STV9212 [STMICROELECTRONICS]

Video Processor for CRT Monitors with PictureBooST; 视频处理器的CRT显示器与PictureBooST
STV9212
型号: STV9212
厂家: ST    ST
描述:

Video Processor for CRT Monitors with PictureBooST
视频处理器的CRT显示器与PictureBooST

显示器 消费电路 商用集成电路 光电二极管
文件: 总34页 (文件大小:337K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
STV9212  
Video Processor for CRT Monitors with PictureBooST  
Main Features  
General  
I²C-Bus Controlled  
Supports AC- and DC-coupled applications  
5V to 8V Power Supply  
Matches to virtually any video amplifier  
PictureBooST  
DIP24S:(Plastic Package)  
PictureBooST insertion input  
Full-screen PictureBooST via I²C-bus  
Context-sensitive Picture Enhancement  
Video Clamping  
ORDER CODE: STV9212  
General Description  
The STV9212 is an I²C-bus controlled color video  
processor designed for standard CRT monitor  
applications. It can drive systems where cathodes  
are either AC- or DC-coupled to the amplifier  
outputs. The three video channels provide contrast  
and white balance separate gain adjustments as  
well as one-per-channel DC cut-off control and  
common DC offset control functions. On top of  
these usual controls, it features context-sensitive  
picture enhancement circuitry to support the  
PictureBooST function that enhances the  
appearance of still pictures and moving video.  
Input and Output Video Clamp  
Sync Pulse Polarity Auto-rectification  
Clamp Pulse Generation timed either by sync  
or video blanking pulse  
Video Processing  
Contrast Adjustment with excellent channel  
matching  
Gain stages for control of white  
Two DC-mode cut-off ranges  
Output DC offset control  
In AC coupling applications, the device can pilot  
three cathode DC restore channels dedicated to set  
CRT cut-off bias voltages and to control brightness  
through cathodes.  
Automatic Beam Limiter (ABL)  
Video Insertion Pulse (VIP), 2 levels  
Amplifier Control (Blanking and Stand-by)  
OSD Insertion with Contrast Control  
Control Output  
The RGB video outputs have a class A architecture  
and directly drive the amplifier channels without  
unnecessarily consuming current. Bandwidth  
limitation I²C-bus adjustments can contribute to  
keeping the application EMI under control.  
Amplifier Standby and Blanking Control  
3 DAC for control of DC Restore Amplifier or  
OSD (On-Screen Display) graphics are inserted by  
means of a Fast Blanking signal. Independent OSD  
contrast control facilitates adaptation to various  
OSD generators and provides system flexibility.  
Brightness in DC-coupled system  
The STV9212 is perfectly compatible with other ST  
components for CRT video boards, such as video  
amplifiers and OSD generators.  
October 2003  
1/34  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.  
STV9212  
Table of Contents  
Chapter 1  
STV9212 Pin Allocation and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Pinout ..................................................................................................................................4  
Pin Descriptions ..................................................................................................................4  
1.1  
1.2  
Chapter 2  
2.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Video RGB Input Clamp .......................................................................................................6  
Video Blanking .....................................................................................................................8  
Contrast Control Stage and Automatic Beam Limiter ..........................................................9  
PictureBooST .....................................................................................................................10  
OSD Insertion .....................................................................................................................11  
Drive Stage ........................................................................................................................11  
Video Insertion Pulse .........................................................................................................12  
Output Stage ......................................................................................................................12  
Output Infra-black Level, Cut-off and Brightness ...............................................................15  
Signal Waveforms ..............................................................................................................18  
Miscellaneous ....................................................................................................................18  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
2.10  
2.11  
Chapter 3  
I²C-Bus Interface Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
3.1  
I²C-bus Register Descriptions ............................................................................................21  
Chapter 4  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Absolute Maximum Ratings ...............................................................................................24  
Thermal Data .....................................................................................................................24  
Static Electrical Characteristics ..........................................................................................24  
Dynamic Electrical Characteristics .....................................................................................25  
I²C-Bus Electrical Characteristics .......................................................................................27  
I²C-Bus Interface Timing Requirements ...........................................................................27  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
Chapter 5  
Chapter 6  
Chapter 7  
Soldering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Package Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Input/Output Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
2/34  
STV9212  
Chapter 8  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
3/34  
STV9212 Pin Allocation and Description  
STV9212  
1
STV9212 Pin Allocation and Description  
1.1  
Pinout  
Figure 1: STV9212 Pinout  
IN1  
HS  
BLK  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
1
AMPCTL  
OUT1  
VCCP  
OUT2  
GNDP  
OUT3  
CO1  
2
IN2  
3
ABL  
4
IN3  
5
GNDA  
VCCA  
PB  
6
7
8
OSD1  
OSD2  
OSD3  
FBLK  
CO2  
9
CO3  
10  
11  
12  
SDA  
SCL  
1.2  
Pin Descriptions  
Table 1: STV9212 Pin Descriptions  
Pin  
Name  
Function  
Pin  
Name  
Function  
I²C-bus Clock Input  
I²C-bus Data Input/Output  
1
2
IN1  
HS  
