L296P [STMICROELECTRONICS]

HIGH CURRENT SWITCHINGREGULATORS; HIGH CURRENT SWITCHINGREGULATORS
L296P
型号: L296P
厂家: ST    ST
描述:

HIGH CURRENT SWITCHINGREGULATORS
HIGH CURRENT SWITCHINGREGULATORS

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 PC 局域网
文件: 总22页 (文件大小:287K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L296  
L296P  
HIGH CURRENT SWITCHING REGULATORS  
4 A OUTPUT CURRENT  
5.1 V TO 40 V OUTPUT VOLTAGERANGE  
0 TO 100 % DUTY CYCLE RANGE  
.
.
.
.
.
.
.
.
.
.
±
PRECISE ( 2 %) ON-CHIP REFERENCE  
SWITCHING FREQUENCY UP TO 200 KHz  
VERYHIGH EFFICIENCY (UP TO 90 %)  
VERYFEW EXTERNAL COMPONENTS  
SOFT START  
RESET OUTPUT  
EXTERNAL PROGRAMMABLE LIMITING  
CURRENT (L296P)  
CONTROL CIRCUIT FOR CROWBAR SCR  
INPUTFOR REMOTE INHIBIT AND  
SYNCHRONUS PWM  
Multiwatt  
(15 lead)  
.
.
ORDERING NUMBERS :  
L296 (Vertical)  
L296P (Vertical)  
L296HT (Horizontal)  
L296PHT (Horizontal)  
THERMAL SHUTDOWN  
.
DESCRIPTION  
TheL296andL296Parestepdownpowerswitching  
regulatorsdelivering 4 A at a voltagevariable from  
5.1 V to 40 V.  
TheL296andL296Paremountedina 15-leadMul-  
tiwatt plasticpowerpackageandrequiresvery few  
external components.  
Efficient operation at switching frequencies up to  
200 KHz allows a reduction in the size and cost of  
external filter components. A voltage sense input  
and SCR drive output are provided for optional  
crowbar overvoltage protection with an external  
SCR.  
Featuresof thedevicesincludesoft start,remotein-  
hibit, thermal protection, a reset output for micro-  
processors and a PWM comparator input for syn-  
chronizationin multichip configurations.  
The L296Pincudesexternalprogrammablelimiting  
current.  
PIN CONNECTION (top view)  
1/22  
June 2000  
L296 - L296P  
PIN FUNCTIONS  
N
°
Name  
Function  
1
CROWBAR INPUT  
Voltage Sense Input for Crowbar Overvoltage Protection. Normally connected to the  
feedback input thus triggering the SCR when V out exceeds nominal by 20 %. May  
also monitor the input and a voltage divider can be added to increase the threshold.  
Connected to ground when SCR not used.  
2
3
4
OUTPUT  
Regulator Output  
SUPPLY VOLTAGE Unrergulated Voltage Input. An internal Regulator Powers the L296s Internal Logic.  
CURRENT LIMIT  
A resistor connected between this terminal and ground sets the current limiter  
threshold. If this terminal is left unconnected the threshold is internally set (see  
electrical characteristics).  
5
SOFT START  
Soft Start Time Constant. A capacitor is connected between this terminal and ground  
to define the soft start time constant. This capacitor also determines the average  
short circuit output current.  
6
7
INHIBIT INPUT  
SYNC INPUT  
TTL – Level Remote Inhibit. A logic high level on this input disables the device.  
Multiple L296s are synchronized by connecting the pin 7 inputs together and omitting  
the oscillator RC network on all but one device.  
8
9
GROUND  
Common Ground Terminal  
FREQUENCY  
COMPENSATION  
A series RC network connected between this terminal and ground determines the  
regulation loop gain characteristics.  
10  
11  
12  
13  
14  
FEEDBACK INPUT  
