L298 [STMICROELECTRONICS]

DUAL FULL-BRIDGE DRIVER; 双路全桥式驱动器
L298
型号: L298
厂家: ST    ST
描述:

DUAL FULL-BRIDGE DRIVER
双路全桥式驱动器

驱动器
文件: 总13页 (文件大小:187K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L298  
DUAL FULL-BRIDGE DRIVER  
.
.
.
.
.
OPERATINGSUPPLY VOLTAGEUP TO 46 V  
TOTAL DC CURRENT UP TO 4 A  
LOW SATURATION VOLTAGE  
OVERTEMPERATURE PROTECTION  
LOGICAL ”0” INPUT VOLTAGE UP TO 1.5 V  
(HIGH NOISE IMMUNITY)  
DESCRIPTION  
PowerSO20  
Multiwatt15  
The L298 is an integratedmonolithic circuit in a 15-  
lead Multiwatt and PowerSO20 packages. It is a  
high voltage,high current dual full-bridge driver de-  
signedto acceptstandardTTLlogiclevelsanddrive  
inductive loads such as relays, solenoids, DC and  
steppingmotors. Two enableinputsare providedto  
enableordisablethe deviceindependentlyofthein-  
put signals. The emitters of the lower transistors of  
each bridge are connected togetherand the corre-  
spondingexternalterminal can be used for thecon-  
ORDERING NUMBERS : L298N (Multiwatt Vert.)  
L298HN (Multiwatt Horiz.)  
L298P (PowerSO20)  
nectionofanexternalsensingresistor.Anadditional  
supplyinput is providedso that the logic works at a  
lower voltage.  
BLOCK DIAGRAM  
Jenuary 2000  
1/13  
L298  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
50  
Unit  
V
VS  
VSS  
VI,Ven  
IO  
Power Supply  
Logic Supply Voltage  
Input and Enable Voltage  
7
V
–0.3 to 7  
V
Peak Output Current (each Channel)  
– Non Repetitive (t = 100µs)  
–Repetitive (80% on –20% off; ton = 10ms)  
–DC Operation  
3
2.5  
2
A
A
A
Vsens  
Ptot  
Sensing Voltage  
–1 to 2.3  
25  
V
W
Total Power Dissipation (Tcase = 75°C)  
Junction Operating Temperature  
Storage and Junction Temperature  
Top  
–25 to 130  
–40 to 150  
°
C
Tstg, Tj  
°C  
PIN CONNECTIONS  
(top view)  
CURRENT SENSING B  
15  
14  
13  
12  
11  
10  
9
OUTPUT 4  
OUTPUT 3  
INPUT 4  
ENABLE B  
INPUT 3  
LOGIC SUPPLY VOLTAGE VSS  
GND  
Multiwatt15  
8
7
INPUT 2  
6
ENABLE A  
5
INPUT 1  
4
SUPPLY VOLTAGE VS  
OUTPUT 2  
3
2
OUTPUT 1  
1
CURRENT SENSING A  
TAB CONNECTED TO PIN 8  
D95IN240A  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
GND  
GND  
Sense A  
N.C.  
Sense B  
N.C.  
Out 4  
Out 1  
PowerSO20  
Out 2  
Out 3  
VS  
Input 4  
Enable B  
Input 3  
VSS  
Input 1  
Enable A  
Input 2  
GND  
GND  
D95IN239  
THERMAL DATA  
Symbol  
Parameter  
PowerSO20  
Multiwatt15  
Unit  
Rth j-case  
Rth j-amb  
Thermal Resistance Junction-case  
Thermal Resistance Junction-ambient  
Max.  
Max.  
3
°C/W  
13 (*)  
35  
°
C/W  
(*) Mounted on aluminum substrate  
2/13  
L298  
PIN FUNCTIONS (referto the block diagram)  
MW.15  
PowerSO  
Name  
Function  
1;15  
2;19  
Sense A; Sense B Between this pin and ground is connected the sense resistor to  
control the current of the load.  
2;3  
4
4;5  
6
Out 1; Out 2  
Outputs of the Bridge A; the current that flows through the load  
connected between these two pins is monitored at pin 1.  
VS  
Supply Voltage for the Power Output Stages.  
A non-inductive 100nF capacitor must be connected between this  
pin and ground.  
5;7  
7;9  
Input1; Input 2  
TTL Compatible Inputs of the Bridge A.  
6;11  
8;14  
Enable A; EnableB TTL Compatible Enable Input: the L state disables the bridge A  
(enable A) and/or the bridge B (enable B).  
8
9
1,10,11,20  
12  
GND  
VSS  
Ground.  
Supply Voltage for the Logic Blocks. A100nF capacitor must be  
connected between this pin and ground.  
