drive inhibition  
VOutEn  
2
I C  
B-drive inhibition  
BlankMode  
2
I C  
HLckVbk  
HlockEn  
L1=No blank/blank level  
L2=H-lock/unlock level  
2
3
Σ
I C  
L3=L1+L2  
H-lock detector  
HLock  
2
R
S
Q
I C  
V-sawtooth  
discharge  
V-sync  
2
2
Int. signal  
Pin  
3
I C I C bit/flag  
37/46  
STV9118  
10.8.4 - Composite output HLckVBk  
the leading edge of any of the two signals, which-  
ever comes first. The blanking pulse is ended with  
the trailing edge of vertical oscillator discharge  
pulse. The device has no information about the  
vertical retrace time. Therefore, it does not cover,  
by the blanking pulse, the whole vertical retrace  
The composite output HLckVBk provides, at the  
same time, information about lock state of PLL1  
and early vertical blanking pulse. As both signals  
have two logical levels, a four level signal is used  
to define the combination of the two. Schematic di-  
agram putting together all safety functions and  
composite PLL1 lock and V-blanking indication is  
in Figure 15, the combinations, their respective  
levels and the HLckVBk configuration in Figure 16.  
2
period. By means of BlankMode I C bus bit, when  
at 1 (default), the blanking level (one of two ac-  
cording to PLL1 status) is made available on the  
HLckVBk permanently. The permanent blanking,  
2
irrespective of the BlankMode I C bus bit, is also  
The early vertical blanking pulse is obtained by a  
logic combination of vertical synchronization pulse  
and pulse corresponding to vertical oscillator dis-  
charge. The combination corresponds to the draw-  
ing in Figure 16. The blanking pulse is started with  
provided if the supply voltage is low (under V  
or VCCDis thresholds), if the X-ray protection isCaCEcn-  
tive or if the V-drive signal is disabled by VOutEn  
2
I C bus bit.  
Figure 16. Levels on HLckVBk composite output  
L1 - No blank/blank level  
L2 - H-lock/unlock level  
V
CC  
L1 +L2  
(H)  
(H)  
3 HLckVBk  
L1 +L2  
(L)  
(H)  
I
SinkLckBlk  
L1 +L2  
V
(H)  
(L)  
OLckBlk  
L1 +L2  
(L)  
(L)  
V-early blanking  
HPLL1 locked  
No  
No  
Yes  
No  
No  
Yes  
Yes  
Yes  
38/46  
STV9118  
Figure 17. Ground layout recommendations  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
6
7
8
9
STV9118  
General Ground  
10  
11  
12  
13  
14  
15  
16  
39/46  
STV9118  
11 - INTERNAL SCHEMATICS  
Figure 18.  
Figure 21.  
RefOut  
13  
12V  
5V  
5
HPLL2C  
Pins 1-2  
H/HVSyn  
VSyn  
200Ω  
Figure 19.  
Figure 22.  
12V  
RefOut  
13  
12V  
13  
RefOut  
6
C0  
3
HLckVBkl  
Figure 20.  
Figure 23.  
12V  
RefOut  
13  
12V  
Pin 13  
8
R0  
HOSCF  
Pin 4  
40/46  
STV9118  
Figure 24.  
Figure 27.  
12V  
9
HPLL1F  
12  
HFly  
Figure 25.  
Figure 28.  
RefOut  
12V  
HPosF  
10  
BComp  
14  
Figure 26.  
Figure 29.  
12V  
5V  
5V  
12V  
15  
BRegIn  
HMoiré  
11  
41/46  
STV9118  
Figure 30.  
Figure 33.  
12V  
12V  
BISense  
16  
VAGCCap  
20  
Figure 31.  
Figure 34.  
12V  
22  
VCap  
12V  
18 VEHTIn  
17  
HEHTIn  
Figure 32.  
Figure 35.  
12V  
Pin 13  
12V  
VOSCF  
19  
23  
VOut  
42/46  
STV9118  
Figure 36.  
Figure 39.  
12V  
30 SCL  
31SDA  
24 EWOut  
32 VDyCor  
Figure 37.  
12V  
XRay  
25  
Figure 38.  
12V  
26 HOut  
28 BOut  
43/46  
STV9118  
12 - PACKAGE MECHANICAL DATA  
32 PINS - PLASTIC SHRINK  
E
E1  
C
Stand-off  
e
B
B1  
eA  
eB  
D
32  
1
17  
16  
Millimeters  
Typ.  
Inches  
Typ.  
Dimensions  
Min.  
3.556  
0.508  
3.048  
0.356  
0.762  
.203  
Max.  
Min.  
0.140  
0.020  
0.120  
0.014  
0.030  
0.008  
1.080  
0.390  
0.300  
Max.  
A
A1  
A2  
B
3.759  
5.080  
0.148  
0.200  
3.556  
0.457  
1.016  
0.254  
27.94  
10.41  
8.890  
1.778  
10.16  
4.572  
0.584  
1.397  
0.356  
28.45  
11.05  
9.398  
0.140  
0.018  
0.040  
0.010  
1.100  
0.410  
0.350  
0.070  
0.400  
0.180  
0.023  
0.055  
0.014  
1.120  
0.435  
0.370  
B1  
C
D
27.43  
9.906  
7.620  
E
E1  
e
eA  
eB  
L
12.70  
3.810  
0.500  
0.150  
2.540  
3.048  
0.100  
0.120  
44/46  
STV9118  
Revision follow-up  
DATASHEET  
August 2003  
Version 1.0  
Document created from version 1.1 of TDA9118.  
2
STV9118  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for  
the consequences of use of such information nor for any infringement of patents or other rights of third parties which may  
result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectron-  
ics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and re-  
places all information previously supplied. STMicroelectronics products are not authorized for use as critical components  
in life support devices or systems without the express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
2003 STMicroelectronics - All Rights Reserved.  
2
2
Purchase of I C Components by STMicroelectronics conveys a license under the Philips I C Patent. Rights to use these  
2
2
components in an I C system is granted provided that the system conforms to the I C Standard Specification as defined  
by Philips.  
STMicroelectronics Group of Companies  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia -  
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.  
http://www.st.com  
46/46  

相关型号:

STV9211

12 ns TRIPLE-CHANNEL HIGH VOLTAGE VIDEO AMPLIFIER
STMICROELECTR

STV9212

Video Processor for CRT Monitors with PictureBooST
STMICROELECTR

STV9302

VERTICAL DEFLECTION OUTPUT FOR MONITOR / TV 2 App / 60 V WITH FLYBACK GENERATOR
STMICROELECTR

STV9302A

VERTICAL DEFLECTION OUTPUT FOR MONITOR / TV 2 App / 60 V WITH FLYBACK GENERATOR
STMICROELECTR

STV9303

PULSE DRIVEN VERTICAL BOOSTER
STMICROELECTR

STV9303W

PULSE DRIVEN VERTICAL BOOSTER
STMICROELECTR

STV9306

BUS CONTROLLED VERTICAL DEFLECTION SYSTEM WITH EAST/WEST CORRECTION OUTPUT CIRCUIT
STMICROELECTR

STV9306A

Bus-Controlled Vertical Deflection System with East/West Correction Output Circuit
STMICROELECTR

STV9306B

Bus-Controlled Vertical Deflection System with East/West Correction Output Circuit
STMICROELECTR

STV9325

Vertical Deflection Booster for 2.5-APPTV/Monitor Applications with 70-V Flyback Generator
STMICROELECTR

STV9326

Vertical Deflection Booster for 3-APPTV/Monitor Applications with 60-V Flyback Generator
STMICROELECTR

STV937

新型场输出集成电路
ETC