L295 [STMICROELECTRONICS]

DUAL SWITCH-MODE SOLENOID DRIVER; 双开关式电磁驱动器
L295
型号: L295
厂家: ST    ST
描述:

DUAL SWITCH-MODE SOLENOID DRIVER
双开关式电磁驱动器

驱动器 开关
文件: 总8页 (文件大小:114K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L295  
DUAL SWITCH-MODE SOLENOID DRIVER  
PRELIMINARY DATA  
HIGH CURRENT CAPABILITY (up to 2.5A per  
channel)  
HIGH VOLTAGE OPERATION (up to 46V for  
power stage)  
Multiwatt 15  
HIGH EFFICIENCYSWITCHMODE OPERATION  
REGULATED OUTPUT CURRENT (adjustable)  
FEW EXTERNAL COMPONENTS  
SEPARATE LOGIC SUPPLY  
ORDER CODE : L295  
THERMAL PROTECTION  
DESCRIPTION  
ing technique allowing very efficient operation.  
Furthermore, it includes an enable input and dual  
supplies (for interfacing with peripherals running at  
a higher voltage than the logic).  
The L295 is particularly suitable for applications  
such as hammer driving in matrix printers, step  
motor driving and electromagnet controllers.  
The L295 is a monolithic integrated circuit in a 15 -  
lead Multiwatt ® package; it incorporates all the  
functions for direct interfacing between digital cir-  
cuitry and inductive loads. The L295 is designed to  
accept standard microprocessor logic levels at the  
inputs andcan drive2solenoids. Theoutputcurrent  
is completely controlled by means of a switch-  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Vs  
Parameter  
Value  
50  
12  
7
Unit  
V
Supply voltage  
Vss  
Logic supply voltage  
Enable and input voltage  
Reference voltage  
V
V
EN, Vi  
Vref  
Io  
V
7
V
Peak output current (each channel)  
- non repetitive (t = 100 µsec)  
3
A
A
- repetitive (80% on - 20% off; Ton = 10 ms)  
- DC operation  
2.5  
2
25  
A
Ptot  
W
°C  
Total power dissipation (at Tcase = 75 °C  
Storage and junction temperature  
Tstg, Tj  
- 40 to 150  
APPLICATION CIRCUIT  
March 1993  
1/8  
L295  
CONNECTION DIAGRAM (top view)  
BLOCK DIAGRAM  
THERMAL DATA  
Symbol  
Parameter  
Thermal resistance junction-case  
Thermal resistance junction-ambient  
Value  
3
Unit  
°C/W  
°C/W  
Rth-j-case  
Rth-j-amb  
max  
max  
35  
2/8  
L295  
ELECTRICAL CHARACTERISTICS (Refer to the application circuit, Vss = 5V, Vs = 36V; Tj = 25°C; L =  
Low; H = High; unless otherwise specified)  
Symbol  
Parameter  
Supply Voltage  
Test conditions  
Min.  
12  
Typ.  
Max.  
46  
Unit  
V
Vs  
Vss  
Id  
Logic Supply Voltage  
4.75  
10  
V
Quiescent drain current  
(from VSS)  
VS = 46V; Vi1 = Vi2 = VEN = L  
VSS = 10 V  
4
mA  
Iss  
Quiescent drain current  
(from VS)  
46  
mA  
V
Vi1,,Vi2 Input Voltage  
Low  
High  
Low  
High  
-0.3  
2.2  
0.8  
7
VEN  
Ii1, Ii2  
IEN  
Enable Input Voltage  
-0.3  
2.2  
0.8  
7
V
Input Current  
Vi1 = Vi2 = L  
-100  
10  
-100  
10  
2
µA  
µA  
Vi1 = Vi2 = H  
VEN = L  
Enable Input Current  
VEN = H  
Vref1  
,
Input Reference Voltage  
Input Reference Voltage  
0.2  
1.9  
V
Vref2  
Iref1  
,
-5  
µA  
I
ref2m  
Fosc  
Ip  
Oscillation Frequency  
C = 3.9 nF;  
Vref = 1V  
25  
2
KHz  
A/V  
R = 9.1 KΩ  
Transconductance (each ch.)  
2.1  
Vref  
Vdrop  
Total output voltage drop  
(each channel) (*)  
Io = 2 A  
2.8  
3.6  
2
V
V
Vsens1 External sensing resistors  
Vsens2 voltage drop  
(*) Vdrop = VCEsat Q1 + VCEsat Q2.  
3/8  
L295  
APPLICATION CIRCUIT  
D2, D4 = 2A High speed diodes  
D1, D3 = 1A High speed diodes  
)
trr 200 ns  
R1 = R2 = 2Ω  
L1 = L2 = 5 mH  
FUNCTIONAL DESCRIPTION  
The L295 incorporates two indipendent driver  
channals with separate inputs and outputs, each  
capable of driving an inductive load (see block  
diagram).  
The device is controlled by three micriprocessor  
compatible digital inputs and two analog inputs.  
current flows in the load according to the exponen-  
tial law:  
R1 t  
V
R1  
I =  
( 1 e  
)
L1  
These inputs are:  
where:  
R1 and R2 are the resistance and in-  
ductance of the load and V is the volt-  
age available on the load (Vs - Vdrop  
Vsense).  
EN  
chip enable (digital input, active low),  
enables both channels when in the low  
state.  
-
Vin1, Vin2 channel inputs (digital inputs, active  
high), enable each channel inde-  
pendently. A channel is actived when  
both EN and the appropriate channel  
input are active.  
Vref1, Vref2 referce voltages (analog inputs), used  
to program the peak load currents.  
Peak load current is proportional to Vref  
.
The current increases until the voltage on the ex-  
ternal sensing resistor, RS1, reaches the reference  
voltage, Vref1. This peak current, Ip1, is given by:  
V
ref1  
Ip1  
=
RS1  
At this point the comparator output, Vomp1, sete  