10; 12  
13; 14  
13;15  
16;17  
Input3; Input 4  
Out 3; Out 4  
TTL Compatible Inputs of the Bridge B.  
Outputs of the Bridge B. The current that flows through the load  
connected between these two pins is monitored at pin 15.  
3;18  
N.C.  
Not Connected  
ELECTRICAL CHARACTERISTICS (VS = 42V; VSS = 5V, Tj = 25°C; unlessotherwise specified)  
Symbol  
Parameter  
Test Conditions  
Operative Condition  
Min.  
VIH +2.5  
4.5  
Typ.  
Max.  
46  
Unit  
V
VS  
VSS  
IS  
Supply Voltage (pin 4)  
Logic Supply Voltage (pin 9)  
Quiescent Supply Current (pin 4)  
5
7
V
Ven = H; IL = 0  
Ven = L  
Vi = L  
Vi = H  
13  
50  
22  
70  
mA  
mA  
Vi = X  
4
mA  
ISS  
Quiescent Current from VSS (pin 9) Ven = H; IL = 0  
Vi = L  
Vi = H  
24  
7
36  
12  
mA  
mA  
Ven = L  
Vi = X  
6
mA  
V
ViL  
ViH  
IiL  
Input Low Voltage  
(pins 5, 7, 10, 12)  
–0.3  
2.3  
1.5  
Input High Voltage  
(pins 5, 7, 10, 12)  
VSS  
–10  
100  
V
Low Voltage Input Current  
(pins 5, 7, 10, 12)  
Vi = L  
Vi = H  
A
A
µ
µ
IiH  
High Voltage Input Current  
(pins 5, 7, 10, 12)  
30  
30  
V
SS –0.6V  
V
en = L Enable Low Voltage (pins 6, 11)  
–0.3  
2.3  
1.5  
VSS  
–10  
V
Ven = H Enable High Voltage (pins 6, 11)  
V
Ien = L Low Voltage Enable Current  
(pins 6, 11)  
Ven = L  
Ven = H  
A
µ
I
en = H High Voltage Enable Current  
(pins 6, 11)  
100  
µ
V
SS –0.6V  
A
VCEsat(H) Source Saturation Voltage  
VCEsat(L) Sink Saturation Voltage  
VCEsat TotalDrop  
IL = 1A  
IL = 2A  
0.95  
0.85  
1.35  
2
1.7  
2.7  
V
V
IL = 1A (5)  
IL = 2A (5)  
1.2  
1.7  
1.6  
2.3  
V
V
IL = 1A (5)  
IL = 2A (5)  
1.80  
3.2  
4.9  
V
V
Vsens  
Sensing Voltage (pins 1, 15)  
–1 (1)  
2
V
3/13  
L298  
ELECTRICAL CHARACTERISTICS (continued)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
1.5  
0.2  
2
Max.  
Unit  
T1 (Vi) Source Current Turn-off Delay  
T2 (Vi) Source Current Fall Time  
T3 (Vi) Source Current Turn-on Delay  
T4 (Vi) Source Current Rise Time  
T5 (Vi) Sink Current Turn-off Delay  
T6 (Vi) Sink Current Fall Time  
0.5 Vi to 0.9IL  
(2); (4)  
(2); (4)  
(2); (4)  
(2); (4)  
(3); (4)  
(3); (4)  
(3); (4)  
(3); (4)  
µs  
0.9 IL to 0.1 IL  
0.5 Vi to 0.1IL  
0.1 IL to 0.9 IL  
0.5 Vi to 0.9IL  
0.9 IL to 0.1 IL  
0.5 Vi to 0.9IL  
0.1 IL to 0.9 IL  
IL = 2A  
s
µ
µs  
0.7  
0.7  
0.25  
1.6  
0.2  
25  
s
s
s
s
µ
µ
µ
µ
T7 (Vi) Sink Current Turn-on Delay  
T8 (Vi) Sink Current Rise Time  
µs  
KHz  
µs  
fc (Vi) Commutation Frequency  
T1 (Ven) Source Current Turn-off Delay  
T2 (Ven) Source Current Fall Time  
T3 (Ven) Source Current Turn-on Delay  
T4 (Ven) Source Current Rise Time  
T5 (Ven) Sink Current Turn-off Delay  
T6 (Ven) Sink Current Fall Time  
40  
0.5 Ven to 0.9 IL  
0.9 IL to 0.1 IL  
0.5 Ven to 0.1 IL  
0.1 IL to 0.9 IL  
0.5 Ven to 0.9 IL  
0.9 IL to 0.1 IL  
0.5 Ven to 0.9 IL  
0.1 IL to 0.9 IL  
(2); (4)  
(2); (4)  
(2); (4)  
(2); (4)  
(3); (4)  
(3); (4)  
(3); (4)  
(3); (4)  
3
1
s
µ
0.3  
0.4  
2.2  
0.35  
0.25  
0.1  
µs  
s
µ
µs  
s
s
s
µ
µ
µ
T7 (Ven) Sink Current Turn-on Delay  
T8 (Ven) Sink Current Rise Time  
1) 1)Sensing voltage can be –1 V for t 50 sec; in steady state V  
min 0.5 V.  
µ
sens  
2) See fig. 2.  
3) See fig. 4.  
4) The loadmust be a pureresistor.  
Figure 1 : Typical SaturationVoltagevs. Output  
Figure 2 : Switching Times Test Circuits.  
Current.  
Note : For INPUT Switching, set EN = H  
For ENABLESwitching, set IN = H  
4/13  
L298  
Figure 3 :  
