CY28409ZXCT [SPECTRALINEAR]

Clock Synthesizer with Differential SRC and CPU Outputs; 时钟合成器与差分SRC和CPU输出
CY28409ZXCT
型号: CY28409ZXCT
厂家: SPECTRALINEAR INC    SPECTRALINEAR INC
描述:

Clock Synthesizer with Differential SRC and CPU Outputs
时钟合成器与差分SRC和CPU输出

晶体 外围集成电路 光电二极管 时钟
文件: 总16页 (文件大小:218K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY28409  
Clock Synthesizer with Differential SRC and CPU Outputs  
• Three differential CPU clock pairs  
• One differential SRC clock  
• I2C support with readback capabilities  
Features  
• Supports Intel£ Pentium£ꢀ4-type CPUs  
• Selectable CPU frequencies  
• 3.3V power supply  
• Ideal Lexmark Spread Spectrum profile for maximum  
EMI reduction  
• Ten copies of PCI clocks  
• 56-pin SSOP and TSSOP packages  
• Five copies of 3V66 with one optional VCH  
• Two copies 48 MHz USB clocks  
CPU  
x 3  
SRC  
x 1  
3V66  
x 5  
PCI  
REF  
x 2  
48M  
x 2  
x 10  
Pin Configuration[1]  
Block Diagram  
VDD_REF  
REF0:1  
REF_0  
REF_1  
VDD_REF  
XIN  
1
2
3
4
5
6
7
8
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
FS_B  
VDD_A  
VSS_A  
VSS_IREF  
IREF  
FS_A  
CPU_STP#  
PCI_STP#  
VDD_CPU  
CPUT2  
CPUC2  
VSS_CPU  
CPUT1  
CPUC1  
VDD_CPU  
CPUT0  
CPUC0  
VSS_SRC  
SRCT  
SRCC  
VDD_SRC  
VTT_PWRGD#  
VDD_48  
VSS_48  
XIN  
XTAL  
OSC  
XOUT  
PLL Ref Freq  
VDD_CPU  
CPUT[0:2], CPUC[0:2]  
Divider  
CPU_STP#  
PCI_STP#  
PLL1  
XOUT  
Network  
VDD_SRC  
VSS_REF  
PCIF0  
PCIF1  
SRCT, SRCC  
FS_[A:B]  
VTT_PWRGD#  
PCIF2  
9
IREF  
VDD_PCI  
VSS_PCI  
PCI0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
VDD_3V66  
3V66_[0:3]  
PCI1  
PCI2  
PCI3  
VDD_PCI  
PCIF[0:2]  
PLL2  
2
PCI[0:6]  
VDD_PCI  
VSS_PCI  
PCI4  
3V66_4/VCH  
PCI5  
PCI6  
PD#  
VDD_48MHz  
DOT_48  
PD#  
3V66_0  
3V66_1  
VDD_3V66  
VSS_3V66  
3V66_2  
3V66_3  
SCLK  
USB_48  
DOT_48  
USB_48  
SDATA  
3V66_4/VCH  
2
SDATA  
SCLK  
I C  
Logic  
56 SSOP/TSSOP  
Note:  
1. Signals marked with [*] and [**] have internal pull-up and pull-down resistors, respectively.  
Rev 1.0, November 22, 2006  
Page 1 of 16  
2200 Laurelwood Road, Santa Clara, CA 95054  
Tel:(408) 855-0555 Fax:(408) 855-0550  
www.SpectraLinear.com  
CY28409  
Pin Description  
Pin No.  
Name  
REF(0:1)  
XIN  
Type  
Description  
1, 2  
4
O, SE Reference Clock. 3.3V 14.318-MHz clock output.  
I
Crystal Connection or External Reference Frequency Input. This pin has dual  
functions. It can be used as an external 14.318-MHz crystal connection or as an external  
reference frequency input.  
5
XOUT  
O, SE Crystal Connection. Connection for an external 14.318-MHz crystal output.  
41,44,47  
CPUT(0:2)  
O, DIF CPU Clock Output. Differential CPU clock outputs. See Table 1 for frequency config-  
uration.  
40,43,46  
CPUC(0:2)  
O, DIF CPU Clock Output. Differential CPU clock outputs. See Table 1 for frequency config-  
uration.  
38, 37  
SRCT, SRCC  
O, DIF Differential serial reference clock.  
22,23,26,27 3V66(0:3)  
O, SE 66-MHz Clock Output. 3.3V 66-MHz clock from internal VCO.  
O, SE 48-/66-MHz Clock Output. 3.3V selectable through SMBus to be 66 or 48 MHz.  
O, SE Free-running PCI Output. 33-MHz clocks divided down from 3V66.  
O, SE PCI Clock Output. 33-MHz clocks divided down from 3V66.  
29  
3V66_4VCH  
PCIF(0:2)  
PCI(0:6)  
7,8,9  
12,13,14,  
15,18,19,20  
31,  
32  
USB_48  
DOT_48  
FS_A, FS_B  
IREF  
O, SE Fixed 48-MHz clock output.  
O, SE Fixed 48-MHz clock output.  
51,56  
52  
I
I
3.3V LVTTL input for CPU frequency selection.  
Current Reference. A precision resistor is attached to this pin which is connected to  
the internal current reference.  
21  
50  
49  
35  
PD#  
I, PU 3.3V LVTTL input for Power-Down# active LOW.  
I, PU 3.3V LVTTL input for CPU_STP# active LOW.  
I, PU 3.3V LVTTL input for PCI_STP# active LOW.  
CPU_STP#  
PCI_STP#  
VTT_PWRGD#  
I
3.3V LVTTL input is a level sensitive strobe used to latch the FS_A and FS_B  
inputs (active LOW).  
30  
SDATA  
I/O  
I
SMBus-compatible SDATA.  
SMBus-compatible SCLOCK.  
28  
SCLK  
53  
VSS_IREF  
VDD_A  
GND Ground for current reference.  
PWR 3.3V power supply for PLL.  
GND Ground for PLL.  
55  
54  
VSS_A  
42,48  
45  
VDD_CPU  
VSS_CPU  
VDD_SRC  
VSS_SRC  
VDD_48  
PWR 3.3V power supply for outputs.  
GND Ground for outputs.  
36  
PWR 3.3V power supply for outputs.  
GND Ground for outputs.  
39  
34  
PWR 3.3V power supply for outputs.  
GND Ground for outputs.  
33  
VSS_48  
10,16  
11,17  
24  