The Feedback Terminal on the Regulation Loop. The output is connected directly to  
this terminal for 5.1V operation ; it is connected via a divider for higher voltages.  
OSCILLATOR  
A parallel RC networki connected to this terminal determines the switching frequency.  
This pin must be connected to pin 7 input when the internal oscillator is used.  
RESET INPUT  
RESET DELAY  
RESET OUTPUT  
Input of the Reset Circuit. The threshold is roughly 5 V. It may be connected to the  
feedback point or via a divider to the input.  
A capacitor connected between this terminal and ground determines the reset signal  
delay time.  
Open collector reset signal output. This output is high when the supply is safe.  
15 CROWBAR OUTPUT SCR gate drive output of the crowbar circuit.  
BLOCK DIAGRAM  
2/22  
L296 - L296P  
CIRCUIT OPERATION  
(refer to the block diagram)  
0.4V. The output stage is thus re-enabled and the  
output voltage rises under control of the soft start  
network.If the overload conditionis still presentthe  
limiter will trigger again when the thresholdcurrent  
is reached. The averageshort circuit current is lim-  
ited to a safevalue by the dead time introduced by  
the soft start network.  
The L296 and L296P are monolithic stepdown  
switching regulatorsproviding outputvoltages from  
5.1V to 40V and delivering 4A.  
Theregulationloopconsistsofasawtoothoscillator,  
erroramplifier,comparatorandtheoutputstage.An  
error signal is produced by comparing the output  
voltagewithaprecise5.1Von-chipreference(zener  
zaptrimmedto ± 2%).Thiserror signalis thencom-  
paredwith the sawtoothsignalto generatethefixed  
frequencypulsewidthmodulatedpulseswhichdrive  
theoutputstage.Thegainandfrequencystabilityof  
theloopcan beadjustedby anexternalRCnetwork  
connectedtopin9. Closingtheloopdirectlygivesan  
outputvoltageof5.1V.Highervoltagesareobtained  
by inserting a voltagedivider.  
The reset circuit generates an output signal when  
the supply voltage exceeds a threshold pro-  
grammed by an externaldivider.Thereset signal is  
generatedwith a delay time programmed by an ex-  
ternal capacitor. When the supply falls below the  
threshold the reset output goes low immediately.  
The reset outputis an open collector.  
The scrowbar circuit sensesthe outputvoltage and  
the crowbar outputcan provide a currentof 100mA  
to switch onan externalSCR. This SCR is triggered  
when the output voltage exceeds the nominal by  
20%. There is no internal connection between the  
outputand crowbarsenseinput thereforethe crow-  
bar can monitor eitherthe inputor the output.  
Output overcurrents at switch on are prevented by  
the soft start function. The error amplifier output is  
initially clamped by the externalcapacitor Css and  
allowed to rise, linearly, as thiscapacitoris charged  
by a constantcurrent source.  
A TTL-levelinhibitinputis providedforapplications  
suchasremoteon/offcontrol.Thisinputis activated  
by highlogic levelanddisablescircuit operation.Af-  
ter an inhibit the L296 restarts under control of the  
soft start network.  
Outputoverloadprotectionis providedintheformof  
a current limiter. The load current is sensed by an  
