STV9302 [STMICROELECTRONICS]

VERTICAL DEFLECTION OUTPUT FOR MONITOR / TV 2 App / 60 V WITH FLYBACK GENERATOR; 垂直偏转输出监视器/电视2应用/ 60 V用回扫发生器
STV9302
型号: STV9302
厂家: ST    ST
描述:

VERTICAL DEFLECTION OUTPUT FOR MONITOR / TV 2 App / 60 V WITH FLYBACK GENERATOR
垂直偏转输出监视器/电视2应用/ 60 V用回扫发生器

消费电路 商用集成电路 偏转集成电路 电视 监视器 输出元件 局域网
文件: 总15页 (文件大小:329K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
STV9302A  
Vertical Deflection Booster  
for 2-APPTV/Monitor Applications with 70-V Flyback Generator  
Main Features  
Power Amplifier  
HEPTAWATT  
(Plastic Package)  
ORDER CODE: STV9302A  
Flyback Generator  
Output Current up to 2 App  
Thermal Protection  
Stand-by Control  
Description  
The STV9302A is a vertical deflection booster  
designed for TV and monitor applications.  
Input (Non Inverting)  
Output Stage Supply  
Output  
Ground Or Negative Supply  
Flyback Generator  
Supply Voltage  
7
6
5
4
3
2
1
This device, supplied with up to 35 V, provides up to  
2 App output current to drive the vertical deflection  
yoke.  
Input (Inverting)  
The internal flyback generator delivers flyback  
voltages up to 70 V.  
Tab connected  
to pin 4  
in double-supply applications, a stand-by state will  
be reached by stopping the (+) supply alone.  
Output Stage  
Supply  
Flyback  
Generator Voltage  
Supply  
3
2
6
Flyback  
Generator  
Non-Inverting  
7
+
Input  
Power  
5
Output  
Amplifier  
Inverting  
-
1
Input  
Thermal  
Protection  
STV9302A  
4
Ground or Negative Supply  
September 2003  
1/15  
Absolute Maximum Ratings  
STV9302A  
1
Absolute Maximum Ratings  
Symbol  
Voltage  
Parameter  
Value  
Unit  
VS  
V5, V6  
V3  
Supply Voltage (pin 2) - Note 1 and Note 2  
Flyback Peak Voltage - Note 2  
40  
70  
V
V
V
Voltage at Pin 3 - Note 2, Note 3 and Note 6  
Amplifier Input Voltage - Note 2, Note 6 and Note 7  
-0.4 to (VS + 3)  
V1, V7  
- 0.4 to (VS + 2) or +40  
V
Current  
I0 (1)  
I0 (2)  
Output Peak Current at f = 50 to 200 Hz, t 10µs - Note 4  
Output Peak Current non-repetitive - Note 5  
Sink Current, t<1ms - Note 3  
±5  
±2  
A
A
A
A
A
I3 Sink  
I3 Source  
I3  
1.5  
1.5  
±5  
Source Current, t < 1ms  
Flyback pulse current at f=50 to 200 Hz, t10µs - Note 4  
ESD Susceptibility  
ESD1  
ESD2  
Human body model (100 pF discharged through 1.5 k)  
EIAJ Standard (200 pF discharged through 0 )  
2
kV  
V
300  
Temperature  
Ts  
Storage Temperature  
Junction Temperature  
-40 to 150  
+150  
°C  
°C  
Tj  
Note:1. Usually the flyback voltage is slightly more than 2 x V . This must be taken into consideration when  
S
setting V  
S.  
2. Versus pin 4  
3. V3 is higher than V during the first half of the flyback pulse.  
S
4. Such repetitive output peak currents are usually observed just before and after the flyback pulse.  
5. This non-repetitive output peak current can be observed, for example, during the Switch-On/Switch-  
Off phases. This peak current is acceptable providing the SOA is respected (Figure 8 and Figure 9).  
6. All pins have a reverse diode towards pin 4, these diodes should never be forward-biased.  
7. Input voltages must not exceed the lower value of either V + 2 or 40 volts.  
S
2
Thermal Data  
Symbol  
RthJC  
TT  
Parameter  
Junction-to-Case Thermal Resistance  
Temperature for Thermal Shutdown  
Recommended Max. Junction Temperature  
Value  
3
Unit  
°C/W  
°C  
150  
120  
TJ  
°C  
2/15  
STV9302A  
Electrical Characteristics  
3
Electrical Characteristics  
(V = 32 V, T  
= 25°C, unless otherwise specified)  
S
AMB  
Symbol  
Parameter  
Test Conditions  
Min. Typ. Max. Unit Fig.  
Supply  
VS  
Operating Supply Voltage Range (V2-V4)  
Pin 2 Quiescent Current  
Note 8  
10  
8
35  
20  
50  
V
I2  