VDD_PCI  
VSS_PCI  
VDD_3V66  
VSS_3V66  
VDD_REF  
VSS_REF  
PWR 3.3V power supply for outputs.  
GND Ground for outputs.  
PWR 3.3V power supply for outputs.  
GND Ground for outputs.  
25  
3
PWR 3.3V power supply for outputs.  
GND Ground for outputs.  
6
Rev 1.0,November 22, 2006  
Page 2 of 16  
CY28409  
Table 1. Frequency Select Table (FS_A, FS_B)  
FS_A  
FS_B  
0
CPU  
100 MHz  
REF/N  
SRC  
3V66  
66 MHz  
REF/N  
66 MHz  
66 MHz  
Hi-Z  
PCIF/PCI  
33 MHz  
REF/N  
33 MHz  
33 MHz  
Hi-Z  
REF0  
14.3 MHz  
REF/N  
REF1  
14.31 MHz  
REF/N  
USB/DOT  
48 MHz  
REF/N  
48 MHz  
48 MHz  
Hi-Z  
0
0
0
1
1
100/200 MHz  
REF/N  
MID  
1
200 MHz  
133 MHz  
Hi-Z  
100/200 MHz  
100/200 MHz  
Hi-Z  
14.3 MHz  
14.3 MHz  
Hi-Z  
14.31 MHz  
14.31 MHz  
Hi-Z  
0
MID  
Table 2. Frequency Select Table (FS_A, FS_B) SMBus Bit 5 of Byte 6 = 1  
FS_A  
FS_B  
CPU  
SRC  
3V66  
PCIF/PCI  
33 MHz  
33 MHz  
33 MHz  
REF0  
REF1  
USB/DOT  
48 MHz  
48 MHz  
48 MHz  
0
0
1
0
1
0
200 MHz  
400 MHz  
266 MHz  
100/200 MHz  
100/200 MHz  
100/200 MHz  
66 MHz  
66 MHz  
66 MHz  
14.3 MHz  
14.3 MHz  
14.3 MHz  
14.31 MHz  
14.31 MHz  
14.31 MHz  
Data Interface, various device functions, such as individual  
clock output buffers, can be individually enabled or disabled.  
The registers associated with the Serial Data Interface  
initializes to their default setting upon power-up, and therefore  
use of this interface is optional. Clock device register changes  
are normally made upon system initialization, if any are  
required. The interface cannot be used during system  
operation for power management functions.  
Frequency Select Pins (FS_A, FS_B)  
Host clock frequency selection is achieved by applying the  
appropriate logic levels to FS_A and FS_B inputs prior to  
VTT_PWRGD# assertion (as seen by the clock synthesizer).  
Upon VTT_PWRGD# being sampled LOW by the clock chip  
(indicating processor VTT voltage is stable), the clock chip  
samples the FS_A and FS_B input values. For all logic levels  
of FS_A and FS_B except MID, VTT_PWRGD# employs a  
Data Protocol  
one-shot functionality in that once  
a valid LOW on  
VTT_PWRGD# has been sampled LOW, all further  
VTT_PWRGD#, FS_A and FS_B transitions will be ignored. In  
the case where FS_B is at mid level when VTT_PWRGD# is  
sampled LOW, the clock chip will assume “Test Clock Mode.”  
Once “Test Clock Mode” has been invoked, all further FS_B  
transitions will be ignored and FS_A will asynchronously  
select between the Hi-Z and REF/N mode. Exiting test mode  
is accomplished by cycling power with FS_B in a HIGH or  
LOW state.  
The clock driver serial protocol accepts byte write, byte read,  
block write, and block read operations from the controller. For  
block write/read operation, the bytes must be accessed in  
sequential order from lowest to highest byte (most significant  
bit first) with the ability to stop after any complete byte has  
been transferred. For byte write and byte read operations, the  
system controller can access individually indexed bytes. The  
offset of the indexed byte is encoded in the command code,  
as described in Table 3.  
Serial Data Interface  
The block write and block read protocol is outlined in Table 4  
while Table 5 outlines the corresponding byte write and byte  
read protocol. The slave receiver address is 11010010 (D2h).  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Table 3. Command Code Definition  
Bit  
Description  
7
0 = Block read or block write operation, 1 = Byte read or byte write operation  
(6:0)  
Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be  
'0000000'  
Table 4. Block Read and Block Write Protocol  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
2:8  
9
Slave address – 7 bits  
Write = 0  
2:8  
9
Slave address – 7 bits  
Write = 0  
10  
Acknowledge from slave  
10  
Acknowledge from slave  
11:18  
Command Code – 8 bits  
'00000000' stands for block operation  
11:18  
Command Code – 8 bits  
'00000000' stands for block operation  
19  
Acknowledge from slave  
19  
Acknowledge from slave  
Rev 1.0,November 22, 2006  
Page 3 of 16  
CY28409  
Table 4. Block Read and Block Write Protocol (continued)  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
20:27  
28  
Description  
Bit  
20  
Byte Count – 8 bits  
Repeat start  
Acknowledge from slave  
Data byte 1 – 8 bits  
Acknowledge from slave  
Data byte 2 – 8 bits  
Acknowledge from slave  
