STV9211 [STMICROELECTRONICS]

12 ns TRIPLE-CHANNEL HIGH VOLTAGE VIDEO AMPLIFIER; 12 ns的三通道高电压视频放大器
STV9211
型号: STV9211
厂家: ST    ST
描述:

12 ns TRIPLE-CHANNEL HIGH VOLTAGE VIDEO AMPLIFIER
12 ns的三通道高电压视频放大器

消费电路 商用集成电路 音频放大器 视频放大器 光电二极管 高压
文件: 总24页 (文件大小:446K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STV9553  
12 ns TRIPLE-CHANNEL HIGH VOLTAGE VIDEO AMPLIFIER  
above is required, ensuring a maximum quality of  
the still pictures or moving video.  
FEATURES  
Triple-channel video amplifier  
Supply voltage up to 115 V  
80V Output dynamic range  
Perfecly matched with the STV921x ST  
preamplifiers, it provides a highly performant and  
very cost effective video system.  
Perfect for PICTURE BOOST application  
requiring high video amplitude  
Pinning for easy PCB layout  
Supports DC coupling (optimum cost saving)  
and AC coupling applications.  
Built-in Voltage Gain: 20 (Typ.)  
Rise and Fall Times: 12 ns (Typ.)  
Bandwidth: 29 MHz (Typ.)  
Very low stand-by power consumption  
Perfectly matched with the STV921x  
preamplifiers  
CLIPWATT 11  
(Plastic Package)  
DESCRIPTION  
The STV9553 is a triple-channel video amplifier  
designed in a 120V-high voltage technology and  
ORDER CODE: STV9553  
able to drive in DC-coupling mode the 3 cathodes  
of a CRT monitor.  
The STV9553 supports PICTURE BOOST  
applications where video amplitude up to 50V or  
PIN CONNECTIONS  
11  
10  
9
OUT1  
OUT2  
OUT3  
GNDP  
8
V
7
6
5
4
3
DD  
GNDS  
GNDA  
IN3  
V
CC  
2
1
IN2  
IN1  
Version 4.0  
February 2002  
1/24  
1
Table of Contents  
1
2
3
4
5
6
BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
THERMAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
THEORY OF OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
6.1  
6.2  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
7
8
9
POWER DISSIPATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
TYPICAL PERFORMANCE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
INTERNAL SCHEMATICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
10 APPLICATION HINTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
10.7  
10.8  
10.9  
How to choose the high supply voltage value (VDD) in DC coupling mode . . . . . . . . 12  
Arcing Protection: schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Arcing protection: layout and decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Video response optimization: schematics in DC-coupling mode . . . . . . . . . . . . . . . . . 14  
Video response optimization: outputs networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Video response optimization: inputs networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Video response optimization: layout and decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
AC - Coupling mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Stand-by mode, spot suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
10.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
11 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2
2/24  
2
STV9553  
1
BLOCK DIAGRAM  
OUT1  
11  
GNDP  
8
OUT2  
10  
OUT3  
9
STV9553  
VDD  
GNDP  
VDD  
GNDP  
7
3
VDD  
VCC  
V
REF  
6
4
2
1
5
GNDS IN1 GNDA  
IN2  
IN3  
2
PIN DESCRIPTION  
Pin  
1
Name  
IN1  
Function  
Video Input (channel 1)  
Video Input (channel 2)  
Low Supply Voltage  
Video Input (channel 3)  
Ground Analog  
2
IN2  
3
VCC  
4
IN3  
5
GNDA  
GNDS  
VDD  
6
Ground Substrat  
7
High Supply Voltage  
Ground Power  
8
GNDP  
OUT3  
OUT2  
OUT1  
9
Video output (channel 3)  
Video output (channel 2)  
VIdeo output (channel 1)  
10  
11  
3/24  
3
STV9553  
3
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
120  
Unit  
V
V
High supply voltage  
Low supply voltage  
ESD susceptibility  
DD  
V
16.5  
V
CC  
V
Human Body Model (100pF discharged through 1.5KΩ)  
EIAJ norm (200pF discharged through 0Ω)  
2
300  
kV  
V
ESD  
I
I