Source Current Delay Times vs. Input or Enable Switching.  
Figure 4 :  
Switching Times Test Circuits.  
Note : For INPUT Switching, set EN = H  
For ENABLESwitching, set IN = L  
5/13  
L298  
Figure 5 :  
Sink Current Delay Times vs. Input 0 V EnableSwitching.  
Figure 6 : Bidirectional DC Motor Control.  
Inputs  
C = H ; D = L  
Function  
Forward  
Ven = H  
Ven = L  
C = L ; D = H  
C = D  
Reverse  
Fast Motor Stop  
C = X ; D = X  
Free Running  
Motor Stop  
L = Low  
H =High  
X = Don’tcare  
6/13  
L298  
Figure 7 : For higher currents, outputscan be paralleled. Take care to parallel channel 1 with channel4  
and channel2 with channel3.  
APPLICATION INFORMATION (Refer to the block diagram)  
1.1. POWER OUTPUT STAGE  
Each input must be connected to the source of the  
driving signals by means of a very short path.  
TheL298integratestwopoweroutputstages(A; B).  
The power output stage is a bridge configuration  
and its outputscan drive an inductive load in com-  
monor differenzialmode, dependingon thestateof  
the inputs. The current that flows through the load  
comes out from the bridge at the sense output: an  
externalresistor (RSA ;RSB.) allows todetectthe in-  
tensityof this current.  
Turn-OnandTurn-Off: Beforeto Turn-ONthe Sup-  
plyVoltageand beforeto TurnitOFF,theEnablein-  
put must be driven to the Low state.  
3. APPLICATIONS  
Fig 6 showsa bidirectionalDC motor controlSche-  
maticDiagram forwhich only onebridgeis needed.  
The externalbridge of diodesD1 to D4 is made by  
four fast recovery elements (trr 200 nsec) that  
must be chosen of a VF as low as possible at the  
worst case of the load current.  
1.2. INPUT STAGE  
Eachbridgeis driven bymeansof fourgatesthe in-  
put of which are In1 ; In2 ; EnA and In3 ; In4 ; EnB.  
TheIninputssetthebridgestatewhenTheEn input  
ishigh;a lowstateoftheEninputinhibitsthebridge.  
All the inputs are TTL compatible.  
Thesenseoutputvoltagecanbeusedtocontrolthe  
currentamplitude by chopping the inputs,or to pro-  
videovercurrent protectionbyswitching low theen-  
able input.  
2. SUGGESTIONS  
The brake function (Fast motor stop) requires that  
the Absolute Maximum Rating of 2 Amps must  
neverbe overcome.  
A non inductive capacitor, usually of 100 nF, must  
be foreseen between both Vs and Vss, to ground,  
as nearas possible toGND pin. Whenthe large ca-  
pacitorof the powersupply is too far from the IC, a  
second smaller one must be foreseen near the  
L298.  
When the repetitive peak current needed from the  
load is higher than 2 Amps,a paralleled configura-  
tion can be chosen(See Fig.7).  
The sense resistor, not of a wire wound type, must  
be groundednear the negativepoleof Vs thatmust  
be nearthe GND pin of the I.C.  
An external bridge of diodes are required when in-  
ductive loads are driven and when the inputsof the  
ICarechopped; Shottkydiodeswouldbepreferred.  
7/13  
L298  
Thissolutioncandriveuntil3 AmpsInDCoperation  
and until 3.5 Amps of a repetitivepeak current.  
Fig 10 shows a second two phase bipolar stepper  
motor control circuit where the current is controlled  
by the I.C. L6506.  
OnFig8itisshownthedrivingofa twophasebipolar  
stepper motor ; the needed signals to drive the in-  
puts of the L298 are generated, in this example,  
from the IC L297.  
Fig 9 showsan exampleof P.C.B. designedforthe  
application of Fig 8.  
Figure 8 :  
Two Phase Bipolar Stepper MotorCircuit.  