Video Input, Channel 1  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
SCL  
SDA  
Video Clamp Sync Input  
Video Input, Channel 2  
Automatic Beam Limiter Input  
Video Input, Channel 3  
Analog Ground  
3
IN2  
CO3  
Cut-off / Brightness DAC 3 Output  
Cut-off DAC 2 Output  
4
ABL  
CO2  
5
IN3  
CO1  
Cut-off DAC 1 Output  
6
GNDA  
VCCA  
PB  
OUT3  
GNDP  
OUT2  
VCCP  
OUT1  
AMPCTL  
BLK  
Video Output, Channel 3  
Output Stage Ground  
7
Analog Supply  
8
Picture Boost Input  
Video Output, Channel 2  
Output Stage Supply  
9
OSD1  
OSD2  
OSD3  
FBLK  
OSD Input, Channel 1  
OSD Input, Channel 2  
OSD Input, Channel 3  
OSD Insertion Control Input  
10  
11  
12  
Video Output, Channel 1  
Output for Amplifier Control  
Blanking and Video Clamp Sync Input  
4/34  
STV9212  
Functional Description  
2
Functional Description  
The functional blocks are described in the order they act on the signal.  
Figure 2: STV9212 Block Diagram  
5/34  
Functional Description  
STV9212  
2.1  
Video RGB Input Clamp  
The three RGB inputs have to be supplied with a video signal through coupling capacitors playing  
the role of analog memories for internal video clamps. The input clamping level is approximately 0V.  
The clamp is gated by the Input Clamp Pulse (ICP) that is internally generated from a signal on  
either the HS or BLK pin. The selection is done via register 8 of the I²C-bus. For more information,  
refer to Figure 3: ICP, OCP and BLKI Generation and Table 2: ICP Timing.  
Provided with an automatic polarity rectification function, the HS input accepts horizontal  
synchronization signals of either polarity. The device can select either the leading or trailing edge of  
this signal to trigger the ICP generator.  
The BLK input is followed by an inverter stage that can be enabled or by-passed via the I²C-bus.  
This allows the use of a signal of either polarity, the control software taking care of the inverter  
position according to the signal applied. The BLKI signal found behind this inverter stage also drives  
the video blanking circuitry which requires a positive BLKI polarity for correct operation. Once bit  
BLKPOL has correctly been uploaded to ensure a positive BLKI polarity, the ICP triggering edge  
can be selected via control bit BCEDGE. A horizontal flyback pulse is generally expected to be  
applied on the BLK input. As the edges of horizontal flyback pulse can fall into the active video  
content (outside the video signal line blanking portion), the application must ensure that such an  
edge is never selected for triggering the ICP.  
The width of the internally generated ICP is controlled via the I²C-bus. The HS input can be used to  
pass a clamping pulse, if available in the application, directly to clamping stages, without any  
additional processing. In this case, the appropriate polarity (positive) is required. See Table 2: ICP  
Timing. The ICP timings triggered by the trailing edge of the BLK signal are not presented.  
The Output Clamp Pulse (OCP) is described in Section 2.8: Output Stage.  
Figure 3: ICP, OCP and BLKI Generation  
ICP trig/pulse mode  
BCSC1  
(Sad08/b4)  
ICP width  
BCWDTH  
(Sad08/b2,b3)  
BCSC0  
(Sad08/b0)  
BCEDGE  
(Sad08/b1)  
ICP  
(Internal)  
0
1
0
1
0
1
Pulse  
Generation  
on  
Automatic  
Polarity  
HS  
2
-1  
OCP  
(Internal)  
1
0
1
0
-1  
Pulse  
Generation  
on  
BLKI  
BLK  
24  
BLKPOL  
(Sad09/b0)  
OCPSC  
(Sad08/b7)  
BLKI  
(Internal)  
Video blanking  
I²C-bus field  
Note: The I²C-bus switches are displayed in their default positions  
6/34  
STV9212  
Functional Description  
Table 2: ICP Timing  
Trigger  
Source  
Trigger  
Event  
BCSC1  
BCSC0 BCEDGE BLKPOL  
Timing Diagram  
negative  
or  
positive  
HS  
Trailing  
edge  
Don’t  
care  
0
0
0
ICP  
0.33µs...1.33µs  
negative  
or  
positive  
HS  
HS pin  
BLK  
0V  
Leading  
edge  
Don’t  
care  
0
1
0
1
ICP  
0.33µs...1.33µs  
(must be positive!)  
HS  
Don’t  
care  
Don’t  
care  
Don’t  
care  
Pulse  
ICP  
BLK  
0
1
0
1
0
1
1
0
Rising  
edge  
0
0
1
1
ICP  
0.33µs...1.33µs  
BLK  
Falling  
edge  
ICP  
0.33µs...1.33µs  
Figure 4: Video Input Clamp  
V
= Internal reference voltage (fixed)  
Ref  
Input video  
V
Ref  
0V  
IN1  
High  
Impedance  
stage  
To further  
processing  
DC signal from  
graphics card  
(can vary)  
1
ICP  
0V  
clamped to GND  
Note: Identical for IN2 and IN3 inputs  
7/34  
Functional Description  
STV9212  
2.2  
Video Blanking  
The three video channels are simultaneously blanked with the high level of either BLKI or FBLK  
signals. BLKI is an internal signal drawn from the signal applied on the BLK pin (H-flyback) as  
shown in Figure 3. The blanking consists in forcing a “black” level to the internal clamped video  
signal.  
BLK Input  
The BLK input receives an H-flyback pulse that drives:  
the video blanking circuitry during scan line retrace,  
the output clamping stage.  
A clipping circuit at the input allows the direct use of a high-voltage H-flyback pulse applied through  
a serial resistor as shown in Figure 5. A logic-level signal is also accepted but the serial resistor  
remains mandatory. In all cases, the value of this resistor must be such that the sinking and  
sourcing currents are limited to 1mA and 100µA, respectively.  
Figure 5: BLK Input Pin  
Typical  
H-Flyback signal  
40 to  
100V  
R
(*)  
lim  
GND  
0 to -10V  
BLK  
24  
Signal at BLK pin  
(Pin 24)  
~3V  
GND  
(*) R is necessary to limit currents flowing through BLK pin (-100uA, +1mA max.)  
lim  
Permanent Blanking  
The entire TV screen can be blanked for an unlimited amount of time using the software blanking  
feature. Both bits SWBLK and TST1 must be set to 1. The three video outputs are forced to their  
infra-black levels as shown in Figure 6. Infra-black levels are defined in Section 2.9.  
Figure 6: Software Blanking  
Video output  
channels 1,2,3  
Normal operation  
SWBLK=0, TST1=0  
Black level  
Software blanking in operation  
SWBLK=1, TST1=1  
Infra-black level  
8/34  
STV9212  
Functional Description  
The screen can also be blanked by permanently keeping the On-Screen Display FBLK input signal  
at high level. In this case, only the video contents of the three video channels are replaced by “black  
level” OSD content insertion (signals on pins OSD1 through OSD3 permanently at low level). Refer  
to Section 2.5: OSD Insertion on page 11.  
2.3  
Contrast Control Stage and Automatic Beam Limiter  
The contrast stages are simultaneously controlled on all three RGB channels with high attenuation  
matching precision. Refer to electrical specifications for values. See Figure 7: Contrast Control and  
Table 4: I²C-Bus Register Map.  
Figure 7: Contrast Control  
Before contrast stage  