......................  
21:27  
28  
Slave address – 7 bits  
Read = 1  
29:36  
37  
29  
Acknowledge from slave  
Byte count from slave – 8 bits  
Acknowledge from master  
Data byte from slave – 8 bits  
Acknowledge from master  
Data byte from slave – 8 bits  
Acknowledge from master  
Data byte N from slave – 8 bits  
Acknowledge from master  
Stop  
38:45  
46  
30:37  
38  
....  
39:46  
47  
....  
Data Byte (N–1) – 8 bits  
Acknowledge from slave  
Data Byte N – 8 bits  
Acknowledge from slave  
Stop  
....  
48:55  
56  
....  
....  
....  
....  
....  
....  
Table 5. Byte Read and Byte Write protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
2:8  
9
Slave address – 7 bits  
Write = 0  
2:8  
9
Slave address – 7 bits  
Write = 0  
10  
Acknowledge from slave  
10  
Acknowledge from slave  
11:18  
Command Code – 8 bits  
11:18  
Command Code – 8 bits  
'100xxxxx' stands for byte operation, bits[4:0] of the  
command code represents the offset of the byte to  
be accessed  
'100xxxxx' stands for byte operation, bits[4:0] of  
the command code represents the offset of the  
byte to be accessed  
19  
20:27  
28  
Acknowledge from slave  
Data byte from master – 8 bits  
Acknowledge from slave  
Stop  
19  
20  
Acknowledge from slave  
Repeat start  
21:27  
28  
Slave address – 7 bits  
Read = 1  
29  
29  
Acknowledge from slave  
Data byte from slave – 8 bits  
Acknowledge from master  
Stop  
30:37  
38  
39  
Control Registers  
Byte 0:Control Register 0  
Bit  
7
@Pup  
Name  
Description  
0
1
Reserved  
Reserved, Set = 0  
6
PCIF  
PCI  
PCI Drive Strength Override  
0 = Force All PCI and PCIF Outputs to Low Drive Strength  
1 = Force All PCI and PCIF Outputs to High Drive Strength  
5
4
0
0
Reserved  
Reserved  
Reserved, Set = 0  
Reserved, Set = 0  
Rev 1.0,November 22, 2006  
Page 4 of 16  
CY28409  
Byte 0:Control Register 0 (continued)  
Bit  
@Pup  
Name  
Description  
3
Externally PCI_STP#  
Selected  
PCI_STP# reflects the current value of the external PCI_STP# pin.  
0 = PCI_STP# pin is LOW.  
2
1
0
Externally CPU_STP#  
Selected  
CPU_STP# reflects the current value of the external CPU_STP# pin.  
0 = CPU_STP# pin is LOW.  
Externally FS_B  
Selected  
FS_B reflects the value of the FS_B pin sampled on power-up.  
Externally FS_A  
Selected  
FS_A reflects the value of the FS_A pin sampled on power-up.  
Byte 1: Control Register 1  
Bit  
@Pup  
Name  
SRCT, SRCC  
Description  
7
0
Allows control of SRCT/C with assertion of PCI_STP# or SW PCI_STP  
0 = Free Running, 1 = Stopped with PCI_STP#  
6
5
4
3
2
1
0
1
1
1
1
1
1
1
SRCT, SRCC  
Reserved  
SRCT/C Output Enable; 0 = Disabled (Hi-z), 1 = Enabled  
Reserved, Set = 1  
Reserved  
Reserved, Set = 1  
Reserved  
Reserved, Set = 1  
CPUT2, CPUC2  
CPUT1, CPUC1  
CPUT0, CPUC0  
CPUT/C2 Output Enable; 0 = Disabled (Hi-z), 1 = Enabled  
CPUT/C1 Output Enable; 0 = Disabled (Hi-z), 1 = Enabled  
CPUT/C0 Output Enable; 0 = Disabled (Hi-z), 1 = Enabled  
Byte 2: Control Register 2  
Bit  
@Pup  
Name  
Description  
7
0
SRCT, SRCC  
SRCT/C Pwrdwn Drive Mode  
0 = Driven during power-down, 1 = Three-state during power-down  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
SRCT, SRCC  
SRCT/C Stop Drive Mode  
0 = Driven during PCI_STP, 1 = Three-state during PCI_STP  
CPUT2, CPUC2  
CPUT1, CPUC1  
CPUT0, CPUC0  
CPUT2, CPUC2  
CPUT1, CPUC1  
CPUT0, CPUC0  
CPUT/C2 Pwrdwn Drive Mode  
0 = Driven during power-down, 1 = Three-state during power-down  
CPUT/C1 Pwrdwn Drive Mode  
0 = Driven during power-down, 1 = Three-state during power-down  
CPUT/C0 Pwrdwn Drive Mode  
0 = Driven during power-down, 1 = Three-state during power-down  
CPUT/C2 stop Drive Mode  
0 = Driven when stopped, 1 = Three-state when stopped  
CPUT/C1 stop Drive Mode  
0 = Driven when stopped, 1 = Three-state when stopped  
CPUT/C0 stop Drive Mode  
0 = Driven when stopped, 1 = Three-state when stopped  
Byte 3: Control Register 3  
Bit  
@Pup  
Name  
Description  
7
1
SW PCI STOP  
SW PCI_STP Function  
0= PCI_STP assert, 1= PCI_STP deassert  
When this bit is set to 0, all STOPPABLE PCI, PCIF and SRC outputs will  
be stopped in a synchronous manner with no short pulses.  
When this bit is set to 1, all STOPPED PCI,PCIF and SRC outputs will  
resume in a synchronous manner with no short pulses.  
6
1
PCI6  
PCI6 Output Enable  
0 = Disabled, 1 = Enabled  
Rev 1.0,November 22, 2006  
Page 5 of 16  
CY28409  
Byte 3: Control Register 3 (continued)  