Output source current (pulsed < 50µs)  
Output sink current (pulsed < 50µs)  
Maximum Input Voltage  
80  
80  
mA  
mA  
V
OD  
OG  
V
V
+ 0.3  
CC  
IN Max  
V
Minimum Input Voltage  
- 0.5  
150  
V
IN Min  
T
Junction Temperature  
°C  
°C  
J
T
Storage Temperature  
-20 + 150  
STG  
4
THERMAL DATA  
Symbol  
Parameter  
Junction-Case Thermal Resistance (Max.)  
Junction-Ambient Thermal Resistance (Typ.)  
Value  
3
Unit  
°C/W  
°C/W  
R
R
th (j-c)  
th (j-a)  
35  
4/24  
3
STV9553  
5
ELECTRICAL CHARACTERISTICS  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ  
Max  
Unit  
SUPPLY parameters (V = 12V, V = 110V, Tamb = 25 °C, unless otherwise specified)  
CC  
DD  
V
V
High supply voltage  
20  
10  
110  
12  
115  
15  
V
V
DD  
CC  
DD  
Low supply voltage  
I
V
V
V
supply current  
V
= 50V  
OUT  
15  
mA  
DD  
DD  
CC  
V
V
: switched off (<1.5V)  
CC  
I
stand-by supply current  
supply current  
60  
40  
µA  
DDS  
: low (Note 1)  
OUT  
I
V
= 50V  
mA  
CC  
OUT  
STATIC parameters (V = 12V, V = 110V, Tamb = 25 °C)  
CC  
DD  
V
DC output voltage  
V
V
V
=1.90 V  
77  
80  
0.5  
15  
83  
V
%
OUT  
IN  
dV  
/dV  
High voltage supply rejection  
= 50V  
= 80V  
OUT  
DD  
OUT  
OUT  
dV  
/dT  
Output voltage drift versus temperature  
mV/°C  
OUT  
Output voltage matching versus  
temperature (Note 2)  
dV  
/dT  
V
V
= 80V  
= 50V  
1
2
mV/°C  
OUT  
OUT  
OUT  
R
Video input resistor  
kΩ  
V
IN  
V
Output saturation voltage to supply  
Output saturation voltage to GND  
Video Gain  
I
= -60mA (Note 3)  
= 60mA (Note 3)  
V
- 6.5  
DD  
SATH  
0
V
I
11  
20  
3
V
SATL  
0
G
V
= 50V  
OUT  
LE  
Linearity Error  
17 V<V  
<V -15 V  
8
%
V
OUT  
DD  
V
Internal voltage reference  
5.6  
REF  
Note 1: The STV9553 goes into stand-by mode when Vcc is switched off (<1.5V).  
In stand-by mode, Vout is set to low level.  
Note 2: Matching measured between each channel.  
Note 3: Pulsed current width < 50µs  
5/24  
3
STV9553  
ELECTRICAL CHARACTERISTICS (continued)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ  
Max  
Unit  
DYNAMIC parameters (see Figure 1)  
t
Rise time  
V
V
=50V, V=40V  
=50V, V=40V  
10.8  
12.8  
5
ns  
ns  
R
DC  
PP  
PP  
t
Fall time  
F
DC  
OS  
Overshoot, white to black transition  
Overshoot, black to white transition  
Low frequency gain matching (Note 4)  
Bandwidth at -3dB  
%
R
OS  
0
%
F
G  
V
V
V
V
= 50V, f=1MHz  
5
%
DC  
DC  
DC  
DC  
BW  
=50V, V=20V  
=50V, V=40V  
=50V, V=20V  
29  
15  
MHz  
ns  
PP  
PP  
PP  
t
2.5% Settling time  
SET  
CTL  
Low frequency crosstalk  
f = 1 MHz  
50  
32  
dB  
dB  
V
=50V, V=20V  
DC  
PP  
CTH  
High frequency crosstalk  
f = 20MHz  
DYNAMIC parameter in PICTURE BOOST condition (Note 5)  
t
Rise/fall time  
V
=50V, V=60V  
15  
9
ns  
%
PB  
DC  
PP  
PP  
Overshoot white to black or black to white  
transition  
OS  
V
=50V, V=60V  
PB  
DC  
Note 4: Matching measured between each channel.  
Note 5: PICTURE BOOST condition (video amplitude at 50V or above) is used in some applications when displaying  
still picture or moving video. In this condition the high level of contrast improves the pictures quality at the  
expense of the video performances (t , t and Overshoot) which are slightly deteriorated.  
R
F
Figure 1. AC test circuit  
12V  
3
110V  
V
V
DD  
V  
V
CC  
DC  
7
50Ω  
OUT  
R = 300 Ω  
P
1
11  
8
IN  
C =8pF  
L
V
REF  
GNDP  
STV9553  
5
GNDA  
6/24  
3
STV9553  
6
THEORY OF OPERATION  
6.1 General  
The STV9553 is a three-channel video amplifier supplied by a low supply voltage: V (typ.12V) and a  
CC  
high supply voltage: V (up to 115V).  
DD  
The high values of V supplying the amplifier output stage allow direct control of the CRT cathodes (DC  
DD  
coupling mode).  
In DC coupling mode, the application schematic is very simple and only a few external components are  