internal metal resistor connected to a comparator.  
When the load current exceeds a preset threshold  
this comparator sets a flip flop which disables the  
outputstageanddischargesthesoftstartcapacitor.  
A second comparator resets the flip flop when the  
voltage across the soft start capacitor has fallen to  
The thermal overload circuit disables circuit opera-  
tion when the junction temperature reaches about  
150 °C andhas hysteresisto preventunstablecon-  
ditions.  
Figure 1 : Reset OutputWaveforms  
3/22  
L296 - L296P  
Figure 2 : Soft Start Waveforms  
Figure 3 : Current Limiter Waveforms  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
50  
Unit  
V
Vi  
Vi – V2  
V2  
Input Voltage (pin 3)  
Input to Output Voltage Difference  
Output DC Voltage  
50  
V
– 1  
– 7  
V
V
Output Peak Voltage at t = 0.1 sec f = 200KHz  
µ
V1, V12  
V15  
Voltage at Pins 1, 12  
Voltage at Pin 15  
10  
V
V
V
V
15  
V4, V5, V7, V9, V13 Voltage at Pins 4, 5, 7, 9 and 13  
5.5  
V10, V6  
V14  
Voltage at Pins 10 and 6  
Voltage at Pin 14 (I14 1 mA)  
Pin 9 Sink Current  
7
Vi  
I9  
1
mA  
mA  
mA  
W
I11  
Pin 11 Source Current  
20  
50  
I14  
Pin 14 Sink Current (V14 < 5 V)  
Ptot  
Power Dissipation at Tcase 90 C  
20  
°
Tj, Tstg  
Junction and Storage Temperature  
– 40 to 150  
C
°
4/22  
L296 - L296P  
THERMAL DATA  
Symbol  
Parameter  
Value  
3
Unit  
Rth j-case  
Rth j-amb  
Thermal Resistance Junction-case  
Max.  
Max.  
°C/W  
Thermal Resistance Junction-ambient  
35  
C/W  
°
ELECTRICAL CHARACTERISTICS  
(refer to the test circuits Tj = 25oC, Vi = 35V, unless otherwise specified)  
Symbol  
Parameter  
Test Conditions  
Min. Typ. Max. Unit Fig.  
DYNAMIC CHARACTERISTICS (pin 6 to GND unless otherwise specified)  
Vo  
Vi  
Output Voltage Range  
Input Voltage Range  
Input Voltage Range  
Line Regulation  
Vi = 46V, Io = 1A  
Vref  
9
40  
46  
46  
50  
V
V
4
4
4
4
4
Vo = Vref to 36V, Io 3A  
Vi  
Note (1), Vo = VREF to 36V Io = 4A  
Vi =10V to 40V, Vo = Vref, Io = 2A  
V
Vo  
15  
mV  
mV  
V
Load Regulation  
Vo = Vref  
o
Io = 2A to 4A  
Io = 0.5A to 4A  
10  
15  
30  
45  
Vref  
Internal Reference Voltage (pin 10) Vi = 9V to 46V, Io = 2A  
5
5.1  
0.4  
5.2  
V
4
Vref  
Average Temperature Coefficient  
of Reference Voltage  
Tj = 0°C to 125°C, Io = 2A  
mV/°C  
T
Vd  
Dropout Voltage Between Pin 2  
and Pin 3  
Io = 4A  
Io = 2A  
2
1.3  
3.2  
2.1  
V
V
4
4
I2L  
Current Limiting Threshold (pin 2)  
L296 - Pin 4 Open,  
Vi = 9V to 40V, Vo = Vref to 36V  
4.5  
7.5  
A
4
L296P - Vi = 9V to 40V, Vo = Vref  
Pin 4 Open  
A
4
5
2.5  
7
4.5  
RIim = 22k  
ISH  
Input Average Current  
Efficiency  
Vi = 46V, Output Short-circuited  
60  
100  
mA  
%
4
4
η
Io = 3 A  
Vo = Vref  
Vo = 12V  
75  
85  
SVR  
f
Supply Voltage Ripple Rejection  
Switching Frequency  
V = 2 Vrms, fripple = 100Hz  
50  
85  
56  
dB  
4
i
Vo = Vref, Io = 2A  
100 115  
0.5  
kHz  
%
4
4
f
Voltage Stability of Switching  
Frequency  
Vi = 9V to 46V  
V
i
f  
Temperature Stability of Switching Tj = 0°C to 125°C  
Frequency  
1
%
4
T
j
fmax  
Maximum Operating Switching  
Frequency  
Vo = Vref, Io = 1A  