Bit  
@Pup  
Name  
Description  
5
1
PCI5  
PCI4  
PCI3  
PCI2  
PCI1  
PCI0  
PCI5 Output Enable  
0 = Disabled, 1 = Enabled  
4
3
2
1
0
1
1
1
1
1
PCI4 Output Enable  
0 = Disabled, 1 = Enabled  
PCI3 Output Enable  
0 = Disabled, 1 = Enabled  
PCI2 Output Enable  
0 = Disabled, 1 = Enabled  
PCI1 Output Enable  
0 = Disabled, 1 = Enabled  
PCI0 Output Enable  
0 = Disabled, 1 = Enabled  
Byte 4: Control Register 4  
Bit  
@Pup  
Name  
Description  
7
0
USB_48  
USB_48  
PCIF2  
PCIF1  
PCIF0  
PCIF2  
PCIF1  
PCIF0  
USB_48 Drive Strength  
0 = High drive strength, 1 = Low drive strength  
6
5
4
3
2
1
0
1
0
0
0
1
1
1
USB_48 Output Enable  
0 = Disabled, 1 = Enabled  
Allow control of PCIF2 with assertion of PCI_STP# or SW PCI_STP  
0 = Free Running, 1 = Stopped with PCI_STP#  
Allow control of PCIF1 with assertion of PCI_STP# or SW PCI_STP  
0 = Free Running, 1 = Stopped with PCI_STP#  
Allow control of PCIF0 with assertion of PCI_STP# or SW PCI_STP  
0 = Free Running, 1 = Stopped with PCI_STP#  
PCIF2 Output Enable  
0 = Disabled, 1 = Enabled  
PCIF1 Output Enable  
0 = Disabled, 1 = Enabled  
PCIF0 Output Enable  
0 = Disabled, 1 = Enabled  
Byte 5: Control Register 5  
Bit  
@Pup  
Name  
Description  
7
1
DOT_48  
DOT_48 Output Enable  
0 = Disabled, 1 = Enabled  
6
5
1
0
Reserved  
Reserved, Set = 1  
3V66_4/VCH  
3V66_4/VCH  
3V66_3  
VCH Select 66-MHz/48-MHz  
0 = 3V66 mode, 1 = VCH (48-MHz) mode  
4
3
2
1
0
1
1
1
1
1
3V66_4/VCH Output Enable  
0 = Disabled, 1 = Enabled  
3V66_3 Output Enable  
0 = Disabled, 1 = Enabled  
3V66_2  
3V66_2 Output Enable  
0 = Disabled, 1 = Enabled  
3V66_1  
3V66_1 Output Enable  
0 = Disabled, 1 = Enabled  
3V66_0  
3V66_0 Output Enable  
0 = Disabled, 1 = Enabled  
Rev 1.0,November 22, 2006  
Page 6 of 16  
CY28409  
Byte 6: Control Register 6  
Bit  
7
@Pup  
Name  
Description  
0
0
0
Reserved  
Reserved  
Reserved, Set = 0  
Reserved, Set = 0  
6
5
CPUC0, CPUT0  
CPUC1, CPUT1  
CPUC2, CPUT2  
FS_A & FS_B Operation  
0 = Normal, 1 = Test mode  
4
0
SRCT, SRCC  
SRC Frequency Select  
0 = 100 MHz, 1 = 200 MHz  
3
2
0
0
Reserved  
Reserved, Set = 0  
PCIF  
PCI  
Spread Spectrum Enable  
0 = Spread Off, 1 = Spread On  
3V66  
SRCT,SRCC  
CPUT_ITP,CPUC_ITP  
1
0
1
1
REF_1  
REF_1 Output Enable  
0 = Disabled, 1 = Enabled  
REF_0  
REF_0 Output Enable  
0 = Disabled, 1 = Enabled  
Byte 7: Vendor ID  
Bit @Pup  
Name  
Revision ID Bit 3  
Revision ID Bit 2  
Revision ID Bit 1  
Revision ID Bit 0  
Vendor ID Bit 3  
Vendor ID Bit 2  
Vendor ID Bit 1  
Vendor ID Bit 0  
Description  
7
6
5
4
3
2
1
0
0
1
0
0
1
0
0
0
Revision ID Bit 3  
Revision ID Bit 2  
Revision ID Bit 1  
Revision ID Bit 0  
Vendor ID Bit 3  
Vendor ID Bit 2  
Vendor ID Bit 1  
Vendor ID Bit 0  
Table 6. Crystal Recommendations  
Frequency  
(Fund)  
Drive  
(max.)  
ShuntCap Motional  
(max.)  
Tolerance  
(max.)  
Stability  
(max.)  
Aging  
(max.)  
Cut  
Loading Load Cap  
(max.)  
14.31818 MHz  
AT  
Parallel 20 pF  
0.1 mW  
5 pF  
0.016 pF  
50 ppm  
50 ppm  
5 ppm  
Figure 1 shows a typical crystal configuration using the two  
trim capacitors. An important clarification for the following  
discussion is that the trim capacitors are in series with the  
crystal not parallel. It’s a common misconception that load  
capacitors are in parallel with the crystal and should be  
approximately equal to the load capacitance of the crystal.  
This is not true.  
Crystal Recommendations  
The CY28409 requires a Parallel Resonance Crystal.  
Substituting a series resonance crystal will cause the  
CY28409 to operate at the wrong frequency and violate the  
ppm specification. For most applications there is a 300-ppm  
frequency shift between series and parallel crystals due to  
incorrect loading.  
Crystal Loading  
Crystal loading plays a critical role in achieving low ppm perfor-  
mance. To realize low ppm performance, the total capacitance  
the crystal will see must be considered to calculate the appro-  
priate capacitive loading (CL).  
Figure 1. Crystal Capacitive Clarification  
Rev 1.0,November 22, 2006  
Page 7 of 16  
CY28409  
Use the following formulas to calculate the trim capacitor  
values for Ce1 and Ce2.  
Calculating Load Capacitors  
In addition to the standard external trim capacitors, trace  
capacitance and pin capacitance must also be considered to  
correctly calculate crystal loading. As mentioned previously,  
the capacitance on each side of the crystal is in series with the  