needed to drive the cathodes. In particular, there is no need of the DC-restore circuitry which is used in  
classical AC coupling applications.  
The output voltage range is wide enough (Figure 2) to provide simultaneously :  
– Cut-off adjustment (typ. 25V)  
– Video contrast (typ. up to 40V),  
– Brightness (with the remaining voltage range).  
In normal operation, the output video signal must remain inside the linear region whatever the cut-off,  
brightness and contrast adjustments are.  
Figure 2. Output signal, level adjustments  
V
DD  
(A) Top Non-Linear Region  
(B) Cut-off Adjust. (25V Typ.)  
15V  
(C) Brightness Adjust. (10V Typ.)  
Blanking pulse  
Video Signal  
(D) Contrast Adjust. (40V Typ.)  
(E) Bottom Non-Linear Region  
17V  
GND  
7/24  
3
STV9553  
6.2 Output voltage  
A very simplified schematic of each STV9553 channel is shown in Figure 3.  
The feedback network of each channel is integrated with a typical built-in voltage gain of G=20 (40k/2k).  
The output voltage VOUT is given by the following formula:  
VOUT = (G+1) x V  
- (G x VIN)  
REF  
for G = 20 and V  
= 5.6V, we have  
REF  
VOUT = 117.6 - 20 x V  
IN  
Figure 3. Simplified schematic of one channel  
V
DD  
40k  
2k  
IN  
-
OUT  
+
V
REF  
GNDA  
GNDP  
8/24  
STV9553  
7
POWER DISSIPATION  
The total power dissipation is the sum of the static DC and the dynamic dissipation:  
P
= P + P  
.
DYN  
TOT  
STAT  
The static DC power dissipation is approximately:  
= V x I + V x I  
P
STAT  
DD  
DD  
CC  
CC  
The dynamic dissipation is, in the worst case (1 pixel On/ 1 pixel Off pattern):  
= 3 V x C x V x f x K (see Note 6)  
P
DYN  
DD  
L
OUT(PP)  
where f is the video frequency and K the ratio between the active line and the total horizontal line duration.  
Example:  
for V = 110V, V = 12V,  
DD  
CC  
I
= 15mA, I = 40mA,  
CC  
DD  
V
= 40 V , f = 25MHz,  
PP  
OUT  
C = 8pF and K = 0.72.  
L
We have:  
P
= 2.13W and P  
= 1.90W  
STAT  
DYN  
Therefore:  
P
=4.03W.  
TOT  
Note 6: This worst thermal case must only be considered for TJmax calculation. Nevertheless, during the average life  
of the circuit, the conditions are closer to the white picture conditions.  
9/24  
STV9553  
8
TYPICAL PERFORMANCE CHARACTERISTICS  
V
=110V, V =12V, C =8pF, R =300, V=40V , unless otherwise specified - see Figure 1  
CC L P PP  
DD  
Figure 4. STV9553 pulse response  
Figure 5. V  
versus V  
OUT  
IN  
tr=10.8ns  
12  
overshoot = 5%  
120  
100  
80  
60  
40  
20  
tf=12.8ns  
12  
0
0
overshoot = 0%  
1
2
3
4
5
6
Vin (V)  
Figure 6. Power dissipation versus frequency Figure 7. Speed versus temperature  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
14  
13.5  
13  
Vdd=110V  
Tf  
Vdd=100  
12.5  
12  
Vdd=90V  
11.5  
11  
Tr  
10.5  
10  
50  
60  
70  
80  
90  
100  
Case Temperature (°C)  
10  
20  
30  
Frequency (MHz)  
(72% active time)  
Figure 8. Speed versus offset  
Figure 9. Speed versus load capacitance  
18  
17  
16  
15  
15  
14  
Tf  
13  
12  
11  
10  
Tf  
14  
13  
12  
Tr  
Tr  
11  
10  
40  
45  
50  
55  
Offset (Vdc)  
60  
65  
70  
8
10  
12  
14  
16  
18  
20  
Load capacitance (pF)  
10/24  
STV9553  
9
INTERNAL SCHEMATICS  
Figure 10. RGB inputs  
Figure 11. RGB outputs  
VDD  
VCC  
OUT  
IN  
pins 9, 10, 11  
pins 1, 2, 4  
GNDS  
GNDS  
Figure 12. VDD  
Figure 13. VCC  
VDD  
VCC  
GNDS  
GNDS  
Figure 14. GNDP  
Figure 15. GNDA  
GNDA  
GNDP  
GNDS  
GNDS  
11/24  
STV9553  
10 APPLICATION HINTS  
10.1 How to choose the high supply voltage value (V ) in DC coupling mode  
DD  
The V high supply voltage must be chosen carefully. It must be high enough to provide the necessary  
DD  
video adjustment but set to minimum value to avoid unecessary power dissipation.  
Example (see Figure 2):  
The following example shows how the optimum V voltage value is determined:  
DD  
– Cut-off adjustment range (B) : 25V  
– Max contrast (D) : 40V  
Case 1:  