I6  
I3 = 0, I5 = 0  
5
mA  
mA  
1
1
Pin 6 Quiescent Current  
I3 = 0, I5 = 0, V6 =35v  
19  
Input  
I1  
Input Bias Current  
V1 = 1 V, V7 = 2.2 V  
V1 = 2.2 V, V7 = 1 V  
- 0.6  
- 0.6  
-1.5  
-1.5  
µA  
µA  
1
I7  
Input Bias Current  
VIR  
VI0  
Operating Input Voltage Range  
Offset Voltage  
0
VS - 2  
V
2
mV  
µV/°C  
VI0/dt Offset Drift versus Temperature  
10  
Output  
I0  
V5L  
Operating Peak Output Current  
Output Saturation Voltage to pin 4  
Output Saturation Voltage to pin 6  
±1  
1.7  
2.3  
A
V
V
I5 = 1 A  
I5 = -1 A  
1
3
2
V5H  
1.8  
Stand-by  
V1 = V7 = VS = 0  
See Note 9  
V5STBY  
VS - 2  
Output Voltage in Stand-by  
V
Miscellaneous  
G
Voltage Gain  
80  
dB  
V
VD5-6  
Diode Forward Voltage Between pins 5-6  
Diode Forward Voltage between pins 3-2  
Saturation Voltage on pin 3  
I5 = 1 A  
1.4  
1.3  
0.4  
2.1  
2
2
1
VD3-2  
V3SL  
V3SH  
I3 = 1 A  
V
V
V
I3 = 20 mA  
I3 = -1 A  
3
Saturation Voltage to pin 2 (2nd part of flyback)  
8. In normal applications, the peak flyback voltage is slightly greater than 2 x (V - V ). Therefore, (V  
S
4
S
- V ) = 35 V is not allowed without special circuitry.  
4
9. Refer to Figure 4, Stand-by condition.  
3/15  
Electrical Characteristics  
STV9302A  
Figure 1: Measurement of I1, I2 and I6  
+Vs  
I2  
I6  
6
2
5
1
7
2.2V  
39k  
(a)  
STV9302A  
S
(b)  
4
I1  
5.6kΩ  
(a): I2 and I6 measurement  
(b): I1 measurement  
1V  
Figure 2: Measurement of V5H  
+Vs  
6
2
V
5H  
7
1
2.2V  
5
STV9302A  
- I5  
1V  
4
Figure 3: Measurement of V3L and V5L  
+Vs  
I3 or I5  
(a)  
6
2
7
1
(b)  
3
5
1V  
STV9302A  
V
3L  
V
5L  
2.2V  
4
(a): V measurement  
5L  
(b): V measurement  
3L  
4/15  
STV9302A  
Application Hints  
4
Application Hints  
The yoke can be coupled either in AC or DC.  
4.1  
DC-coupled Application  
When DC coupled (see Figure 4), the display vertical position can be adjusted with input bias. On  
the other hand, 2 supply sources (V and -V ) are required.  
S
EE  
A Stand-by state will be reached by switching OFF the positive supply alone. In this state, where  
both inputs are the same voltage as pin 2 or higher, the output will sink negligible current from the  
deviation coil.  
Figure 4: DC-coupled Application  
+Vs  
Output  
Voltage  
CF (47 to 100µF)  
3
470µF  
Vref  
0.1µF  
6
2
Output  
Current  
Flyback  
Generator  
Ip  
Power  
Amplifier  
Vertical Position  
Adjustment  
7
+
5
1
-
Thermal  
Safety  
Yoke  
Ly  
R3  
1.5  
Rd(*)  
VM  
Vm  
4
-VEE  
0.1µF  
470µF  
R2  
R1  
Ly  
50µs  
Ly  
20µs  
(*) recommended:  
------------- < R d < -------------  
4.1.1 Application Hints  
For calculations, treat the IC as an op-amp, where the feedback loop maintains V = V .  
1
7
5/15  
Application Hints  
4.1.1.1 Centering  
STV9302A  
Display will be centered (null mean current in yoke) when voltage on pin 7 is (R is negligible):  
1
V
+ V  
R
ÿ
2
M
m
------------------------  
---------------------  
V
=
×
7
2
R + R  
þ
3
2
4.1.1.2 Peak Current  
(V V  
)
R
M
m
2
I
=
×
---------------------------- ------------------  
P
2
R xR  
1
3
Example: for V = 2 V, V = 5 V and I = 1 A  
m
M
P
Choose R in the1 range, for instance R =1 Ω  
1
1
2 × I × R  
R
P
1
2
2
3
From equation of peak current:  
-----------------------------  
------- =  
= --  
V
V  
R
3
M
m
Then choose R or R . For instance, if R = 10 k, then R = 15 kΩ  
2
3
2
3
Finally, the bias voltage on pin 7 should be:  
+ V  
V
M
m
1
R
7
2
1
2.5  
V
=
×
=
×
= 1.4V  
------------------------ ----------------- -- -------  
7
2
3
1 + -------  
R
2
4.1.2 Ripple Rejection  
When both ramp signal and bias are provided by the same driver IC, you can gain natural rejection  