Note (2)  
200  
kHz  
Tsd  
Thermal Shutdown Junction  
Temperature  
135 145  
C
°
DC CHARACTERISTICS  
I3Q  
Quiescent Drain Current  
Vi = 46V, V7 = 0V, S1 : B, S2 : B  
mA  
mA  
V6 = 0V  
V6 = 3V  
66  
30  
85  
40  
– I2L  
Output Leakage Current  
Vi = 46V, V6 = 3V, S1 : B, S2 : A,  
V7 = 0V  
2
Note  
(1) : Using min. 7 Aschottky diode.  
(2) : Guaranteed by design, not 100 % testedin production.  
5/22  
L296 - L296P  
ELECTRICAL CHARACTERISTICS  
(continued)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit Fig.  
SOFT START  
I5 so  
I5 si  
Source Current  
Sink Current  
V6 = 0V, V5 = 3V  
V6 = 3V, V5 = 3V  
80  
50  
130  
70  
150  
120  
A
A
6b  
6b  
µ
µ
INHIBIT  
Input Voltage  
Low Level  
Vi = 9V to 46V, V7 = 0V,  
S1 : B, S2 : B  
V
6a  
6a  
V6L  
V6H  
– 0.3  
2
0.8  
5.5  
High Level  
Input Current  
with Input Voltage  
Low Level  
Vi = 9V to 46V, V7 = 0V,  
S1 : B, S2 : B  
V6 = 0.8V  
A
µ
– I6L  
– I6H  
10  
3
High Level  
V6 = 2V  
ERROR AMPLIFIER  
V9H  
V9L  
I9 si  
High Level Output Voltage V10 = 4.7V, I9 = 100µA,  
3.5  
V
6c  
6c  
S1 : A, S2 : A  
Low Level Output Voltage V10 = 5.3V, I = 100 A,  
0.5  
V
µ
9
S1 : A, S2 : E  
Sink Output Current  
V10 = 5.3V, S1 : A, S2 : B  
V10 = 4.7V, S1 : A, S2 : D  
100  
100  
150  
150  
A
6c  
6c  
µ
– I9 so Source Output Current  
µA  
I10  
Input Bias Current  
V10 = 5.2V, S1 : B  
V10 = 6.4V, S1 : B, L296P  
2
2
10  
10  
A
6c  
6c  
µ
µA  
Gv  
DC Open Loop Gain  
V9 = 1V to 3V, S1 : A, S2 : C  
46  
55  
dB  
6c  
OSCILLATOR AND PWM COMPARATOR  
– I7  
Input Bias Current of  
PWM Comparator  
V7 = 0.5V to 3.5V  
5
A
µ
6a  
– I11  
RESET  
V12 R  
Oscillator Source Current  
V11 = 2V, S1 : A, S2 : B  
5
mA  
Rising Threshold Voltage  
Falling Threshold Voltage  
Delay Thershold Voltage  
Vref  
Vref  
Vref  
V
V
V
6d  
6d  
6d  
-150mV -100mV -50mV  
Vi = 9V to 46V,  
S1 : B, S2 : B  
V12 F  
4.75  
4.3  
Vref  
Vref  
-150mV -100mV  
V13 D  
V13 H  
4.5  
4.7  
V12 = 5.3V, S1 : A, S2 : B  
Delay Threshold Voltage  
Hysteresis  
100  
mV 6d  
V14 S  
I12  
Output Saturation Voltage I14 = 16mA, V12 = 4.7V, S1, S2 : B  
0.4  
3
V
6d  
6d  
6d  
Input Bias Current  
V12 = 0V to Vref, S1 : B, S2 : B  
1
A
µ
V13 = 3V, S1 : A, S2 : B  
V12 = 5.3V  
– I13 so Delay Source Current  
I13 si  
70  
10  
110  
140  
100  
A
µ
Delay Sink Current  
V12 = 4.7V  
mA  
I14  
Output Leakage Current  
Vi = 46V, V12 = 5.3V, S1 : B, S2 : A  
µA  
6d  
CROWBAR  
V1  
Input Threshold Voltage  
S1 : B  
5.5  
70  
6
6.4  
0.4  
V
V
6b  
6b  
V15  
Output Saturation Voltage Vi = 9V to 46V, Vi = 5.4V,  
I15 = 5mA, S1 : A  
0.2  
I1  
Input Bias Current  
V1 = 6V, S1 : B  
10  
A
6b  
µ
– I15  
Output Source Current  
Vi = 9V to 46V, V1 = 6.5V,  
V15 = 2V, S1 : B  
100  
mA 6b  
6/22  
L296 - L296P  
Figure 4 : DynamicTest Circuit  
C7, C8 : EKR (ROE)  
L1 : L = 300 µH at 8 A  
Core type : MAGNETICS58930 - A2 MPP  
N° turns: 43 Wire Gauge : 1 mm (18AWG) COGEMA946044  
(*) Minimum suggested value (10 µF) to avoid oscillations. Ripple consideration leads to typicalvalue of 1000 µF or higher.  
Figure 5 : PC. Board and ComponentLayoutof the Circuit of Figure 4 (1:1scale)  