the RS flip-flop, FF1, that turns off the output tran-  
sistor, Q1. The load current flowing throughD2, Q2,  
RS1, decreases according to the law:  
Since the two channels are identical, only channel  
one will be described.  
The following description applies also the channel  
two, replacing FF2 for FF1, Vref for Vref1 etc.  
When the channel is avtivated by low level on the  
EN input and a high level on the channel input, Vin2,  
the output transistors Q1 and Q2 switch on and  
R1 t  
L1  
V
VA  
R1  
A
I = (  
+ I ) e  
p1  
R1  
where VA = VCEsat Q2 + Vsense + VD2  
4/8  
L295  
If the oscillator pin (9) is connected to ground the  
load current falls to zero as shown in fig. 1.  
At this time t2 the channel 1 is disabled, by taking  
the inputs Vin1 low and/or EN high, and the output  
transistor Q2 is turned off. The load current flows  
through D2 and D1 according to the law:  
The switching frequency depends on the value R  
and C, as shown in fig. 4 and must be chosen in  
the range 10 to 30 KHz.  
It is possible with external hardware to change the  
reference voltage Vref in order to obtain a high peak  
current Ip and a lower holding current Ih (see fig. 3).  
The L295 is provided with a thermal protection that  
switches off all the output transistors when the  
junction temperature exceeds 150°C. The pres-  
enceof ahysteresiscircuitmakestheICworkagain  
aftera fall of the junction temperature of about  
20°C.  
R1 t  
L1  
V
VB  
B
I = (  
+ I ) e  
T2  
R1  
R1  
where VB = VS + VD1 + VD2  
IT2 = current value at the time t2.  
The analog input pins (Vref1 , Vref2) can be left open  
or connected to Vss; in this case the circuit works  
withaninternal referencevoltageofabout2.5Vand  
thepeakcurrentintheloadisfixedonlybythevalue  
of Rs:  
Fig. 2 in shows the current waveform obtained with  
an RC network connected between pin 9 and  
ground. From to t1 the current increases as in fig.  
1. A difference exists at the time t2 because the  
current starts to increase again. At this time a pulse  
is produced by the oscillator circuit that resets the  
flip.flop, FF1, and switches on the outout transistor,  
Q1. The current increases until the drop on the  
sensing resistor RS1 is equal to Vref1 (t3) and the  
cycle repeats.  
2.5  
Ip  
=
RS  
SIGNAL WAVEFORMS  
Figure 1. Load current waveform with pin 9  
connected to GND.  
Figure 2. Load current waveform with external  
R-C network connected between pin 9 and  
ground.  
5/8  
L295  
SIGNAL WAVEFORMS (continued)  
Figure 3. With Vref changed by hardware.  
Figure 4. Switching frequency vs. values of R  
and C.  
6/8  
L295  
MULTIWATT15 PACKAGE MECHANICAL DATA  
mm  
inch  
TYP.  
DIM.  
MIN.  
TYP.  
MAX.  
5
MIN.  
MAX.  
A
B
0.197  
0.104  
0.063  
2.65  
1.6  
C
D
1
0.039  
E
0.49  
0.66  
1.02  
17.53  
19.6  
0.55  
0.75  
0.019  
0.026  
0.040  
0.690  
0.772  
0.022  
0.030  
0.060  
0.710  
F
G
1.27  
1.52  
0.050  
0.700  
G1  
H1  
H2  
L
17.78  
18.03  
20.2  
22.5  
22.5  
18.1  
17.75  
10.9  
2.9  
0.795  
0.886  
0.886  
0.713  
0.699  
0.429  
0.114  
0.191  
0.218  
0.102  
0.102  
0.152  
21.9  
21.7  
17.65  
17.25  
10.3  
2.65  
4.25  
4.63  
1.9  
22.2  
22.1  
0.862  
0.854  
0.695  
0.679  
0.406  
0.104  
0.167  
0.182  
0.075  
0.075  
0.144  
0.874  
0.870  
L1  
L2  
L3  
L4  
L7  
M
17.5  
10.7  
0.689  
0.421  
4.55  
5.08  
4.85  
5.53  
2.6  
0.179  
0.200  
M1  
S
S1  
Dia1  
1.9  
2.6  
3.65  
3.85  
7/8  
L295  
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No  
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned  
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.  
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express  
written approval of SGS-THOMSON Microelectronics.  
© 1994 SGS-THOMSON Microelectronics - All Rights Reserved  
SGS-THOMSON Microelectronics GROUP OF COMPANIES  
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore -  
Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.  
8/8  

相关型号:

L2950OO

Neon Indicatiors (Neon, LED and Filament Lamps)
BULGIN

L295_03

DUAL SWITCH-MODE SOLENOID DRIVER
STMICROELECTR

L296

HIGH CURRENT SWITCHINGREGULATORS
STMICROELECTR

L296HT

HIGH CURRENT SWITCHINGREGULATORS
STMICROELECTR

L296P

HIGH CURRENT SWITCHINGREGULATORS
STMICROELECTR

L296PHT

HIGH CURRENT SWITCHINGREGULATORS
STMICROELECTR

L297

STEPPER MOTOR CONTROLLERS
STMICROELECTR

L297/1

Stepper Motor Controller/Driver
ETC

L297A

Stepper Motor Controller/Driver
ETC

L297D

STEPPER MOTOR CONTROLLERS
STMICROELECTR

L298

DUAL FULL-BRIDGE DRIVER
STMICROELECTR

L298HN

DUAL FULL-BRIDGE DRIVER
STMICROELECTR