10V Brightness (C) adjusted by the preamplifier :  
V
= A + B + C + D + E  
DD  
DD  
V
= 15V + 25V + 10V + 40V + 17V = 107V  
Case 2:  
10V Brightness (C) adjusted by the G1 anode:  
V
= A + B + D + E  
DD  
DD  
V
= 15V + 25V + 40V + 17V = 97V  
10.2 Arcing Protection: schematics  
As the amplifier outputs are connected to the CRT cathodes, special attention must be given to protect  
them against possible arcing inside the CRT.  
Protection must be considered when starting the design of the video CRT board. It should always be  
implemented before starting to adjust the dynamic video response of the system.  
The arcing network that we recommend (see Figure 16) provides efficient protection without deteriorating  
the amplifier video performances.  
The total resistance between the amplifier and the CRT cathode (R10+R11) protects the device against  
overvoltages. We recommend to use R10+R11 > 300 .  
Spark gaps are strongly recommended for arcing protection.  
12/24  
STV9553  
Figure 16. Arcing protection network (one channel)  
V
DD  
R19(**)  
C12(*)  
100nF/250V  
33-40Ω  
C24  
4.7µF/150V  
C18  
100nF  
V
DD  
D12  
FDH400  
OUT  
A
L1  
R11  
R10  
CRT  
STV9553  
0.33µH  
150/0.5W  
150/0.5W  
D13  
FDH400  
F1  
C29(***)  
0.22µF  
Spark gap  
B
GNDS  
200V  
GNDP  
GNDA  
R29(***)  
1-10Ω  
( ): To be connected as close as possible to the device  
*
(**): R19 must be mandatorily used  
(***): Ground separation network  
10.3 Arcing protection: layout and decoupling  
Several layout precautions have to be considered to get the optimum arcing protection:  
Sparkgap grounding: when an arc occurs, the energy must flow through the CRT ground without  
reaching the amplifier. This is obtained by connecting the sparkgap grounding (point B) to the CRT  
ground (socket) via a wide/short trace. Conversely the point B must be connected to the amplifier  
ground via a longer/narrower trace.  
Grounding separation: In order to set apart the amplifer ground and CRT ground, the R29/C29 net-  
work (Figure 16) can be used.  
Amplifier grounding: The 3 grounds GNDS, GNDA and GNDP must be connected together as  
close as possible to the device.  
13/24  
STV9553  
10.4 Video response optimization: schematics in DC-coupling mode  
The dynamic video response is optimized by carefully designing the supply decoupling of the video board  
(see Section 10.7), the tracks (see Section 10.7), then by adjusting the input/output component network  
(see Section 10.5).  
For dynamic measurements such as rise/fall time and bandwidth, a 8pF load is used (total load including  
the parasitic capacitance of the PC board and CRT Socket).  
When used in kit with the STV921x preamplifier from ST, the preamplifier bandwidth register (BW, register  
13) must be set to minimum (o dec) for an application with t /t >5.5ns.  
R F  
Figure 17. Video response optimization for one channel - DC coupling application  
C11  
4.7µF  
C24  
4.7µF  
C12(*)  
100nF  
C10(*)  
100nF  
R19(***)  
33-40Ω  
V
DD  
V
V
DD  
CC  
Reference  
Input Network #1  
STV9553  
C1  
1.5nF  
OUT  
R10  
IN  
OUT  
L1  
R11  
CRT  
-
+
R1(**)  
51Ω  
C2  
10pF  
1500.33µH 150Ω  
V
REF  
GNDS  
GNDP  
GNDA  
Caution: For Application with Tr/Tf>5.5ns, the PreAmplifier bandwidth register (BW, Register 13)  
must be set to minimum value (0 dec)  
( ): To be connected as close as possible to the device  
*
( ): R1 must be not be higher than 100Ω  
**  
(***): R19 must be mandatorily used  
2 other Input Networks (Network #2 and #3 below) can be used in replacement of the reference Input Network #1.  
See Application note AN1510 for complete description.  
Input Network #2  
Input Network #3  
L1  
0.33µH  
IN  
IN  
R1  
C2  
R1  
C2  
82Ω  
10pF  
33Ω  
15pF  
14/24  
STV9553  
10.5 Video response optimization: outputs networks  
The output network (R10/L1/R11) is used to adjust the amplifier video performances. Once R10 and R11  