Video Black Level  
V
V
Ref  
CRST=max  
CRST=mid  
CRST=min  
After contrast stage  
Video Black Level  
Ref  
Note: CRST I²C-bus field acts equally on all 3 video channels  
The Automatic Beam Limiter (ABL) is an attenuator controlled through the ABL input, independent  
of contrast stage attenuation. The operating range is about 2 V (from 3 V to 1 V). A typical  
characteristic is shown in Figure 8. Refer to Section 4: Electrical Specifications for specific values.  
When not used, the ABL pin is to be connected to VCCA.  
Figure 8: ABL Characteristics  
Attenuation (dB)  
0
-2  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
0
1
2
3
4
5
V
(V)  
ABL  
9/34  
Functional Description  
STV9212  
2.4  
PictureBooST  
The PictureBooST function provides a picture enhancement effect for images with photographic  
or moving video contents.  
The function is activated whenever the level on pin PB is high (TTL) or the bit PBINS is at 1, if the  
general PictureBooST enable bit PBGEN is at 1. By means of PB input signal toggling, the  
function can take effect in a part of the screen, e.g. a window, or on the whole screen.  
The picture enhancement is achieved through combination of three actions, as shown in Figure 9:  
a content-sensitive peaking with slow restore (vivacity),  
a contrast addition,  
a brightness addition.  
The vivacity amplitude depends on the slope height and steepness and on the status of bits  
PBVIVAM[1:0]. The return to stabilized state is exponential with a time constant adjustable via bits  
PBVIVTC[2:0]. Any undershoot below the video black level is clipped to a level close to black.  
The PictureBooST brightness is a DC offset superimposed on the video signal in the boosted  
zone. Its value is selected by bits PBBRIG[1:0]. The vivacity and PictureBooST brightness are  
both enabled by bit PBVIVEN.  
The PictureBooST contrast component evenly increases the video amplitude in the boosted zone.  
Its value is controlled by bits PBCRST[1:0].  
Refer to Section 4: Electrical Specifications for values.  
Figure 9: PictureBooST Action  
H-sync  
Video before  
PictureBooST  
A
stage  
PB input  
V
viv  
PB  
contrast  
τviv  
Video after  
PictureBooST  
stage  
A
PB brightness  
clipping  
10/34  
STV9212  
Functional Description  
2.5  
OSD Insertion  
The On-Screen Display (OSD) is inserted with a high level on the FBLK input (TTL). The device  
acts as follows:  
The three RGB video input signals (IN1, IN2, IN3) are internally blanked, i.e. put at the black  
level.  
Binary levels (TTL) on inputs OSD1, OSD2 and OSD3, after processing in the OSD contrast  
stage, are added to the corresponding blanked video channels.  
In this way, the OSD contents replace the video contents where the FBLK input is high. See  
Figure 2 and Figure 10.  
The OSD is inserted after the PictureBooST block and before the Drive block. As a consequence,  
OSD insertion overlaps all video contents, including the PictureBooST -ed zones. Color  
temperature adjustments by means of the I²C-bus Drive registers act in the OSD insets.  
The OSD contrast stage allows the adjustment of the level of OSD insets simultaneously on the  
three OSD channels and independently of the video contrast adjustment. Refer to  
Section 4: Electrical Specifications for values.  
Figure 10: OSD Insertion  
Video before  
OSD insertion  
Video Black Level  
V
Ref  
FBLK  
OSD1(2,3)  
max  
mid  
V
OSD  
Video after  
OSD insertion  
Video Black Level  
V
Ref  
min.  
OSDCRST  
Note: The OSDCRST I²C-bus field acts equally on all 3 OSD channels.  
2.6  
Drive Stage  
The Drive stage is a set of three attenuators separately controlled via three I²C-bus registers,  
DRIVE1, DRIVE2 and DRIVE3. It affects all signals, ordinary video, PictureBooST processed  
video and OSD insets. It is designed to compensate for differences in gain of the three CRT  
cathodes. See Figure 11 and for values, refer to Section 4: Electrical Specifications.  
11/34  
Functional Description  
STV9212  
Figure 11: Drive Control  
Before Drive Stage  
Video Black Level  
V
Ref  
One I²C-bus register DRIVEx (x=1, 2 or 3)  
DRIVEx=max  
DRIVEx=mid  
DRIVEx=min  
per video channel  
After Drive Stage  
Video Black Level  
V
Ref  
2.7  
Video Insertion Pulse  
The Video Insertion Pulse (VIP) creates an indent on the three video signals, timed with the positive  
part of the BLKI signal. (See Section 2.2: Video Blanking on page 8). As its level is below the video  
black level, it introduces a video “infra-black” level. The video infra-black level position versus  
ground is then controlled in subsequent stages. In the absence of the blanking pulse on pin BLK,  
the VIP is not inserted and the subsequent stages control the position of video black level.  
Figure 12 shows the signal before and after insertion of the VIP. Two different VIP values are  
programmable by bit VIP. Refer to Section 4: Electrical Specifications for values.  
Figure 12: VIP Insertion  
Video before  
VIP insertion  
Video Black Level  
V
Ref  
BLKI signal  
Video after  
VIP insertion  
Video Black Level  
V
V
+V  
VIP  
Ref  
Ref  
V
VIP  
Video Infra-black Level  
Note: Identical for video channels 1, 2 and 3.  
2.8  
Output Stage  
The output stage consists of an output clamp and a buffer. If a reduced output video amplitude and/  
or a reduced infra-black level range is sufficient in the application, the VCCP can be lowered to 5V.  
12/34  
STV9212  
Functional Description  
Even at 8V of VCCP, care must be taken at device application level to ensure operation without  
signal top limitation.  
2.8.1 Output Clamp  
The DC position of video infra-black and video black levels at the video outputs must be fixed  
regardless of video or OSD inset contents, especially in applications where the device’s output  
infra-black level determines directly the infra-black level on the CRT cathodes (DC-coupled  
applications). This fixing is achieved by means of a fully-integrated output clamp that brings the  
output video infra-black level (video black level, in absence of the BLK pulse) to the level of a  
variable reference (Vib) as shown in Figure 13. The Vib is described in detail in Section 2.9 on  
page 15. The clamp circuit is driven by the Output Clamp Pulse (OCP). For correct operation, this  
pulse must entirely fall into the VIP pulse if this is present (clamp of infra-black level) or onto the  
video black part (clamp of black level). In the former case, the OCP generator is to be triggered with  
the leading edge of the BLK pulse, in the latter case it must copy the ICP pulse. Refer to Figure 3 for  
the OCP generation block diagram. Table 3 shows possible OCP timings. Although possible, the  