7/22  
L296 - L296P  
Figure 6 : DC Test Circuits.  
Figure 6a.  
Figure 6b.  
Figure 6c.  
1 - Set V10 FOR V9 = 1 V  
2 - ChangeV10 to obtainV9 = 3 V  
DV9  
2V  
3 - GV  
=
=
V
10  
V
10  
Figure 6d.  
8/22  
L296 - L296P  
Figure 7 : QuienscentDrain Current vs. Supply  
Figure 8 : QuienscentDrain Current vs. Supply  
Voltage(0 % Duty Cycle - see fig. 6a).  
Voltage(100 % Duty Cycle see fig. 6a).  
Figure 9 :  
Figure 10 :  
QuiescentDrain Current vs. Junction  
Temperature(0 % Duty Cycle -  
see fig. 6a).  
QuiescentDrain Current vs. Junction  
Temperature(100 % DutyCycle -  
see fig. 6a).  
Figure 11 : ReferenceVoltage (pin 10) vs. VI  
Figure 12 : ReferenceVoltage(pin 10)vs.Junction  
(see fig. 4).  
Temperature(see fig. 4).  
9/22  
L296 - L296P  
Figure 13 : OpenLoop Frequencyand Phase  
Responseof ErrorAmplifier  
(seefig. 6c).  
Figure 14 : SwitchingFrequency vs. Input  
Voltage(see fig. 4).  
Figure 15 : Switching Frequencyvs. Junction  
Figure 16 : Switching Frequencyvs. R1  
Temperature(see fig. 4).  
(seefig. 4).  
Figure 17 : LineTransient Response(see fig. 4).  
Figure 18 : Load Transient Response(see fig. 4).  
10/22  
L296 - L296P  
Figure 19 : SupplyVoltage Ripple Rejection vs.  
Figure 20 : DropoutVoltage BetweenPin 3 and  
Frequency(see fig. 4).  
Pin2 vs. Current at Pin 2.  
Figure 21 : DropoutVoltage Between Pin 3 and  
Figure 22 : PowerDissipation Derating Curve.  
Pin2 vs. JunctionTemperature.  
Figure 23 : PowerDissipation (device only) vs.  
Figure 24 : PowerDissipation (device only) vs.  
InputVoltage.  
Inputvoltage.  
11/22  
L296 - L296P  
Figure 25 : PowerDissipation (device only) vs.  
Figure 26 : PowerDissipation (device only) vs.  
OutputVoltage (see fig. 4).  
OutputVoltage(see fig. 4).  
Figure27: VoltageandCurrentWaveformsatPin2  
Figure 28 : Efficiencyvs. OutputCurrent.  
(see fig. 4).  
Figure 29 : Efficiencyvs. OutputVoltage.  
Figure 30 : Efficiencyvs. OutputVoltage.  
12/22  
L296 - L296P  
Figure 31 : CurrentLimiting Threshold vs. Rpin 4  
Figure 32 : CurrentLimitingThreshold vs. Junction  
(L296P only).  
Temperature.  
Figure 33 : CurrentLimiting Threshold vs.  
Supply Voltage.  
13/22  
L296 - L296P  
APPLICATION INFORMATION  
Figure 34 : Typical ApplicationCircuit.  
(*) Minimum value (10 µF) to avoid oscillations ; rippleconsideration leads to typical value of 1000 µF or higher L1 : 58930- MPP COGEMA  
946044 ; GUP 20 COGEMA946045  
SUGGESTED INDUCTOR  
(L1)  
Core Type  
Magnetics 58930 – A2MPP  
No Turns  
Wire Gauge  
1.0 mm  
Air Gap  
43  
65  
40  
1 mm  
Thomson GUP 20 x 16 x 7  
0.8 mm  
Siemens EC 35/17/10 (B6633& – G0500 – X127)  
2 x 0.8 mm  
VOGT 250 H Toroidal Coil, Part Number 5730501800  
µ
Resistor Values for Standard Output Voltages  
V0  
R8  
R7  
12 V  
15 V  
18 V  
24 V  
4.7 KΩ  
6.2 KΩ  
4.7 K  
9.1 K  
4.7 K  
12 K  
18 K  
4.7 K  
14/22  
L296 - L296P  
Figure 35 : P.C. Board and ComponentLayoutof the Circuit of fig. 34 (1:1 scale)  
SELECTION OF COMPONENT VALUES (see fig. 34)  
Allowed Rage  
Recommended  
Value  
Component  
Purpose  
Notes  
Min.  
Max.  
R1  
R2  
Set Input Voltage  
Threshold for Reset.  
Vi min  
5
R1/R2  
1
100 k  
220k  
If output voltage is sensed R1 and  
R2 may be limited and pin 12  
connected to pin 10.  
R3  
R4  
4.3 kΩ  
10 kΩ  
Sets Switching Frequency 1 k100kΩ  
Pull-down Resistor  
22kMay be omitted and pin 6 grounded  
if inhibit not used.  
R5  
R6  
15 k  
Frequency Compensation 10k  
Collector Load For Reset  
Output  
VO  
Omitted if reset function not used.  
0.05A  
R7  
R8  
Divider to Set Output  
Voltage  
1kΩ  
VO VREF  
R7/R8 =  
-
4.7 kΩ  
VREF  
Riim  
Sets Current Limit Level  
7.5kΩ  
If Riim is omitted and pin 4 left open  
the current limit is internally fixed.  
C1  
C2  
C3  
C4  
10  
F
Stability  
2.2 F  
µ
µ
2.2  
F
Sets Reset Delay  
Sets Switching Frequency  
Soft Start  
3.3nF  
Omitted if reset function not used.  
µ
2.2 nF  
1 nF  
1 µF  
2.2 µF  
Also determines average short  
circuit current.  
C5  
C6  
33 nF  
Frequency Compensation  
390 pF  
High Frequency  
Compensation  
Not required for 5 V operation.  
C7, C8  
L1  
100  
300  
F
Output Filter  
µ
H
100 H  
µ
µ
Q1  
Crowbar Protection  
The SCR must be able to withstand  
the peak discharge current of the  
output capacitor and the short  
circuit current of the device.  
D1  
Recirculation Diode  
7A Schottky or 35 ns trr Diode.  
15/22  
L296 - L296P  
Figure 36 : A Minimal 5.1 V Fixed Regulator. Very Few Componentsare Required.  
Figure 37 : 12 V/10 A PowerSupply.  
16/22  
L296 - L296P  
Figure 38 : ProgrammablePower Supply.  
V o = 5.1to 15 V  
I
o = 4 Amax. (min. load current = 100 mA)  
ripple 20 mV  
load regulation (1 A to 4 A) = 10 mV (V o = 5.1 V)  
line regulation (220 V ± 15 % and to I o = 3 A) = 15 mV (V o = 5.1 V)  
Figure 39 :  
Preregulatorfor Distributed Supplies.  
(*) L2 and C2 are necessary to reducethe switching frequency spikes.  
17/22  
L296 - L296P  
Figure 40 : In Multiple Supplies Several L296s  
Figure 41 : VoltageSensing for Remote Load.  
can be SynchronizedAs Shown.  
Figure 42 : A 5.1 V/15 V/24 V Multiple Supply.Note the Synchronizationof the Three L296s.  
18/22  
L296 - L296P  
Figure 43 : 5.1V/2APower Supply using External  
Limiting Current Resistor and Crow-  
bar Protectionon the Supply Voltage  
(L296Ponly)  
sistor may be added, as shown in Figure 45 ; with  
this circuit discharge times of a few microseconds  
may be obtained.  
Figure 45  
SOFT-START AND REPETITIVE POWER-ON  
Whenthedeviceisrepetitivelypowered-on,thesoft-  
start capacitor, CSS, must be discharged rapidly to  
ensurethateachstartis ”soft”.Thiscanbeachieved  
economicallyusingtheresetcircuit,asshowninFig-  
ure 44.  
HOW TO OBTAIN BOTH RESET AND  
POWER FAIL  
Inthis circuit the dividerR1, R2 connectedto pin12  
determines the minimum supply voltage, below  
whichthe opencollectortransistorat thepin14 out-  
put discharges CSS.  
Figure46 illustrateshowit ispossibleto obtainat the  
same time both the power fail and reset functions  
simply byaddingonediode(D)andoneresistor(R).  
In this case the Reset delay time (pin 13) can only  
start when the outputvoltageis VO VREF - 100mV  
and the voltageaccross R2 is higher than 4.5V.  
Figure 44  
Withthehysteresisresistorit is possibletofixthein-  
put pin 12 hysteresis in order to increase immunity  
to the 100Hzripple present on the supply voltage.  
Moreover, the power fail and reset delay time are  
automatically locked tothe soft-start.Soft-startand  
delayed reset are thus two sequential functions.  
The hysteresis resistor should be In the range of  
aboit100kand the pull-up resistor of 1 to 2.2k.  
Figure 46  
Theapproximatedischargetimesobtainedwiththis  
circuit are :  
CSS ( F)  
tDIS ( s)  
µ
µ
2.2  
4.7  
10  
200  
300  
600  
Ifthesetimesarestilltoolong,an externalPNPtran-  
19/22  
L296 - L296P  
mm  
inch  
DIM.  
OUTLINE AND  
MIN. TYP. MAX. MIN. TYP. MAX.  
MECHANICAL DATA  
A
B
5
0.197  
0.104  
0.063  
2.65  
1.6  
C
D
1
0.039  
E
0.49  
0.66  
1.02  
0.55 0.019  
0.75 0.026  
0.022  
0.030  
F
G
1.27  
1.52 0.040 0.050 0.060  
G1  
H1  
H2  
L
17.53 17.78 18.03 0.690 0.700 0.710  
19.6  
0.772  
20.2  
0.795  
21.9  
21.7  
22.2  
22.1  
22.5 0.862 0.874 0.886  
22.5 0.854 0.870 0.886  
L1  
L2  
L3  
L4  
L7  
M
17.65  
18.1 0.695  
0.713  
17.25 17.5 17.75 0.679 0.689 0.699  
10.3  
2.65  
4.25  
4.63  
1.9  
10.7  
10.9 0.406 0.421 0.429  
2.9 0.104 0.114  
4.55  
5.08  
4.85 0.167 0.179 0.191  
5.53 0.182 0.200 0.218  
M1  
S
2.6  
2.6  
0.075  
0.075  
0.102  
0.102  
0.152  
S1  
Dia1  
1.9  
Multiwatt15 V  
3.65  
3.85 0.144  
20/22  
L296 - L296P  
mm  
inch  
DIM.  
OUTLINE AND  
MIN. TYP. MAX. MIN. TYP. MAX.  
MECHANICAL DATA  
A
B
5
0.197  
0.104  
0.063  
0.022  
0.030  
2.65  
C
1.6  
E
0.49  
0.66  
1.14  
0.55 0.019  
0.75 0.026  
F
G
1.27  
1.4  
0.045 0.050 0.055  
G1  
H1  
H2  
L
17.57 17.78 17.91 0.692 0.700 0.705  
19.6 0.772  
20.2  
0.795  
20.57  
18.03  
2.54  
0.810  
0.710  
0.100  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
S
17.25 17.5 17.75 0.679 0.689 0.699  
10.3  
10.7  
5.28  
2.38  
10.9 0.406 0.421 0.429  
0.208  
0.094  
2.65  
1.9  
2.9  
2.6  
2.6  
0.104  
0.075  
0.075  
0.114  
0.102  
0.102  
0.152  
S1  
Dia1  
1.9  
Multiwatt15 H  
3.65  
3.85 0.144  
21/22  
L296 - L296P  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the conse-  
quences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No  
license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this  
publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMi-  
croelectronics products are not authorized for use as critical components in life support devices or systems without express written  
approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
2000 STMicroelectronics – Printed in Italy – All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
22/22  

相关型号:

L296PHT

HIGH CURRENT SWITCHINGREGULATORS
STMICROELECTR

L297

STEPPER MOTOR CONTROLLERS
STMICROELECTR

L297/1

Stepper Motor Controller/Driver
ETC

L297A

Stepper Motor Controller/Driver
ETC

L297D

STEPPER MOTOR CONTROLLERS
STMICROELECTR

L298

DUAL FULL-BRIDGE DRIVER
STMICROELECTR

L298HN

DUAL FULL-BRIDGE DRIVER
STMICROELECTR

L298KV

DC Motor Controller/Driver
ETC

L298KV-00

3A 2 CHANNEL, BUF OR INV BASED PRPHL DRVR, PZFM15
TI

L298N

DUAL FULL-BRIDGE DRIVER
STMICROELECTR

L298P

DUAL FULL-BRIDGE DRIVER
STMICROELECTR

L29C101DC35

Microprocessor Slice
ETC