resistors are set to protect the application against arcing (R10 + R11>300), it is possible to increase the  
bandwidth by increasing L1.  
10.6 Video response optimization: inputs networks  
The input network also plays an important role in the device dynamic behaviour. We recommend to use  
the reference input network #1, which is described in Figure 17, but 2 other networks (#2 and #3) can be  
used to better match the required performances and the video board layout. Refer to the application note  
referenced AN1510 for the complete description of these input networks.  
10.7 Video response optimization: layout and decoupling  
The decoupling of V and V through good quality HF capacitors (respectively C10 and C12) close to  
CC  
DD  
the device is necessary to improve the dynamic performance of the video signal.  
Careful attention has to be given to the three output channels of the amplifier.  
Capacitor: The parasitic capacitive load on the amplifier outputs must be as small as possible.  
Figure 9 from Section 8 clearly shows the deterioration of the t /t when the capacitive load  
R F  
increases. Reducing this capacitive load is achieved by moving away the output tracks from the other  
tracks (especially ground) and by using thin tracks (<0.5mm), see Figure 17.  
Cross talk: Output and input tracks must be set apart. The STV9553 pin-out allows the easy separa-  
tion of input and output tracks on opposite sides of the amplifier (see Figure 21).  
Length: Connection between amplifier output and cathode must be as short and direct as possible.  
15/24  
STV9553  
10.8 AC - Coupling mode  
The STV9553 can be used in AC-Coupling mode in kit with the TDA9207/9212 preamplifier from ST. As  
for the DC-coupling mode, the STV9553 drives perfectly the video signal in PICTURE BOOST conditions.  
A typical schematic is given on the Figure 18 below.  
Figure 18. Video response optimization for one channel - AC coupling application  
C11  
4.7µF  
C24  
4.7µF  
C10(*) C12(*)  
100nF 100nF  
R19(***)  
V
DD  
V
V
DD  
CC  
33-40Ω  
Reference  
Input Network #1 (****)  
STV9553  
C1  
1.5nF  
C
OUT  
R10  
IN  
OUT  
L1  
C1  
R11  
150Ω  
CRT  
-
R1(**)  
C2  
+
1500.33µH 1µF  
51Ω  
V
10pF  
REF  
GNDS  
GNDP  
GNDA  
V
restore  
Cut-off  
DC Restore  
circuitry  
Caution: For Application with Tr/Tf>5.5ns, the PreAmplifier bandwidth register (BW, Register 13)  
must be set to minimum value (0 dec)  
( ): To be connected as close as possible to the device  
*
( ): R1 must be not be higher than 100Ω  
**  
(***): R19 must be mandatorily used  
(****): Input Networks #2 and #3 can be used as well  
The advantage of such an architecture is to use smaller V  
and therefore to have smaller power  
DD  
consumption. This is due to the fact that the STV9553 provides only the video signal and not the cut-off  
adjustment. The disadvantage is to have an application with more components (DC restore circuitry).  
Note that it is mandatory to keep the output video signal (point C) inside the linear area of the amplifier  
(from 17V to V - 15V).  
DD  
16/24  
STV9553  
10.9 Stand-by mode, spot suppression  
The usual way to set a monitor in stand-by mode is to switch-off the Vcc (12V).  
The STV9553 has an extremely low power consumption (I  
and the outputs are set to low level (white picture).  
= 60µA when V <1.5V) in stand-by mode  
CC  
DDS  
To avoid the display of a spot effect during the switch-off phase, it is necessary to adjust the G1 circuitry  
(Resistors Rx and Cx, see Figure 19) to pull the G1 voltage to low value during a sufficient time duration.  
Figure 19. Stand-by mode, spot effect  
+80V  
Cathode  
0V  
Case #1: Low Rx.Cx  
-30V  
A spot might appear during  
G1  
the switch-off phase  
Case #2: High Rx.Cx  
No spot effect  
-120V  
EHT  
(27kV)  
Typical G1 generator circuitry  
R1  
G1  