This circuit drives bipolar steppermotorswith winding currents up to 2 A. The diodesare fast 2 A types.  
RS1 = RS2 = 0.5  
VF 1.2 V @ I = 2 A  
D1 to D8 = 2 A Fast diodes  
{
trr 200 ns  
8/13  
L298  
Figure 9 : SuggestedPrinted Circuit Board Layout for the Circuit of fig. 8 (1:1 scale).  
Figure 10 : Two Phase Bipolar StepperMotor Control Circuit by Using the Current ControllerL6506.  
RR and Rsense depend from the load current  
9/13  
L298  
mm  
inch  
DIM.  
OUTLINE AND  
MIN. TYP. MAX. MIN. TYP. MAX.  
MECHANICAL DATA  
A
B
5
0.197  
0.104  
0.063  
2.65  
1.6  
C
D
1
0.039  
E
0.49  
0.66  
1.02  
0.55 0.019  
0.75 0.026  
0.022  
0.030  
F
G
1.27  
1.52 0.040 0.050 0.060  
G1  
H1  
H2  
L
17.53 17.78 18.03 0.690 0.700 0.710  
19.6  
0.772  
20.2  
0.795  
21.9  
21.7  
22.2  
22.1  
22.5 0.862 0.874 0.886  
22.5 0.854 0.870 0.886  
L1  
L2  
L3  
L4  
L7  
M
17.65  
18.1 0.695  
0.713  
17.25 17.5 17.75 0.679 0.689 0.699  
10.3  
2.65  
4.25  
4.63  
1.9  
10.7  
10.9 0.406 0.421 0.429  
2.9 0.104 0.114  
4.55  
5.08  
4.85 0.167 0.179 0.191  
5.53 0.182 0.200 0.218  
M1  
S
2.6  
2.6  
0.075  
0.075  
0.102  
0.102  
0.152  
S1  
Dia1  
1.9  
Multiwatt15 V  
3.65  
3.85 0.144  
10/13  
L298  
mm  
inch  
DIM.  
OUTLINE AND  
MIN. TYP. MAX. MIN. TYP. MAX.  
MECHANICAL DATA  
A
B
5
0.197  
0.104  
0.063  
0.022  
0.030  
2.65  
C
1.6  
E
0.49  
0.66  
1.14  
0.55 0.019  
0.75 0.026  
F
G
1.27  
1.4  
0.045 0.050 0.055  
G1  
H1  
H2  
L
17.57 17.78 17.91 0.692 0.700 0.705  
19.6 0.772  
20.2  
0.795  
20.57  
18.03  
2.54  
0.810  
0.710  
0.100  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
S
17.25 17.5 17.75 0.679 0.689 0.699  
10.3  
10.7  
5.28  
2.38  
10.9 0.406 0.421 0.429  
0.208  
0.094  
2.65  
1.9  
2.9  
2.6  
2.6  
0.104  
0.075  
0.075  
0.114  
0.102  
0.102  
0.152  
Multiwatt15 H  
S1  
Dia1  
1.9  
3.65  
3.85 0.144  
11/13  
L298  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN. TYP. MAX. MIN. TYP. MAX.  
A
a1  
a2  
a3  
b
3.6  
0.3  
3.3  
0.1  
0.142  
0.012  
0.130  
0.004  
0.021  
0.013  
0.630  
0.386  
0.570  
0.1  
0.004  
0.000  
0
0.4  
0.53 0.016  
0.32 0.009  
c
0.23  
D (1) 15.8  
16  
0.622  
0.370  
D1  
E
9.4  
9.8  
13.9  
14.5 0.547  
e
1.27  
0.050  
0.450  
e3  
11.43  
E1 (1) 10.9  
E2  
11.1 0.429  
2.9  
0.437  
0.114  
0.244  
0.004  
0.626  
0.043  
0.043  
E3  
G
H
h
5.8  
0
6.2  
0.1  
0.228  
0.000  
15.5  
15.9 0.610  
1.1  
JEDEC MO-166  
L
0.8  
1.1  
0.031  
N
S
T
10° (max.)  
8° (max.)  
10  
0.394  
PowerSO20  
(1) ”D andF” do not include mold flash or protrusions.  
- Moldflash or protrusions shall not exceed 0.15 mm (0.006”).  
- Criticaldimensions: E”, ”G” and ”a3”  
R
N
N
a2  
A
c
a1  
b
e
DETAIL B  
DETAIL A  
e3  
E
DETAIL A  
lead  
H
D
slug  
a3  
DETAIL B  
20  
11  
0.35  
Gage Plane  
- C -  
S
SEATING PLANE  
L
G
C
BOTTOM VIEW  
(COPLANARITY)  
E2  
E1  
T
E3  
1
10  
D1  
PSO20MEC  
h x 45  
12/13  
L298  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the conse-  
quences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No  
license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this  
publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMi-  
croelectronics products are not authorized for use as critical components in life support devices or systems without express written  
approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
2000 STMicroelectronics – Printed in Italy – All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
13/13  