crystal. This means the total capacitance on each side of the  
crystal must be twice the specified crystal load capacitance  
(CL). While the capacitance on each side of the crystal is in  
series with the crystal, trim capacitors (Ce1,Ce2) should be  
calculated to provide equal capacitive loading on both sides.  
Load Capacitance (each side)  
Ce = 2 * CL – (Cs + Ci)  
Total Capacitance (as seen by the crystal)  
1
CLe  
=
1
Ce2 + Cs2 + Ci2  
1
Ce1 + Cs1 + Ci1  
(
)
+
CL....................................................Crystal load capacitance  
CLe......................................... Actual loading seen by crystal  
using standard value trim capacitors  
C lo ck C h ip  
(C Y 2 8 4 0 9 )  
Ce..................................................... External trim capacitors  
Cs..............................................Stray capacitance (terraced)  
C i2  
C i1  
Ci ...........................................................Internal capacitance  
(lead frame, bond wires etc.)  
P in  
3 to 6 p  
PD# (Power-down) Clarification  
X 2  
The PD# (Power-down) pin is used to shut off ALL clocks prior  
to shutting off power to the device. PD# is an asynchronous  
active LOW input. This signal is synchronized internally to the  
device powering down the clock synthesizer. PD# is an  
asynchronous function for powering up the system. When PD#  
is LOW, all clocks are driven to a LOW value and held there  
and the VCO and PLLs are also powered down. All clocks are  
shut down in a synchronous manner so as not to cause  
glitches while changing to the low ‘stopped’ state.  
X 1  
C s2  
C s1  
T ra ce  
2 .8 p F  
X T A L  
C e 1  
C e 2  
T rim  
3 3 p F  
Figure 2. Crystal Loading Example  
PD# Assertion  
When PD# is sampled LOW by two consecutive rising edges  
of the CPUC clock then all clock outputs (except CPU) clocks  
must be held LOW on their next HIGH-to-LOW transition. CPU  
clocks must be held with CPU clock pin driven HIGH with a  
value of 2 x Iref and CPUC undriven. Due to the state of  
internal logic, stopping and holding the REF clock outputs in  
the LOW state may require more than one clock cycle to  
complete  
PD#  
CPUT, 133MHz  
CPUC, 133MHz  
SRCT 100MHz  
SRCC 100MHz  
3V66, 66MHz  
USB, 48MHz  
PCI, 33MHz  
REF  
Figure 3. Power-down Assertion Timing Waveform  
Rev 1.0,November 22, 2006  
Page 8 of 16  
CY28409  
PD# Deassertion  
There is no change to the output drive current values during  
the stopped state. The CPUT is driven HIGH with a current  
value equal to (Mult 0 ‘select’) x (Iref), and the CPUC signal  
will not be driven. Due to the external pull-down circuitry,  
CPUC will be LOW during this stopped state.  
The power-up latency between PD# rising to a valid logic ‘1’  
level and the starting of all clocks is less than 1.8 ms.  
CPU_STP# Assertion  
The CPU_STP# signal is an active LOW input used for  
synchronous stopping and starting the CPU output clocks  
while the rest of the clock generator continues to function.  
When the CPU_STP# pin is asserted, all CPU outputs that are  
set with the SMBus configuration to be stoppable via assertion  
of CPU_STP# will be stopped after being sampled by two  
rising edges of the internal CPUT clock. The final states of the  
stopped CPU signals are CPUT = HIGH and CPUC = LOW.  
CPU_STP# Deassertion  
The deassertion of the CPU_STP# signal will cause all CPU  
outputs that were stopped to resume normal operation in a  
synchronous manner. Synchronous manner meaning that no  
short or stretched clock pulses will be produce when the clock  
resumes. The maximum latency from the deassertion to active  
outputs is no more than two CPU clock cycles.  
Tstable  
<1.8 ms  
PD#  
CPUT, 133MHz  
CPUC, 133MHz  
SRCT 100MHz  
SRCC 100MHz  
3V66, 66MHz  
USB, 48MHz  
PCI, 33MHz  
REF  
Tdrive_PWRDN#  
<300 Ps, >200 mV  
Figure 4. Power-down Deassertion Timing Waveform  
CPU_STP#  
CPUT  
CPUC  
Figure 5. CPU_STP# Assertion Waveform  
CPU_STP#  
CPUT  
CPUC  
CPU Internal  
Tdrive_CPU_STP#, 10 ns > 200 mV  
Figure 6. CPU_STP# Deassertion Waveform  
Rev 1.0,November 22, 2006  
Page 9 of 16  
CY28409  
PCI_STP# Assertion[2]  
PCI_STP# Deassertion  
The PCI_STP# signal is an active LOW input used for  
synchronous stopping and starting the PCI outputs while the  
rest of the clock generator continues to function. The set-up  
time for capturing PCI_STP# going LOW is 10 ns (tSU). (See  