Cx  
Rx  
-120V  
-30V  
17/24  
STV9553  
10.10 Conclusion  
Video response is always a compromise between several parameters. For example, the rise/fall time  
improvement leads to the overshoot deterioration.  
The recommended way to optimize the video response is:  
1
To set R10+R11 for arcing protection (min. 300 )  
2. To adjust R20 and R10+R11.  
Increasing their value increases the  
t /t values and decrease the overshoot  
R F  
3. To adjust L1  
Increasing L1 speeds up the device but increases the overshoot.  
4. To adjust the input network for the final dynamic tunning (e.g.: critical damping)  
We recommend our customers to use the schematic shown on Figure 23 as a starting point for the video  
board and then to apply the optimization they need.  
18/24  
STV9553  
Figure 20.STV9553/9555/9556 + TDA9210/STV9211 + STV9936 S/P  
DC-coupling demonstration board: Silk Screen and Trace  
19/24  
STV9553  
Figure 21. Outputs trace (from figure 19)  
Figure 22. CRT socket trace (from figure 19)  
20/24  
STV9553  
Figure 23. STV9553/55/56 + STV9936 + TDA9210/STV9211 DC-coupling demo - board schematic  
D
D
G N 1 2  
G N  
1
7
G 2  
G 1 5  
9
H 2  
H 1  
1 0  
V d d  
V c  
D P G N  
8
7
3
G N D S  
6
G N D A  
5
c
21/24  
STV9553  
11 PACKAGE MECHANICAL DATA  
11 PIN - CLIPWATT  
V1  
H3  
H2  
H1  
S
A
Shaded area ewpose dfrom plasti cbody  
C
Typical 30 µm  
V1  
V1  
V2  
L3  
V1  
R2  
L2  
R
L1  
R1  
R3  
D
R3  
M
R3  
B
LEAD#1  
G
F
E
F1  
M1  
G1  
Millimeters  
Typ.  
3
Inches  
Dimensions  
Min.  
2.95  
0.95  
-
Max.  
3.05  
1.05  
-
Min.  
0.116  
0.037  
-
Typ.  
0.118  
0.039  
0.006  
0.059  
0.02  
Max.  
0.12  
A
B
1
0.041  
-
C
0.15  
1.5  
D
1.3  
1.7  
0.051  
0.0.019  
0.03  
0.061  
0.021  
0.034  
0.004 (6)  
0.071  
0.673  
-
E
0.49  
0.78  
-
0.515  
0.8  
0.55  
0.86  
0.1  
F
0.031  
0.002  
0.067  
0.669  
0.472  
0.732  
0.787  
0.704  
0.572  
0.433  
0.216  
0.1  
F1  
G
0.05  
1.7  
-
1.6  
1.8  
0.063  
0.665  
-
G1  
H1  
H2  
H3  
L
16.9  
-
17  
17.1  
-
12  
18.55  
19.9  
17.7  
14.35  
10.9  
5.4  
18.6  
20  
18.65  
20.1  
18.1  
14.65  
11.1  
5.6  
0.73  
0.734  
0.791 (5)  
0.712  
0.576  
0.437(5)  
0.22  
0.783  
0.696  
0.564  
0.429  
0.212  
0.092  
0.092  
0.057  
17.9  
14.55  
11  
L1  
L2  
L3  
M
5.5  
2.34  
2.34  
1.45  
2.54  
2.54  
-
2.74  
2.74  
-
0.107  
0.107  
-
M1  
R
0.1  
-
22/24  
STV9553  
Millimeters  
Typ.  
Inches  
Typ.  
Dimensions  
Min.  
3.2  
-
Max.  
3.4  
-
Min.  
0.126  
-
Max.  
R1  
R2  
R3  
S
3.3  
0.13  
0.134  
0.3  
0.012  
0.019  
0.027  
10deg.  
5deg.  
75deg.  
-
-
-
0.5  
-
-
0.65  
0.7  
0.75  
0.025  
0.029  
V
10deg.  
5deg.  
75deg.  
V1  
V2  
Note 5: “H3 and L2” do not include mold flash or protrusions  
Mold flash or protrusions shall not exceed 0.15mm per side.  
Note 6: No intrusions allowed inwards the leads  
Critical dimensions:  
Lead split (M1)  
Total length (L)  
23/24  
STV9553  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for  
the consequences of use of such information nor for any infringement of patents or other rights of third parties which may  
result from its use. No license is granted by implication or otherwise under any patent or patent rights of  
STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication  
supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as  
critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a trademark of STMicroelectronics.  
2002 STMicroelectronics - All Rights Reserved  
Purchase of I2C Components of STMicroelectronics, conveys a license under the Philips I2C Patent.  
Rights to use these components in a I2C system, is granted provided that the system conforms to the I2C Standard  
Specifications as defined by Philips.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The  
Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
http://www.st.com  
24/24  
4

相关型号:

STV9212

Video Processor for CRT Monitors with PictureBooST
STMICROELECTR

STV9302

VERTICAL DEFLECTION OUTPUT FOR MONITOR / TV 2 App / 60 V WITH FLYBACK GENERATOR
STMICROELECTR

STV9302A

VERTICAL DEFLECTION OUTPUT FOR MONITOR / TV 2 App / 60 V WITH FLYBACK GENERATOR
STMICROELECTR

STV9303

PULSE DRIVEN VERTICAL BOOSTER
STMICROELECTR

STV9303W

PULSE DRIVEN VERTICAL BOOSTER
STMICROELECTR

STV9306

BUS CONTROLLED VERTICAL DEFLECTION SYSTEM WITH EAST/WEST CORRECTION OUTPUT CIRCUIT
STMICROELECTR

STV9306A

Bus-Controlled Vertical Deflection System with East/West Correction Output Circuit
STMICROELECTR

STV9306B

Bus-Controlled Vertical Deflection System with East/West Correction Output Circuit
STMICROELECTR

STV9325

Vertical Deflection Booster for 2.5-APPTV/Monitor Applications with 70-V Flyback Generator
STMICROELECTR

STV9326

Vertical Deflection Booster for 3-APPTV/Monitor Applications with 60-V Flyback Generator
STMICROELECTR

STV937

新型场输出集成电路
ETC

STV9378

VERTICAL DEFLECTION BOOSTER
STMICROELECTR