OCP timings, triggered by the BLK trailing edge, are not shown as they have no practical use.  
2.8.2 Bandwidth Control  
Controlled via bits BW[3:0], the output stage can limit the rise and fall time of the output signal. The  
optimum choice for this adjustment is highly application dependent. Refer to Section 4: Electrical  
Specifications for values and to Section 6: Application Hints for practical advice.  
2.8.3 Output Buffer  
The output buffer provides enough current so that external buffers are not required and the power  
amplifier can interface directly to the device’s outputs.  
Figure 13: Output Stage  
OCP  
15  
22  
VCCP  
OUT1  
BLKI  
OCP  
Video before  
output stage  
-
V
+
ib  
V
Ref  
GND  
Clamp & Buffer  
V
ib  
Output  
Infra-black Level  
Note: Identical for video channels 2 and 3.  
13/34  
Functional Description  
STV9212  
Table 3: OCP Timing  
OCPSC BLKPOL  
Trigger  
Source  
Timing Diagram  
Event  
ICP  
ICP  
Pulse  
1
Don’t care  
OCP  
BLK  
Rising  
edge  
0
1
OCP  
BLK  
0
BLK  
Falling  
edge  
OCP  
14/34  
STV9212  
Functional Description  
2.9  
Output Infra-black Level, Cut-off and Brightness  
The schematic diagram of these functions is shown in Figure 14.  
Figure 14: Cut-off and Brightness Control Block Diagram  
I²C-bus field  
OUT1  
OUT2  
OUT3  
V
V
ib  
Ref  
Output stage  
V
1 for 3 channels  
Video DC level  
ib  
V
ibmin  
IBOF  
DC  
V
V
COmax  
iblDC  
MOD=1 MOD=0  
IBLRG  
range  
range  
1 per channel  
DC:0  
AC:1  
MOD  
IBL3  
IBL2  
IBL1  
Cut-off  
V
iblAC  
V
briDC  
V
CO  
~40k  
V
iblAC  
~0V*  
AC:1  
DC:0  
CO1  
CO2  
CO3  
BRIGRG  
V
briAC  
V
briAC  
V
CO  
1 for 3 channels  
Brightness  
V
V
briDC  
COmin  
range  
V
COmin  
BRIG  
GND  
Ch3 Ch1  
Ch2  
DC  
Channel 3  
Only  
Note: Identical for CO1, CO2 and CO3 outputs except for “brightness” (V  
The switches are drawn in their default positions.  
* ~0V when the output is left open  
) that is only output at CO3 while MOD=0.  
briDC  
2.9.1 Output Infra-black Level  
The infra-black level of the video signal at the video outputs OUT1, OUT2 and OUT3 is positioned  
to the Vib reference by the output clamp circuit, thus defining the Output infra-black level. If the  
output clamp circuit is furnished with a correctly timed OCP (see corresponding sections), the  
output infra-black level equals Vib. Vib is composed of a fixed DC voltage (Vibmin), a variable DC  
voltage (Vibof) applied on all three channels and a per-channel variable DC voltage (Vibl (1,2,3)) as  
shown in Figure 15. In AC-coupling mode (bit MOD = 1), the Vibl part is suppressed and the Vib is  
therefore equal on all three channels, only varying with bits IBOF[5:0] acting on Vibof. This can be  
used to match the device’s outputs to the input of the video amplifier used (biasing). In DC-coupling  
mode (bit MOD = 0), Vibl (1,2,3) are separately set via bits IBL1[7:0], IBL2[7:0] and IBL3[7:0],  
respectively. This serves to adjust the cut-off points of the three CRT cathodes. In this case, Vibof  
can serve to pre-position the cut-off ranges in the factory adjustment procedure or/and to provide a  
rough brightness control.  
15/34  
Functional Description  
STV9212  
Figure 15: Output Infra-black Level  
19  
22  
20  
18  
GNDP  
OUT1  
OUT2  
OUT3  
black  
infra-black  
DC: differential cut-off  
V (3)  
AC: V (1,2,3) = 0V  
ibl  
ibl  
V (1)  
ibl  
I²C: IBL1, IBL2, IBL3  
V (3)  
V (2)  
ib  
ibl  
V (1)  
ib  
DC: common cut-off/brightness  
AC: video amp. biasing  
I²C: IBOF  
V
V
V
ibof  
V (2)  
ibof  
ibof  
ib  
fixed DC  
V
V
V
ibmin  
ibmin  
ibmin  
Channel 1  
Channel 2  
Channel 3  
2.9.2 Cut-off and Brightness Control Outputs  
Outputs CO1, CO2 and CO3 provide a DC voltage controlled via bits BRIG[7:0], IBLx[7:0],  
IBLRG[7:0], BRIGRG[1:0] and MOD[7:0]. The principal of operation is shown in Figure 14.  
When bit MOD is in position AC (= 1), the output voltage is a sum of the “brightness” VbriAC, “cut-off”  
ViblAC and a fixed VCOmin providing a bottom limitation. The brightness adjustment is equally  
applied to all three CO1, CO2 and CO3 outputs. It varies depending on bits BRIG[7:0] and  
BRIGRG[1:0], with bits BRIGRG[1:0] controlling the range of BRIG adjustment. The cut-off  
adjustment is separate for each channel, having one I²C-bus field per channel: IBL1, IBL2 and IBL3.  
The ratio between the brightness and cut-off ranges depends on the brightness range selection.  
See Figure 16.  
Figure 16: CO1, CO2 and CO3 Outputs while MOD = 1  
17  
16  
15  
19  
GNDP  
CO1  
CO2  
CO3  
V
(3)  
cut-off  
iblAC  
V
V
(1)  
iblAC  
I²C: IBL1, IBL2, IBL3  
V
(3)  
V
(2)  
CO  
iblAC  
V
(1)  
CO  
brightness through cathods  
V
V
briAC  
V
(2)  
briAC  
briAC  
CO  
I²C: BRIG  
fixed DC  
V
V
V
COmin  
COmin  
COmin  
Channel 1  
Channel 2  
Channel 3  
When bit MOD is in position DC (= 0), the output voltage on CO3 output is a sum of the “brightness”  
VbriDC and a fixed VCOmin providing a pedestal. Outputs CO1 and CO2 are floating with internal  
16/34  
STV9212  
Functional Description  
resistors of approximately 40 kto ground. The VbriDC varies with bits BRIG[7:0] and does not  
depend on bits BRIGRG[1:0]. See Figure 17.  
Figure 17: CO1, CO2 and CO3 Outputs while MOD = 0  
19  
17  
16  
15  
GNDP  
CO1  
CO2  
CO3  
brightness through G1  
V
(3)  
V
CO  
briDC  
I²C: BRIG  
fixed DC  
V
COmin  
Channel 1  
Channel 2  
Channel 3  
Note: Channels 1 and 2 shown with CO1 and CO2 outputs left open  
17/34  
Functional Description  
STV9212  
2.10 Signal Waveforms  
Figure 18 gives a summary of main signals waveforms.  
Figure 18: Signal Waveforms  
BLKI  
HS  
ICP  
OCP  
Video input  
IN1 (2,3)  
FBLK  
OSD input  
OSD1 (2,3)  
Black-level  
Video output  
OUT1 (2,3)  
Infra-black  
level  
2.11 Miscellaneous  
2.11.1 Stand-by Mode  
The device is set in Stand-by mode either by means of bit PASTBY or by lowering the VCCP supply  
voltage below the VCCPS threshold. Once in Stand-by mode, the device does not process the video  
signal and its power consumption is significantly reduced. The I²C-bus interface remains  
operational. A low level is forced on the AMPCTL output. Refer to Section 4: Electrical  
Specifications for values.  
2.11.2 AMPCTL Output  
The AMPCTL is designed to control a video power amplifier. It provides a three-level logical signal  
that depends on bits ASTBY and ABLEN, as well as on the operating mode (stand-by / normal) of  
the device. Figure 19 gives all possible states of the AMPCTL output. Refer to Section 4: Electrical  
Specifications for electrical parameter values. Pin AMPCTL is of push-pull type. It must not directly  
18/34  
STV9212  
Functional Description  
be grounded in the application and it can be left floating. Only video amplifiers provided with an  
appropriate control input can take advantage of the signal on the AMPCTL output.  
Figure 19: AMPCTL Output States  
BLKI signal  
V
AMPHI  
AMPCTL pin  
signal  
V
AMPBL  
V
AMPSB  
GND  
ASTBY  
PASTBY  
ABLEN  
X
1
1
X
X
0
0
1
0
0
0
X
X
X
I²C-bus  
bits  
X
V
>V  
>V  
>V  
<V  
STBTH  
CCP  
STBTH  
STBTH  
STBTH  
Note: X stands for “don’t care” value  
19/34  
I²C-Bus Interface Specifications  
STV9212  
3
I²C-Bus Interface Specifications  
The device is compatible to general I²C-bus specification. Its slave write address is DCh.  
Subaddress (Sad) auto-incrementing is not available. Only Write mode is supported. The control  
register map is given in Table 4.  
Bold weight denotes default values assumed at power-on reset. The power-on reset is effected  
every time that the supply voltage on VCCA pin drops below VPORTH threshold (Refer to electrical  
specifications).  
In order to ensure compatibility with future devices, all “Reserved” bits are to be set to 0 once  
uploaded by the control software.  
Table 4: I²C-Bus Register Map  
Sad  
01  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
CRST  
Reserved  
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRIG  
02  
03  
04  
05  
06  
07  
0
0
DRIVE1  
Reserved  
0
0
DRIVE2  
Reserved  
0
DRIVE3  
0
0
Reserved  
0
Reserved  
BRIGRG  
0
1
Reserved  
OSDCRST  
0
0
0
1
OCPTG  
TST1  
TST0  
BCSC1  
BCWDTH  
BCEDGE  
BCSC0  
08  
09  
0:BLK  
1:ICP  
ASTBY  
0:Normal  
1:Test  
0:Normal  
1:Test  
0:Trig mode  
1:HS pulse  
0:Rising  
1:Falling  
0:HS trig  
1:BLK trig  
0
1
ABLEN  
Reserved  
TST2  
Reserved  
MOD  
SWBLK  
BLKPOL  
0:Normal  
1:Standby  
0:Bl. disable  
1:Bl. enable  
0:Test  
1:Normal  
0:DC  
1:AC  
0:Disable  
1:Enable  
0:Non-inv.  
1:Inverted  
0
0
IBL1  
0A  
0B  
0C  
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IBL2  
IBL3  
1
0
0
0
PASTBY  
Reserved  
TST4  
TST3  
BW  
0D  
0E  
0F  
10  
0:Normal  
1:Standby  
0:Normal  
1:Test  
0:Normal  
1:Test  
0
1
0
0
0
0
0
0
0
VIP  
IBOF  
IBLRG  
0:0.2V  
1:0.4V  
0:Wide  
1:Narrow  
1
0
Reserved  
0
0
0
1
1
PBGEN  
PBINS  
PBCRST  
Reserved  
PBBRIG  
0:Disable  
1:Enable  
0:PB Pin  
1:Perman.  
0
0
PBVIVTC  
0
1
Reserved  
0
PBVIVEN  
PBVIVAM  
Reserved  
0:Disable  
1:Enable  
0
1
0
20/34  
STV9212  
I²C-Bus Interface Specifications  
3.1  
I²C-bus Register Descriptions  
Sad01  
Bit 0 = Reserved  
Read/Write  
Reset Value: 1000 0000 (80h)  
Sad05  
7
0
Read/Write  
Reset Value: 1000 0000 (80h)  
CRST[6:0]  
Values 00 and 7Fh in field CRST[6:0] are  
prohibited.  
Bits[7:1] = Contrast Adjustment (CRST)  
Bit 0 = Reserved  
7
0
DRIVE3[6:0]  
Values 00 and 7Fh in field DRIVE3[6:0] are  
prohibited.  
Bits[7:1] = Gain Adjustment on Channel 3  
(DRIVE3)  
Sad02  
Bit 0 = Reserved.  
Read/Write  
Reset Value: 1000 0000 (80h)  
Sad06  
7
0
BRIG[7:0]  
Read/Write  
Reset Value: 0000 0001 (01h)  
Bits[7:0] = Brightness Adjustment (BRIG)  
In AC mode, this value is added to infra-  
black levels and output on pins CO1, CO2  
and CO3.  
7
0
BRIGRG  
[1:0]  
In DC mode, it is output all alone on pin  
CO3.  
Bits[7:2] = Reserved.  
Bits[1:0]= Brightness Adjustment Range (BRIGRG)  
Four positions. See Section 4.4: Dynamic  
Electrical Characteristics.  
Sad03  
Read/Write  
Reset Value: 1000 0000 (80h)  
Sad07  
7
0
Read/Write  
DRIVE1[6:0]  
Reset Value: 0000 1001 (09h)  
Values 00 and 7Fh in field DRIVE1[6:0] are  
prohibited.  
7
0
OSDCRST[3:0]  
Bits[7:1] = Gain Adjustment on Channel 1  
(DRIVE1)  
Bit 0 = Reserved  
Bits[7:4] = Reserved.  
Bits[3:0]= OSD Contrast Adjustment  
Sad08  
Sad04  
Read/Write  
Read/Write  
Reset Value: 0000 0100 (04h)  
Reset Value: 1000 0000 (80h)  
7
0
7
0
OCPT  
G
BCSC  
1
BCED BCSC  
DRIVE2[6:0]  
TST[1:0]  
BCWDTH[1:0]  
GE  
0
Values 00 and 7Fh in field DRIVE2[6:0] are  
prohibited.  
Bits[7:1] = Gain Adjustment on Channel 2  
(DRIVE2)  
Bit 7 = Output clamping pulse selection  
0: Pulse triggered by BLK input (default)  
1: Internal ICP pulse  
21/34  
I²C-Bus Interface Specifications  
STV9212  
Bits[6:5] = Test mode activation for device testing in  
fabrication. When performing software  
blanking through SWBLK bit, TST1 bit  
must be set to 1.  
0: Test mode  
1: Normal operation mode (Default)  
Bit 3 = Reserved.  
Bit 2 = Application mode selection.  
0: Application with DC-coupled cathodes.  
0: Normal operation mode (Default)  
1: Test mode  
(Default)  
Bits[4,0] = Blanking and clamping pulse source.  
1: Application with AC-coupled cathodes.  
Bit 1 = Permanent blanking of video channels  
through software.  
BCSC1  
BCSC0  
Selected Source  
0
0
1
0
1
HS pin trigger (Default)  
BLK pin trigger  
0: Disable, blanking gated with signal on  
BLK pin. (Default)  
1: Permanent blanking. Bit TST1 must  
also be set to 1.  
Don’t care  
HS pin pulse  
Bits[3:2] = Width of ICP pulse when bit BCSC1 is 0.  
Bit 0 = Blanking signal (H-fly back) polarity  
inversion. For correct operation, the  
internal BLKI pulse after this controlled  
inversion must be positive.  
BCWDTH  
BCPC Width  
0
0
1
0
1
0.33 µs  
0.66 µs (Default)  
1 µs  
0
1
1
0: Non Inverted, good for positive blanking  
pulse (Default)  
1.33 µs  
1: Inverted, good for negative blanking  
pulse  
Bit 1 = When HS pin is selected to trigger the ICP  
pulse generator.  
0: Trailing edge of HS pulse (Default)  
1: Leading edge of HS pulse  
Sad0A, Sad0B and Sad0C  
When BLK pin is selected to trigger the ICP pulse  
generator:  
Read/Write  
Reset Value: 1000 0000 (80h)  
BCEDGE BLKPOL  
Trigger on BLK  
7
0
0
0
1
1
0
1
0
1
Rising edge (default)  
Falling edge  
IBL1[7:0]  
IBL2[7:0]  
IBL3[7:0]  
Falling edge  
Rising edge  
Bits[7:0] = Infra-black (Cut-off) Level Control,  
Channels 1 to 3 (IBLx)  
Refer to BLKPOL bit description.  
In DC-coupling mode, the register controls  
the pedestal of corresponding video  
channel signal.  
In AC-coupling mode, the register controls  
the level on outputs CO1, CO2 or CO3,  
respectively.  
Sad09  
Read/Write  
Reset Value: 0001 0000 (10h)  
7
0
ASTB ABLE  
TST2  
SWBL BLKP  
MOD  
Sad0D  
Y
N
K
OL  
Read/Write  
Reset Value: 0000 1000 (08h)  
Bit 7 = Amplifier standby selection.  
0: Normal (default)  
1: Standby  
7
0
Bit 6 = Amplifier blanking enable. The bit is “don’t  
care” whenever bit ASTBY is in Standby  
position.  
0: Blanking pulse not generated (default)  
1: Blanking pulse generated  
Bit 5 = Reserved.  
PAST  
TST[4:3]  
BY  
BW[3:0]  
Bit 7 = Preamplifier and Amplifier STandBY  
selection  
0: Normal (default)  
1: Standby  
Bit 6 = Reserved.  
Bit 4 = Test mode activation for device testing in  
fabrication.  
22/34  
STV9212  
I²C-Bus Interface Specifications  
Bits[5:4] = Test mode activation bits for device  
testing in fabrication.  
0: Normal operation mode (Default)  
1: Test mode  
Bits[3:0] = Internal band width limitation control.  
Refer to electrical characteristics.  
Bit 7 = PictureBooST General Enable. (PBGEN)  
0: Disable, function inhibited (Default)  
1: Enable, function active  
Bit 6 = PictureBooST Insertion Control. (PBINS)  
0: PB pin insertion (Default)  
1: Permanent insertion regardless of  
signal on PB pin  
Bit 5 = Reserved.  
Bits[4:3] = PictureBooST Contrast Control  
(PBCRST)  
Bit 2 = Reserved.  
Bits[1:0] = PictureBooST Brightness Control  
(PBBRIG)  
Sad0E  
Read/Write  
Reset Value: 1100 0001 (C1h)  
7
0
IBLR  
G
VIP  
IBOF[5:0]  
Sad10  
Bit 7 = Video Insertion Pulse depth.  
0: 0.2V  
Read/Write  
Reset Value: 0010 1000 (28h)  
1: 0.4V (default)  
Bits[6:1] = Infra-black level offset control  
simultaneously on all three video  
channels.  
7
0
PBVIV  
EN  
PBVIVAM[1:0]  
PBVIVTC[2:0]  
Bit 0 = Control range of infra-black level  
adjustments via IBL1, IBL2 and IBL3  
registers. Acts either on video signal  
Bit 7 = PictureBooST vivacity and brightness  
enable.  
channels or CO1, CO2, CO3 outputs.  
Refer to electrical characteristics.  
0: Wide  
0: Disable (default)  
1: Enable  
Bits[6:5] = PictureBooST Vivacity Amplitude  
Control.  
1: Narrow (default)  
Bit 4 = Reserved.  
Bits[3:1] = PictureBooST Vivacity Time Constant  
Control.  
Sad0F  
Bit 0 = Reserved.  
Read/Write  
Reset Value: 0000 1001 (09h)  
7
0
PBGE PBIN  
PBCRST[1:0]  
PBBRIG[1:0]  
N
S
23/34  
Electrical Specifications  
STV9212  
4
Electrical Specifications  
4.1  
Absolute Maximum Ratings  
All voltages refer to the GNDA pin.  
Symbol  
Parameter  
Supply voltage on VCCA (Pin 7)  
Min.  
Max.  
Units  
V
V
TBD  
TBD  
TBD  
TBD  
5.5  
8.8  
5.5  
1.4  
V
V
V
V
CCA  
CCP  
Supply voltage on VCCP (Pin 21)  
V
Voltage at any pin except video inputs and supply pins  
Voltage at video inputs (Pins 1,3 and 5)  
IN  
V
I
ESD susceptibility  
Human Body Model (100 pF discharge through 1.5 k)  
V
TBD  
±2  
kV  
ESD  
STG  
T
Storage Temperature  
-40  
-40  
+150  
+150  
°C  
°C  
T
Operating Junction Temperature  
OPER  
4.2  
4.3  
Thermal Data  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
R
Junction-to-Ambient Thermal Resistance  
Operating Ambient Temperature  
60  
°C/W  
°C/W  
thJA  
T
0
70  
AMB  
Static Electrical Characteristics  
TAMB = 25°C, VCCA = 5V, and VCCP = 8V, unless otherwise specified. All voltages refer to the GNDA  
pin.  
Symbol  
Supply  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Units  
V
V
Supply Voltage  
Pin 7  
4.5  
4.5  
5
8
5.5  
8.8  
V
V
CCA  
CCP  
Power Stage Supply Voltage  
Pin 21  
Pin 21  
Power Supply Voltage Stand-by  
Threshold  
V
2.5  
3.0  
3.5  
V
CCPS  
V
V
= 5V (PBGEN Disable)  
65  
85  
mA  
mA  
CCA  
CCA  
I
VCCA Supply Current  
CCA  
CCP  
= 5V (PBGEN Enable)  
I
V
= 8V  
VCCP Supply Current  
50  
mA  
mA  
CCP  
I
Total Supply Current in Stand-by Mode  
Pin 21 and pin 7  
6
1
S
Inputs and Outputs  
V
Video Input voltage amplitude  
Output voltage swing  
0.7  
V
V
I
V
CCP  
1
( )  
V
O
IL  
0.5  
-0.5V  
V
V
Low level input voltage (TTL)  
High level input voltage (TTL)  
BLK input current  
OSD, FBLK, PB, HS,BLK  
OSD, FBLK, PB, HS,BLK  
BLK  
0.8  
V
V
2.4  
IH  
IL  
I
I
-0.1  
-1  
+1.0  
1
mA  
µA  
Input current  
OSD, FBLK, PB  
IN  
24/34  
STV9212  
Electrical Specifications  
Symbol  
Parameter  
Input resistance  
Test Conditions  
Min.  
Typ.  
Max.  
Units  
R
HS  
I²C-bus bit ASTBY = 1 or/and  
40  
k  
HS  
Output voltage at AMPCTL pin, standby  
(Figure 18)  
V
V
< V  
80  
1.6  
3.1  
200  
mV  
V
AMPSB  
CCP CCPS  
Sink current 200µA  
I²C-bus bit ASTBY = 1  
I²C-bus bit ABLEN = 1  
Sink current 0µA  
Output voltage at AMPCTL pin,  
blanking (Figure 18)  
V
TBD  
TBD  
AMPBL  
BLKI at high level  
I²C-bus bit ASTBY = 0 and  
Output voltage at AMPCTL pin, no  
standby, no blanking (Figure 18)  
V
V
> V  
V
AMPHI  
CCP CCPS  
Sink current 0µA  
4.4  
Dynamic Electrical Characteristics  
TAMB = 25°C, VCCA = 5 V, VCCP = 8 V, Vi = 0.7 VPP, CLOAD = 5 pF, RS = 100 serial resistor  
between output pin and CLOAD, unless otherwise specified. “x” denotes channel number and can  
assume values of 1, 2 and/or 3. All voltages refer to the GNDA pin.  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Units  
Video Output Signal (Pins 18, 20 and 22) - Contrast and Drive  
I²C-bus fields CRST = 7Eh,  
DRIVEx = 7Eh  
PBGEN = 0  
Maximum total gain for video path  
with PictureBooST off  
G
12  
dB  
I²C-bus fields CRST = 7Eh,  
DRIVEx = 7Eh  
PBGEN = 0  
2
( )  
V
OM  
ON  
Maximum video output voltage  
2.8  
4.0  
V
V
PBGEN = 1  
I²C-bus fields CRST = 40h,  
DRIVEx = 40h (POR state)  
V
Nominal video output voltage  
Contrast control range  
Drive control range  
TBD  
28  
V
Max. to min. contrast (CRST = 7Eh  
to CRST = 01h)  
CAR  
DAR  
GM  
dB  
dB  
dB  
Max. to min. drive (DRIVEx = 7Eh to  
DRIVEx = 01h)  
13  
I²C-bus fields CRST = 40h,  
DRIVEx = 40h (POR state)  
3
( )  
±0.1  
Gain matching  
Video Output Signal - OSD  
referenced to output black level  
DRIVEx = 7Eh  
OSDCRST = 0Fh  
V
OSD insertion output level  
OSD  
4.9  
0
V
V
OSDCRST = 0h  
Video Output Signal - VIP  
From Infrablack level to black level  
VIP = 1  
V
Video Insertion Pulse level  
0.4  
0.2  
Vpp  
Vpp  
VIP  
4
( )  
VIP = 0  
Video Output Signal - Infra Black Level (Figure 15)  
V
Infra black level pedestal  
0.4  
V
ibmin  
IBOF = 3Fh  
IBOF = 0h  
2.1  
0
V
V
V
Infra black offset component  
ibof  
IBLx = 0h or MOD = 1 (AC mode)  
IBLx = FFh, MOD = 0 (DC mode)  
IBLRG = 1  
0
V
V [x]  
Infra black level component  
ibl  
1.3  
1.8  
V
V
IBLRG = 0  
25/34  
Electrical Specifications  
STV9212  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Units  
Cut-off Output (Pins CO1, CO2 and CO3)  
V
Pedestal level on COx outputs  
Upper limitation on COx outputs  
0.5  
V
V
COmin  
Sum of V  
+V  
or V  
V
CCA  
briAC  
iblAC  
briDC  
V
COmax  
exceeding the limit  
-0.5V  
MOD = 1 (AC mode)  
BRIG = 0h  
0
V
BRIG = FFh:  
Brightness component in AC mode  
(Figure 16)  
V
BRIGRG = 00b  
BRIGRG = 01b  
BRIGRG = 10b  
BRIGRG = 11b  
0.4  
0.8  
1.25  
1.9  
V
V
V
V
briAC  
briDC  
MOD = 0 (DC mode)  
BRIG = 0h  
BRIG = FFh  
Brightness component in DC mode  
V
0
4
V
V
6
( )  
on CO3 pin  
(Figure 17)  
MOD = 0 (DC mode)  
MOD = 1 (AC mode)  
IBLx = 0h  
0
0
V
V
V
(x)  
Cut-off component  
iblAC  
IBLx = FFh:  
IBLRG = 0  
IBLRG = 1  
3.7  
1.85  
V
V
PictureBooST Block (Figure 9)  
PBGEN = 1  
PBCRST = 00b  
PBCRST = 01b  
PBCRST = 10b  
PBCRST = 11b  
0.8  
1.6  
2.3  
3
dB  
dB  
dB  
dB  
G
Maximum gain  
PB  
PBGEN = 1 and PBVIVEN = 1  
PBBRIG = 00b  
PBBRIG = 01b  
PBBRIG = 10b  
PBBRIG = 11b  
64  
48  
32  
16  
mV  
mV  
mV  
mV  
PictureBooST brightness expressed  
in equivalent input level  
V
BriPB  
PBGEN = 1 and PBVIVEN = 1  
PBVIVAM = 00b  
PBVIVAM = 01b  
PBVIVAM = 10b  
PBVIVAM = 11b  
Vivacity amplitude as percentage of  
its host square pulse level before  
PictureBooST(“A” in Figure 9)  
12.5  
25  
37.5  
50  
%
%
%
%
V
/A  
viv  
PBGEN = 1 and PBVIVEN = 1  
PBVIVTC = 000b  
PBVIVTC = 001b  
0
35  
245  
ns  
ns  
ns  
τviv  
Vivacity time constant  
PBVIVTC = 111b  
ABL (Figure 9)  
V
>3.2 V  
= 1 V  
0
-15  
dB  
dB  
ABL  
G
ABL gain  
ABL  
V
ABL  
V
ABL threshold voltage  
ABL input current  
3
V
ThABL  
V
= 3.2V  
= 1V  
0
-2  
µA  
µA  
ABL  
I
ABL  
V
ABL  
Video Output Signal - Dynamic Performances (Figure 15)  
= 2V (VIP exclusive)  
V
OUT  
PP  
5
( )  
t , t  
3.5  
7
ns  
ns  
BW = 0Fh  
BW = 00h  
r
f
Rise Time, Fall Time  
V
= 2V , sinus wave, -3dB  
PP  
OUT  
BW  
Large signal bandwidth  
TBD  
TBD  
MHz  
MHz  
BW = 0Fh  
BW = 00h  
26/34  
STV9212  
Symbol  
CT  
Electrical Specifications  
Parameter  
Test Conditions  
= 2V  
Min.  
Typ.  
Max.  
Units  
V
OUT  
PP  
Crosstalk between Video Outputs  
TBD  
TBD  
dB  
dB  
f = 10 MHz  
f = 50 MHz  
4.5  
I²C-Bus Electrical Characteristics  
Tamb = 25° C, VCCA = 5 V, VCCP = 8 V, Vi = 0.7 VPP, CLOAD = 5 pF  
Unit  
s
Symbol  
Parameter  
Test Conditions  
On Pins SDA, SCL  
Min.  
Typ.  
Max.  
V
V
Low Level Input Voltage  
1.5  
V
V
IL  
High Level Input Voltage  
3
IH  
IN  
I
0.4 V < V < 4.5 V  
Input Current (Pins SDA, SCL)  
SCL Maximum Clock Frequency  
-10  
+10  
µA  
kHz  
IN  
f
200  
SCL(Max.)  
SDA pin when ACK Sink Current =  
6 mA  
V
Low Level Output Voltage  
0.6  
V
OL  
4.6  
I²C-Bus Interface Timing Requirements  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
t
t
Time the bus must be free between two accesses  
Hold Time for Start Condition  
Set-up Time for Stop Condition  
The Low Period of Clock  
1300  
600  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
BUF  
HDS  
t
600  
SUP  
t
1300  
600  
LOW  
t
t
The High Period of Clock  
HIGH  
Hold Time Data  
300  
HDAT  
t
Set-up Time Data  
250  
SUDAT  
t
Rise Time of both SDA and SCL  
Fall Time of both SDA and SCL  
1
r
t
300  
f
Figure 20: I²C-Bus Timing Diagram  
t
BUF  
t
HDAT  
SDA  
SCL  
t
t
t
SUP  
HDS  
SUDAT  
t
LOW  
t
HIGH  
Notes on Electrical Characteristics  
Note 1. The video on the preamplifier output must remain above 0.5V even for high frequency signals.  
2. Assuming that the video output signal remains inside the linear area of the preamplifier output  
(between 0.5V and VCCP - 0.5V).  
27/34  
Electrical Specifications  
STV9212  
3. Matching measured between the different outputs.  
4. When the Blanking signal is present on the BLK input, the VIP insertion pulse is always generated.  
Only its amplitude changes (see Figure 12).  
5. tR, tF are simulated values, assuming an ideal input signal with rise/fall time = 0.1 ns. Measured  
between 10% and 90% of the pulse height.  
6. When MOD = 0, the CO1 and CO2 are internally grounded through resistors.  
28/34  
STV9212  
Soldering Information  
5
Soldering Information  
The device can be soldered by wave, dipping or manually. Wave soldering is the preferred method  
for mounting through-hole mount IC packages on a printed-circuit board.  
Soldering by dipping or by solder wave  
The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not  
be in contact with the joints for more than 5 seconds.The total contact time of successive solder  
waves must not exceed 5 seconds. The device may be mounted up to the seating plane, but the  
temperature of the plastic body must not exceed the specified maximum storage temperature  
(TSTG[max]). If the printed-circuit board has been pre-heated, forced cooling may be necessary  
immediately after soldering to keep the temperature within the permissible limit.  
Manual soldering  
Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the seating plane  
or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may  
remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact  
may last up to 5 seconds.  
29/34  
Package Mechanical Data  
STV9212  
6
Package Mechanical Data  
Figure 21: 24-Pin Plastic Dual In-Line Package, Shrink 300-mil Width  
E
E1  
A2  
A1  
A
L
Stand-off  
0.015 in.  
b
b2  
e
eA  
eB  
c
D
E
24  
1
13  
12  
0.015 in.  
0.38 mm.  
Gage Plane  
E1  
eC  
eB  
Table 5: Package Dimensions  
Millimeters  
Typ.  
Inches  
Dim.  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
5.08  
0.200  
0.51  
3.05  
0.38  
0.89  
0.23  
22.35  
7.62  
6.10  
0.020  
0.120  
0.015  
0.035  
0.009  
0.880  
0.300  
0.240  
3.30  
0.46  
1.02  
0.25  
22.61  
4.57  
0.56  
1.14  
0.38  
22.86  
8.64  
6.86  
0.130  
0.018  
0.040  
0.010  
0.890  
0.180  
0.022  
0.045  
0.015  
0.900  
0.340  
0.270  
b2  
c
D
E
E1  
e
6.40  
1.78  
7.62  
0.252  
0.070  
0.300  
eA  
eB  
eC  
L
10.92  
1.52  
3.81  
0.430  
0.060  
0.150  
0.00  
2.54  
0.000  
0.100  
3.30  
0.130  
Number of Pins  
24  
N
30/34  
STV9212  
Input/Output Diagrams  
7
Input/Output Diagrams  
Figure 22: Video Inputs  
Figure 25: Hsync Input  
V
V
CCA  
CCA  
30k  
2
HIGH  
IMPEDANCE  
IN1  
1
GNDA  
GNDA  
GNDL  
Idem for pads IN2 (3) and IN3 (5)  
Figure 23: ABL Input  
Figure 26: PictureBooST and OSD Inputs  
V
CCA  
V
CCA  
OSD1  
9
1k  
4
ABL  
GNDA  
GNDL  
GNDA  
Idem for pads OSD2 (10), OSD3 (11)  
PB (8), FBLK (12)  
Figure 24: Amplifier Control Output  
Figure 27: Analog Supplies  
V
CCA  
7
V
CCA  
(8V)  
LOGIC  
PART  
100  
23  
AMPCTL  
GNDA  
GNDA  
6
31/34  
Input/Output Diagrams  
STV9212  
Figure 28: I²C-Bus  
Figure 31: Output Stage Ground  
(8V)  
30kΩ  
SCL  
SDA  
13  
14  
V
CCA  
4pF  
GNDL  
GNDL  
GNDA  
19  
GNDP  
30kΩ  
GNDA  
4pF  
GNDA  
Figure 29: Output Stage Supply and Video Outputs  
Figure 32: Cut-off DAC Output Pins  
V
CCA  
V
CCP 19  
(20V)  
22  
OUT1  
17  
CO1  
GNDA  
GNDA  
Idem for pads CO2 (16) and CO3 (15)  
GNDP  
Idem for pads OUT2 (20) and OUT3 (18)  
Figure 30: Blanking / Video Clamping Sync Inputs  
V
CCA  
24  
BLK  
GNDL  
GNDA  
32/34  
STV9212  
Revision History  
8
Revision History  
Table 6: Summary of Modifications  
Description  
Version  
Date  
1.0  
1.1  
14 Nov 2002  
03 Jul 2003  
First Issue  
Minor modifications.  
33/34  
STV9212  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics.  
Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces  
all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life  
support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
© 2003 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
www.st.com  
34/34  

相关型号:

STV9302

VERTICAL DEFLECTION OUTPUT FOR MONITOR / TV 2 App / 60 V WITH FLYBACK GENERATOR
STMICROELECTR

STV9302A

VERTICAL DEFLECTION OUTPUT FOR MONITOR / TV 2 App / 60 V WITH FLYBACK GENERATOR
STMICROELECTR

STV9303

PULSE DRIVEN VERTICAL BOOSTER
STMICROELECTR

STV9303W

PULSE DRIVEN VERTICAL BOOSTER
STMICROELECTR

STV9306

BUS CONTROLLED VERTICAL DEFLECTION SYSTEM WITH EAST/WEST CORRECTION OUTPUT CIRCUIT
STMICROELECTR

STV9306A

Bus-Controlled Vertical Deflection System with East/West Correction Output Circuit
STMICROELECTR

STV9306B

Bus-Controlled Vertical Deflection System with East/West Correction Output Circuit
STMICROELECTR

STV9325

Vertical Deflection Booster for 2.5-APPTV/Monitor Applications with 70-V Flyback Generator
STMICROELECTR

STV9326

Vertical Deflection Booster for 3-APPTV/Monitor Applications with 60-V Flyback Generator
STMICROELECTR

STV937

新型场输出集成电路
ETC

STV9378

VERTICAL DEFLECTION BOOSTER
STMICROELECTR

STV9378F

VERTICAL DEFLECTION BOOSTER
STMICROELECTR