Figure 7.) The PCIF clocks will not be affected by this pin if  
their corresponding control bit in the SMBus register is set to  
allow them to be free-running.  
The deassertion of the PCI_STP# signal will cause all PCI and  
stoppable PCIF clocks to resume running in a synchronous  
manner within two PCI clock periods after PCI_STP# transi-  
tions to a high level.  
Tsu  
PCI_STP#  
PCI_F  
PCI  
SRC 100MHz  
Figure 7. PCI_STP# Assertion Waveform  
Tdrive_SRC  
Tsu  
PCI_STP#  
PCI_F  
PCI  
SRC 100MHz  
Figure 8. PCI_STP# Deassertion Waveform  
Note:  
2. The PCI STOP function is controlled by two inputs. One is the device PCI_STP# pin number 34 and the other is SMBus byte 0 bit 3. These two inputs are logically  
ANDed. If either the external pin or the internal SMBus register bit is set low then the stoppable PCI clocks will be stopped in a logic low state. Reading SMBus  
Byte 0 Bit 3 will return a 0 value if either of these control bits are set LOW thereby indicating the device’s stoppable PCI clocks are not running.  
Rev 1.0,November 22, 2006  
Page 10 of 16  
CY28409  
FS_A, FS_B  
VTT_PWRGD#  
PWRGD_VRM  
0.2-0.3 ms  
Delay  
Wait for  
VTT_PWRGD#  
Device is not affected,  
VTT_PWRGD# is ignored  
Sample Sels  
State 2  
VDD Clock Gen  
Clock State  
State 0  
Off  
State 1  
State 3  
On  
Clock Outputs  
Clock VCO  
On  
Off  
Figure 9. VTT_PWRGD# Timing Diagram  
S2  
S1  
VTT_PWRGD# = Low  
Delay  
>0.25 ms  
Sample  
Inputs straps  
VDDA = 2.0V  
Wait for <1.8 ms  
S0  
S3  
VDDA = off  
Normal  
Operation  
Enable Outputs  
Power Off  
VTT_PWRGD# = toggle  
Figure 10. Clock Generator Power-up/Run State Diagram  
Rev 1.0,November 22, 2006  
Page 11 of 16  
CY28409  
Absolute Maximum Conditions  
Parameter  
VDD  
Description  
Core Supply Voltage  
Condition  
Min.  
–0.5  
–0.5  
Max.  
4.6  
Unit  
V
VDD_A  
VIN  
Analog Supply Voltage  
4.6  
V
Input Voltage  
Relative to VSS  
–0.5 VDD + 0.5 VDC  
TS  
Temperature, Storage  
Non-functional  
–65  
150  
70  
150  
15  
45  
°C  
°C  
TA  
Temperature, Operating Ambient  
Temperature, Junction  
Functional  
0
TJ  
Functional  
°C  
ØJC  
Dissipation, Junction to Case  
Dissipation, Junction to Ambient  
ESD Protection (Human Body Model)  
Flammability Rating  
Mil-Spec 883E Method 1012.1  
JEDEC (JESD 51)  
MIL-STD-883, Method 3015  
@ 1/8 in.  
°C/W  
°C/W  
V
ØJA  
ESDHBM  
UL–94  
MSL  
2000  
V–0  
1
Moisture Sensitivity Level  
Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
DC Electrical Specifications  
Parameter  
Description  
Condition  
Min.  
Max.  
Unit  
VDD_A,  
3.3V Operating Voltage  
3.3 5ꢀ  
3.135  
3.465  
V
VDD_REF,  
VDD_PCI,  
VDD_3V66,  
VDD_48,  
VDD_CPU  
VILI2C  
VIHI2C  
VIL  
Input Low Voltage  
SDATA, SCLK  
SDATA, SCLK  
2.2  
1.0  
V
V
Input High Voltage  
Input Low Voltage  
VSS – 0.5  
2.0  
0.8  
V
VIH  
Input High Voltage  
VDD + 0.5  
V
IIL  
Input Low Leakage Current  
Input High Leakage Current  
Output Low Voltage  
Output High Voltage  
High-impedance Output Current  
Dynamic Supply Current  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
except internal pull-ups resistors, 0 < VIN < VDD  
except internal pull-down resistors, 0 < VIN < VDD  
IOL = 1 mA  
–5  
PA  
PA  
V
IIH  
5
0.4  
VOL  
VOH  
IOZ  
IOH = –1 mA  
2.4  
V
–10  
10  
PA  
mA  
pF  
pF  
nH  
V
IDD  
All outputs loaded per Table 9 and Figure 11  
350  
5
CIN  
2
COUT  
LIN  
3
6
7
VXIH  
VXIL  
IPD3.3V  
Xin High Voltage  
0.7VDD  
VDD  
0.3VDD  
1
Xin Low Voltage  
0
V
Power-down Supply Current  
PD# Asserted  
mA  
AC Electrical Specifications  
Parameter  
Crystal  
TDC  
Description  
Condition  
Min.  
Max.  
Unit  
XIN Duty Cycle  
The device will operate reliably with input duty  
cycles up to 30/70 but the REF clock duty cycle  
will not be within specification  
47.5  
52.5  
TPERIOD  
XIN Period  
When XIN is driven from an external clock  
source  
69.841  
71.0  
ns  
TR / TF  
TCCJ  
XIN Rise and Fall Times  
XIN Cycle to Cycle Jitter  
Long-term Accuracy  
Measured between 0.3VDD and 0.7VDD  
As an average over 1-Ps duration  
Over 150 ms  
10.0  
500  
300  
ns  
ps  
LACC  
ppm  
Rev 1.0,November 22, 2006  
Page 12 of 16  
CY28409  
AC Electrical Specifications (continued)  
Parameter  
CPU at 0.7V  
TDC  
Description  
Condition  
Min.  
Max.  
Unit  
CPUT and CPUC Duty Cycle  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
45  
9.9970  
7.4978  
4.9985  
55  
10.003  
7.5023  
5.0015  