of any ripple caused by a voltage drop in the ground (see Figure 5), if you manage to apply the  
same fraction of ripple voltage to both booster inputs. For that purpose, arrange an intermediate  
point in the bias resistor bridge, such that (R / R ) = (R / R ), and connect the bias filtering  
8
7
3
2
capacitor between the intermediate point and the local driver ground. Of course, R should be  
7
connected to the booster reference point, which is the ground side of R .  
1
Figure 5: Ripple Rejection  
3
2
6
Flyback  
Generator  
Reference  
Voltage  
Power  
Amplifier  
7
+
R9  
R8  
5
R7  
1
-
Thermal  
Safety  
Yoke  
Ly  
Rd  
4
Ramp  
Signal  
R3  
R2  
R1  
Driver  
Ground  
Source of Ripple  
6/15  
STV9302A  
Application Hints  
4.2  
AC-Coupled Applications  
In AC-coupled applications (See Figure 6), only one supply (V ) is needed. The vertical position of  
S
the scanning cannot be adjusted with input bias (for that purpose, usually some current is injected  
or sunk with a resistor in the low side of the yoke).  
Figure 6: AC-coupled Application  
+Vs  
Output  
Voltage  
CF (47 to 100µF)  
3
470µF  
0.1µF  
6
2
Output  
Current  
Flyback  
Generator  
Ip  
Power  
Amplifier  
7
1
+
5
-
Yoke  
Ly  
Thermal  
Safety  
R3  
1.5Ω  
Rd(*)  
VM  
Vm  
4
R5  
R4  
Cs  
CL  
R1  
Ly  
50µs  
Ly  
20µs  
R2  
(*) recommended:  
------------- < R d < -------------  
4.2.1 Application Hints  
Gain is defined as in the previous case:  
V
V  
R
M
m
2
----------------------- ---------------------  
I
=
×
p
2
R × R  
1
3
Choose R then either R or R . For good output centering, V must fulfill the following equation:  
1
2
3
7
V
V
+ V  
S
M
m
V –  
------- V  
------------------------  
V
7
7
2
2
7
--------------------- = -------------------------------------- + -------  
R + R  
4
R
R
5
3
2
or  
V
V
+ V  
ÿ
m
1
R
2
S
M
1
1
ÿ
þ
V ×  
+ ------- +  
=
------------------------------ + ------------------------  
-------  
R
---------------------  
R + R  
7
2(R + R )  
2 × R  
þ
3
4
5
3
4
5
7/15  
Application Hints  
STV9302A  
C performs an integration of the parabolic signal on C , therefore the amount of S correction is set  
S
L
by the combination of C and C .  
L
s
4.3  
Application with Differential-output Drivers  
Certain driver ICs provide the ramp signal in differential form, as two current sources i and i with  
+
opposite variations.  
Figure 7: Using a Differential-output Driver  
+Vs  
Output  
Voltage  
C (47 to 100µF)  
F
470µF  
0.1µF  
6
3
2
Output  
Current  
Differential output  
driver IC  
Flyback  
Generator  
I
p
Power  
Amplifier  
i
p
+
7
+
i
i
cm  
cm  
5
R
7
1
-
Thermal  
Safety  
Yoke  
Ly  
1.5  
Rd(*)  
-i  
p
-
4
-V  
EE  
0.1µF  
470µF  
R
2
R
1
Ly  
50µs  
Ly  
20µs  
(*) recommended:  
------------- < Rd < -------------  
Let us set some definitions:  
i is the common-mode current:  
1
2
i
= --(i + i )  
cm  
cm  
+
-
at peak of signal, i = i  
+ i and i = i  
- i , therefore the peak differential signal is i - (-  
p p  
+
cm  
p
cm  
i ) = 2 i , and the peak-peak differential signal, 4i .  
p
p
p
The application is described in Figure 7 with DC yoke coupling. The calculations still rely on the fact  
that V remains equal to V .  
1
7
8/15  
STV9302A  
Application Hints  
4.3.1 Centring  
When idle, both driver outputs provide i and the yoke current should be null (R is negligible),  
cm  
1
hence:  
i
R
= i  
R
therefore R = R  
cm  
7
cm  
2
7
2
4.3.2 Peak Current  
Scanning current should be I when positive and negative driver outputs provide respectively  
P
i
- i and i + i , therefore  
p cm p  
cm  
I
2R  
and since R = R :  
7
2
(i  
i) R = I R + (i  
+ i) R  
p
i
7
cm  
7
p
1
cm  
2
---- = –  
----------  
R
1
Choose R in the 1range, the value of R = R follows. Remember that i is one-quarter of driver  
1
2
7
peak-peak differential signal! Also check that the voltages on the driver outputs remain inside  
allowed range.  
Example: for i = 0.4mA, i = 0.2mA (corresponding to 0.8mA of peak-peak differential  
cm  
current), I = 1A  
p
Choose R = 0.75, it follows R = R = 1.875k.  
1
2
7
4.3.3 Ripple Rejection  
Make sure to connect R directly to the ground side of R .  
7
1
4.3.4 Secondary Breakdown Diagrams  
Figure 8: Output Transistor Safe Operating Area (SOA) for Secondary Breakdown  
@ Tcase=25°C  
10  
100µs  
10ms  
1
100ms  
0.1  
0.01  
10  
35  
60  
100  
Volts  
The diagram has been arbitrarily limited to max VS (35 V) and max I0 (2 A).  
9/15  
Mounting Instructions  
STV9302A  
Figure 9: Secondary Breakdown Temperature Derating Curve (ISB = Secondary Breakdown Current)  
5
Mounting Instructions  
The power dissipated in the circuit is removed by adding an external heatsink. With the  
HEPTAWATTpackage, the heatsink is simply attached with a screw or a compression spring  
(clip).  
A layer of silicon grease inserted between heatsink and package optimizes thermal contact. In DC-  
coupled applications we recommend to use a silicone tape between the device tab and the heatsink  
to electrically isolate the tab.  
Figure 10: Mounting Examples  
10/15  
STV9302A  
Pin Configuration  
6
Pin Configuration  
Figure 11: Pins 1 and 7  
2
7
1
Figure 12: Pin 3 & Pins 5 and 6  
6
2
2
5
3
4
11/15  
Package Mechanical Data  
STV9302A  
7
Package Mechanical Data  
Figure 13: 7-pin Heptawatt Package  
L
E
L1  
M1  
A
M
D
C
D1  
H2  
L2  
L3  
F
L5  
E1  
E
V4  
L9  
H3  
G
G1 G2  
Dia.  
F
L10  
L4  
H2  
L11  
L7  
L6  
Table 1: Heptawatt Package  
Max.  
mm  
inches  
Typ.  
Dim.  
Min.  
Typ.  
Min.  
Max.  
A
C
4.8  
0.189  
0.054  
0.110  
0.053  
0.022  
0.038  
0.031  
0.105  
0.205  
0.307  
0.409  
0.409  
0.673  
1.37  
D
2.40  
1.20  
0.35  
0.70  
0.60  
2.34  
4.88  
7.42  
2.80  
1.35  
0.55  
0.97  
0.80  
2.74  
5.28  
7.82  
10.40  
10.40  
17.10  
0.094  
0.047  
0.014  
0.028  
0.024  
0.095  
0.193  
0.295  
D1  
E
E1  
F
G
2.54  
5.08  
7.62  
0.100  
0.200  
0.300  
G1  
G2  
H2  
H3  
L
10.05  
16.70  
0.396  
0.657  
16.90  
0.668  
12/15  
STV9302A  
Package Mechanical Data  
Table 1: Heptawatt Package (Continued)  
mm  
inches  
Dim.  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
L1  
L2  
14.92  
21.54  
22.52  
0.587  
0.848  
0.891  
21.24  
22.27  
21.84  
22.77  
1.29  
0.386  
0.877  
0.860  
0.896  
0.051  
0.118  
0.622  
0.260  
L3  
L4  
L5  
2.60  
15.10  
6.00  
2.80  
15.50  
6.35  
3.00  
0.102  
0.594  
0.110  
0.610  
0.250  
0.008  
L6  
15.80  
6.60  
L7  
0.0236  
L9  
0.20  
L10  
L11  
M
2.10  
4.30  
2.55  
4.83  
2.70  
4.80  
3.05  
5.33  
0.082  
0.169  
0.100  
0.190  
0.106  
0.190  
0.120  
0.210  
2.80  
5.08  
0.110  
0.200  
M1  
V4  
Dia.  
40 (Typ.)  
3.65  
3.85  
0.144  
0.152  
13/15  
Revision History  
STV9302A  
8
Revision History  
Table 2: Summary of Modifications  
Description  
Version  
Date  
2.0  
2.1  
2.2  
January 2002  
November 2002  
April 2003  
First Issue.  
Addition of Stand-by Control information, Section 8: Revision History.  
Correction to Section 4.1.1.2: Peak Current. Creation of new title, Section  
4.3.4: Secondary Breakdown Diagrams.  
14/15  
STV9302A  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its  
use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously  
supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without  
express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
© 2003 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
www.st.com  
15/15  

相关型号:

STV9302A

VERTICAL DEFLECTION OUTPUT FOR MONITOR / TV 2 App / 60 V WITH FLYBACK GENERATOR
STMICROELECTR

STV9303

PULSE DRIVEN VERTICAL BOOSTER
STMICROELECTR

STV9303W

PULSE DRIVEN VERTICAL BOOSTER
STMICROELECTR

STV9306

BUS CONTROLLED VERTICAL DEFLECTION SYSTEM WITH EAST/WEST CORRECTION OUTPUT CIRCUIT
STMICROELECTR

STV9306A

Bus-Controlled Vertical Deflection System with East/West Correction Output Circuit
STMICROELECTR

STV9306B

Bus-Controlled Vertical Deflection System with East/West Correction Output Circuit
STMICROELECTR

STV9325

Vertical Deflection Booster for 2.5-APPTV/Monitor Applications with 70-V Flyback Generator
STMICROELECTR

STV9326

Vertical Deflection Booster for 3-APPTV/Monitor Applications with 60-V Flyback Generator
STMICROELECTR

STV937

新型场输出集成电路
ETC

STV9378

VERTICAL DEFLECTION BOOSTER
STMICROELECTR

STV9378F

VERTICAL DEFLECTION BOOSTER
STMICROELECTR

STV9379

VERTICAL DEFLECTION BOOSTER
STMICROELECTR