相关型号:

L298HN

DUAL FULL-BRIDGE DRIVER
STMICROELECTR

L298KV

DC Motor Controller/Driver
ETC

L298KV-00

3A 2 CHANNEL, BUF OR INV BASED PRPHL DRVR, PZFM15
TI

L298N

DUAL FULL-BRIDGE DRIVER
STMICROELECTR

L298P

DUAL FULL-BRIDGE DRIVER
STMICROELECTR

L29C101DC35

Microprocessor Slice
ETC

L29C101DM45

Bit-Slice Processor, 16-Bit, CMOS, CDIP64, 0.900 INCH, HERMETIC SEALED, SIDE BRAZED, DIP-64
LOGIC

L29C101DMB45

Microprocessor Slice
ETC

L29C101DME45

Bit-Slice Processor, 16-Bit, CMOS, CDIP64, 0.900 INCH, HERMETIC SEALED, SIDE BRAZED, DIP-64
LOGIC

L29C101GC35

暂无描述
LOGIC

L29C101GM45

Bit-Slice Processor, 16-Bit, CMOS, CPGA68, CAVITY UP, CERAMIC, PGA-68
LOGIC

L29C101GMB45

Bit-Slice Processor, 16-Bit, CMOS, CPGA68, CAVITY UP, CERAMIC, PGA-68
LOGIC