100  
ns  
ns  
ns  
ps  
ps  
ps  
TPERIOD  
TPERIOD  
TPERIOD  
TSKEW  
TCCJ  
100-MHz CPUT and CPUC Period  
133-MHz CPUT and CPUC Period  
200-MHz CPUT and CPUC Period  
Any CPUT/C to CPUT/C Clock Skew Measured at crossing point VOX  
CPUT/C Cycle to Cycle Jitter Measured at crossing point VOX  
CPUT and CPUC Rise and Fall Times Measured from VOL = 0.175 to VOH = 0.525V  
125  
TR / TF  
TRFM  
175  
700  
Rise/Fall Matching  
Determined as a fraction of 2*(TR – TF)/(TR + TF)  
20  
'TR  
'TF  
VHIGH  
VLOW  
VOX  
Rise Time Variation  
125  
ps  
ps  
mV  
mV  
mV  
V
Fall Time Variation  
125  
Voltage High  
Math averages Figure 11  
Math averages Figure 11  
660  
–150  
250  
850  
Voltage Low  
Crossing Point Voltage at 0.7V Swing  
Maximum Overshoot Voltage  
Minimum Undershoot Voltage  
Ring Back Voltage  
550  
VOVS  
VHIGH + 0.3  
VUDS  
–0.3  
V
VRB  
See Figure 11. Measure SE  
0.2  
V
SRC  
TDC  
SRCT and SRCC Duty Cycle  
100 MHz SRCT and SRCC Period  
200 MHz SRCT and SRCC Period  
SRCT/C Cycle to Cycle Jitter  
SRCT/C Long Term Accuracy  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
45  
9.9970  
4.9985  
55  
10.003  
5.0015  
125  
ns  
ns  
ps  
ppm  
ps  
TPERIOD  
TPERIOD  
TCCJ  
LACC  
300  
TR / TF  
TRFM  
SRCT and SRCC Rise and Fall Times Measured from VOL = 0.175 to VOH = 0.525V  
175  
700  
Rise/Fall Matching  
Determined as a fraction of 2*(TR – TF)/(TR + TF)  
20  
'TR  
'TF  
VHIGH  
VLOW  
VOX  
Rise Time Variation  
125  
ps  
ps  
mV  
mV  
mV  
V
Fall Time Variation  
125  
Voltage High  
Math averages Figure 11  
Math averages Figure 11  
660  
–150  
250  
850  
Voltage Low  
Crossing Point Voltage at 0.7V Swing  
Maximum Overshoot Voltage  
Minimum Undershoot Voltage  
Ring Back Voltage  
550  
VOVS  
VHIGH + 0.3  
VUDS  
–0.3  
V
VRB  
See Figure 11. Measure SE  
0.2  
V
3V66  
TDC  
3V66 Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 2.0V  
Measurement at 0.8V  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
Measurement at 1.5V  
45  
55  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
TPERIOD  
TPERIOD  
THIGH  
TLOW  
Spread Disabled 3V66 Period  
Spread Enabled 3V66 Period  
3V66 High Time  
14.9955 15.0045  
14.9955 15.0799  
4.9500  
3V66 Low Time  
4.5500  
TR / TF  
TSKEW  
TCCJ  
3V66 Rise and Fall Times  
Any 3V66 to Any 3V66 Clock Skew  
3V66 Cycle to Cycle Jitter  
0.5  
2.0  
250  
250  
PCI/PCIF  
TDC  
PCI Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 2.0V  
Measurement at 0.8V  
45  
55  
ns  
ns  
ns  
ns  
TPERIOD  
TPERIOD  
THIGH  
TLOW  
Spread Disabled PCIF/PCI Period  
Spread Enabled PCIF/PCI Period  
PCIF and PCI high time  
PCIF and PCI low time  
29.9910 30.0009  
29.9910 30.1598  
12.0  
12.0  
Rev 1.0,November 22, 2006  
Page 13 of 16  
CY28409  
AC Electrical Specifications (continued)  
Parameter  
TR / TF  
TSKEW  
TCCJ  
Description  
Condition  
Min.  
0.5  
Max.  
2.0  
Unit  
ns  
PCIF and PCI rise and fall times  
Measured between 0.8V and 2.0V  
Any PCI clock to Any PCI clock Skew Measurement at 1.5V  
500  
250  
ps  
PCIF and PCI Cycle to Cycle Jitter  
Measurement at 1.5V  
ps  
DOT  
TDC  
Duty Cycle  
Measurement at 1.5V  
45  
55  
ns  
ps  
ns  
ns  
ns  
ps  
TPERIOD  
TSKEW  
THIGH  
TLOW  
Period  
Measurement at 1.5V  
20.8271 20.8396  
Any 48-MHz to 48-MHz Clock Skew  
USB high time  
Measured at crossing point VOX  
Measurement at 2.0V  
500  
10.486  
10.386  
1.0  
8.994  
8.794  
0.5  
USB low time  
Measurement at 0.8V  
TR / TF  
TCCJ  
Rise and Fall Times  
Cycle to Cycle Jitter  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
350  
USB  
TDC  
Duty Cycle  
Measurement at 1.5V  
45  
55  
ns  
ps  
ns  
ns  
ns  
ps  
TPERIOD  
TSKEW  
THIGH  
TLOW  
Period  
Measurement at 1.5V  
20.8271 20.8396  
Any 48-MHz to 48-MHz Clock Skew  
USB high time  
Measured at crossing point VOX  
Measurement at 2.0V  
500  
10.036  
9.836  
2.0  
8.094  
7.694  
1.0  
USB low time  
Measurement at 0.8V  
TR / TF  
TCCJ  
Rise and Fall Times  
Cycle to Cycle Jitter  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
350  
REF  
TDC  
REF Duty Cycle  
Measurement at 1.5V  
45  
69.827  
55  
69.855  
500  
ns  
ps  
ns  
ps  
TPERIOD  
TSKEW  
TR / TF  
TCCJ  
REF Period  
Measurement at 1.5V  
Any REF to REF Clock Skew  
REF Rise and Fall Times  
REF Cycle to Cycle Jitter  
Measured at crossing point VOX  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
0.5  
2.0  
1000  
ENABLE/DISABLE and SET-UP  
TSTABLE Clock Stabilization from Power-up  
TSS  
10.0  
0
1.8  
ms  
ns  
ns  
Stopclock Set-up Time  
Stopclock Hold Time  
TSH  
Table 7. Group Timing Relationship and Tolerances  
Offset  
Group  
Conditions  
Min.  
Max.  
3V66 to PCI  
3V66 Leads PCI  
1.5 ns  
3.5 ns  
Table 8. USB to DOT Phase Offset  
Parameter  
DOT Skew  
USB Skew  
VCH SKew  
Typical  
0°  
Value  
Tolerance  
1000 ps  
1000 ps  
1000 ps  
0.0 ns  
0.0 ns  
0.0 ns  
180°  
0°  
Table 9. Maximum Lumped Capacitive Output Loads  
Clock  
Max Load  
Unit  
pF  
PCI Clocks  
3V66 Clocks  
USB Clock  
DOT Clock  
REF Clock  
30  
30  
20  
10  
30  
pF  
pF  
pF  
pF  
Rev 1.0,November 22, 2006  
Page 14 of 16  
CY28409  
Test and Measurement Set-up  
For Differential CPU and SRC Output Signals  
The following diagram shows lumped test load configurations  
for the differential Host Clock Outputs.  
M easurem ent  
Point  
TPCB  
33:  
CPUT  
49.9:  
2 pF  
M easurem ent  
Point  
TPCB  
49.9:  
33:  
CPUC  
IREF  
2 pF  
475:  
Figure 11. 0.7V Load Configuration  
O u tp u t u n d e r Te s t  
P ro b e  
L o a d C a p  
3.3V sig n als  
tD C  
-
-
3 .3V  
2 .0 V  
1 .5 V  
0 .8 V  
0 V  
T r  
T f  
Figure 12. Lumped Load For Single-ended Output Signals (for AC Parameters Measurement)  
Table 10.CPU Clock Current Select Function  
Board Target Trace/Term Z  
Reference R, IREF – VDD (3*RREF  
)
Output Current  
Voh @ Z  
50 Ohms  
RREF = 475 1ꢀ, IREF = 2.32 mA  
IOH = 6*IREF  
0.7V @ 50  
Ordering Information  
Part Number  
Package Type  
Product Flow  
CY28409OC  
CY28409OCT  
CY28409ZC  
CY28409ZCT  
PB-Free  
56-pin SSOP  
56-pin SSOP – Tape and Reel  
Commercial, 0q to 70qC  
Commercial, 0q to 70qC  
Commercial, 0q to 70qC  
Commercial, 0q to 70qC  
56-pin TSSOP  
56-pin TSSOP – Tape and Reel  
CY28409OXC  
CY28409OCXT  
CY28409ZXC  
CY28409ZXCT  
56-pin SSOP  
Commercial, 0q to 70qC  
Commercial, 0q to 70qC  
Commercial, 0q to 70qC  
Commercial, 0q to 70qC  
56-pin SSOP – Tape and Reel  
56-pin TSSOP  
56-pin TSSOP – Tape and Reel  
Rev 1.0,November 22, 2006  
Page 15 of 16  
CY28409  
Package Drawings and Dimensions  
56-lead Shrunk Small Outline Package O56  
56-Lead Thin Shrunk Small Outline Package, Type II (6 mm x 12 mm) Z56  
0.249[0.009]  
28  
1
DIMENSIONS IN MM[INCHES] MIN.  
MAX.  
7.950[0.313]  
8.255[0.325]  
REFERENCE JEDEC MO-153  
PACKAGE WEIGHT 0.42gms  
5.994[0.236]  
6.198[0.244]  
PART #  
Z5624 STANDARD PKG.  
ZZ5624 LEAD FREE PKG.  
29  
56  
13.894[0.547]  
14.097[0.555]  
1.100[0.043]  
MAX.  
GAUGE PLANE  
0.25[0.010]  
0.20[0.008]  
0.508[0.020]  
0.762[0.030]  
0.051[0.002]  
0.152[0.006]  
0.851[0.033]  
0.950[0.037]  
0.500[0.020]  
BSC  
0°-8°  
0.100[0.003]  
0.200[0.008]  
0.170[0.006]  
0.279[0.011]  
SEATING  
PLANE  
While SLI has reviewed all information herein for accuracy and reliability, Spectra Linear Inc. assumes no responsibility for the use of any cir-  
cuitry or for the infringement of any patents or other rights of third parties which would result from each use. This product is intended for use in  
normal commercial applications and is not warranted nor is it intended for use in life support, critical medical instruments, or any other applica-  
tion requiring extended temperature range, high reliability, or any other extraordinary environmental requirements unless pursuant to additional  
processing by Spectra Linear Inc., and expressed written agreement by Spectra Linear Inc. Spectra Linear Inc. reserves the right to change any  
circuitry or specification without notice.  
Rev 1.0, November 22, 2006  
Page 16 of 16  

相关型号:

CY28409_06

Clock Synthesizer with Differential SRC and CPU Outputs
CYPRESS

CY28410

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY28410

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR

CY28410-2

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR

CY28410-2

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY284108ZXC

Clock Generator, 400MHz, CMOS, PDSO56, 6 X 12 MM, LEAD FREE, TSSOP-56
SILICON

CY28410OC

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY28410OC

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR

CY28410OCT

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY28410OCT

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR

CY28410OXC

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY28410OXC

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR