CY28410OC [SPECTRALINEAR]

Clock Generator for Intel Grantsdale Chipset; 时钟发生器为英特尔的Grantsdale芯片组
CY28410OC
型号: CY28410OC
厂家: SPECTRALINEAR INC    SPECTRALINEAR INC
描述:

Clock Generator for Intel Grantsdale Chipset
时钟发生器为英特尔的Grantsdale芯片组

晶体 时钟发生器 外围集成电路 光电二极管
文件: 总17页 (文件大小:220K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY28410  
Clock Generator for Intel£ Grantsdale Chipset  
• 33 MHz PCI clock  
Features  
• Low-voltage frequency select input  
• I2C support with readback capabilities  
• Compliant with Intel£ CK410  
• Supports Intel P4 and Tejas CPU  
• Selectable CPU frequencies  
• Differential CPU clock pairs  
• 100 MHz differential SRC clocks  
• 96 MHz differential dot clock  
• 48 MHz USB clocks  
• Ideal Lexmark Spread Spectrum profile for maximum  
electromagnetic interference (EMI) reduction  
• 3.3V power supply  
• 56-pin SSOP and TSSOP packages  
CPU  
SRC  
PCI  
x 9  
REF  
x 1  
DOT96  
x 1  
USB_48  
x 1  
x2 / x3  
x6 / x7  
Block Diagram  
Pin Configuration  
VDD_REF  
REF  
VDD_PCI  
VSS_PCI  
PCI3  
1
2
3
4
5
6
7
8
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
PCI2  
PCI1  
PCI0  
FS_C/TEST_SEL  
REF  
VSS_REF  
XIN  
XOUT  
VDD_REF  
SDATA  
SCLK  
VSS_CPU  
CPUT0  
CPUC0  
VDD_CPU  
CPUT1  
CPUC1  
IREF  
VSSA  
VDDA  
CPUT2_ITP/SRCT7  
CPUC2_ITP/SRCC7  
VDD_SRC  
SRCT6  
XIN  
XTAL  
OSC  
XOUT  
PLL Ref Freq  
VDD_CPU  
PCI4  
PCI5  
VSS_PCI  
VDD_PCI  
PCIF0/ITP_EN  
PCIF1  
CPUT[0:1], CPUC[0:1],  
CPU(T/C)2_ITP]  
VDD_SRC  
Divider  
PLL1  
Network  
SRCT[1:6], SRCC[1:6]  
FS_[C:A]  
VTT_PWRGD#  
9
IREF  
PCIF2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
VDD_PCI  
PCI[0:5]  
VDD_48  
USB_48  
VSS_48  
DOT96T  
DOT96C  
VDD_PCIF  
PCIF[0:2]  
PD  
VDD_48 MHz  
FS_B/TEST_MODE  
VTT_PWRGD#/PD  
FS_A  
DOT96T  
DOT96C  
PLL2  
USB_48  
SRCT1  
SRCC1  
VDD_SRC  
SRCT2  
SRCC2  
SRCT3  
SRCC3  
SRC4-SATAT  
SRC4_SATAC  
VDD_SRC  
SRCC6  
SRCT5  
SRCC5  
VSS_SRC  
2
SDATA  
SCLK  
I C  
Logic  
56 SSOP/TSSOP  
Rev 1.0, November 21, 2006  
2200 Laurelwood Road, Santa Clara, CA 95054  
Page 1 of 17  
Tel:(408) 855-0555 Fax:(408) 855-0550  
www.SpectraLinear.com  
CY28410  
Pin Definitions  
Pin No.  
Name  
CPUT/C  
Type  
Description  
44,43,41,40  
36,35  
O, DIF Differential CPU clock outputs.  
CPUT2_ITP/SRCT7, O, DIF Selectable Differential CPU or SRC clock output.  
ITP_EN = 0 @ VTT_PWRGD# assertion = SRC7  
ITP_EN = 1 @ VTT_PWRGD# assertion = CPU2  
CPUC2_ITP/SRCC7  
14,15  
18  
DOT96T, DOT96C  
FS_A  
O, DIF Fixed 96-MHz clock output.  
I
3.3V tolerant input for CPU frequency selection.  
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.  
16  
53  
39  
FS_B/TEST_MODE  
FS_C/TEST_SEL  
IREF  
I
3.3V tolerant input for CPU frequency selection. Selects Ref/N or Hi-Z when  
in test mode  
0 = Hi-Z,1 = Ref/N  
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.  
I
I
3.3V tolerant input for CPU frequency selection. Selects test mode if pulled  
to VIHFS_C when VTT_PWRGD# is asserted low.  
Refer to DC Electrical Specifications table for VILFS_C,VIMFS_C,VIHFS_C specifi-  
cations.  
A Precision resistor is attached to this pin, which is connected to the internal  
current reference.  
54,55,56,3,4,5 PCI  
O, SE 33-MHz clocks.  
O, SE 33-MHz clocks.  
9,10  
8
PCIF  
PCIF0/ITP_EN  
I/O, SE 33-MHz clock/CPU2 select (sampled on the VTT_PWRGD# assertion).  
1 = CPU2_ITP, 0 = SRC7  
52  
REF  
O, SE Reference clock. 3.3V 14.318 MHz clock output.  
46  
SCLK  
SDATA  
I
SMBus-compatible SCLOCK.  
SMBus-compatible SDATA.  
47  
I/O  
26,27  
SRC4_SATAT,  
SRC4_SATAC  
O, DIF Differential serial reference clock. recommended output for SATA.  
19,20,22,23,2 SRCT/C  
4,25,31,30,33,  
32  
O, DIF Differential serial reference clocks.  
12  
USB_48  
I/O, SE Fixed 48 MHz clock output.  
PWR 3.3V power supply for outputs.  
PWR 3.3V power supply for outputs.  
PWR 3.3V power supply for outputs.  
PWR 3.3V power supply for outputs.  
PWR 3.3V power supply for outputs.  
PWR 3.3V power supply for PLL.  
GND Ground for outputs.  
11  
VDD_48  
42  
VDD_CPU  
VDD_PCI  
VDD_REF  
VDD_SRC  
VDDA  
1,7  
48  
21,28,34  
37  
13  
VSS_48  
45  
VSS_CPU  
VSS_PCI  
VSS_REF  
VSS_SRC  
VSSA  
GND Ground for outputs.  
2,6  
51  
GND Ground for outputs.  
GND Ground for outputs.  
29  
GND Ground for outputs.  
38  
GND Ground for PLL.  
17  
VTT_PWRGD#/PD  
I, PU 3.3V LVTTL input is a level sensitive strobe used to latch the USB_48/FS_A,  
FS_B, FS_C/TEST_SEL and PCIF0/ITP_EN inputs. After VTT_PWRGD#  
(active low) assertion, this pin becomes a realtime input for asserting  
power-down (active high)  
50  
49  
XIN  
I
14.318-MHz Crystal Input  
XOUT  
O, SE 14.318-MHz Crystal Output  
Rev 1.0,November 21, 2006  
Page 2 of 17  
CY28410  
samples the FS_A, FS_B and FS_C input values. For all logic  
levels of FS_A, FS_B and FS_C, VTT_PWRGD# employs a  
Frequency Select Pins (FS_A, FS_B and FS_C)  
Host clock frequency selection is achieved by applying the  
appropriate logic levels to FS_A, FS_B, FS_C inputs prior to  
VTT_PWRGD# assertion (as seen by the clock synthesizer).  
Upon VTT_PWRGD# being sampled low by the clock chip  
(indicating processor VTT voltage is stable), the clock chip  
one-shot functionality in that once  
a valid low on  
VTT_PWRGD# has been sampled, all further VTT_PWRGD#,  
FS_A, FS_B and FS_C transitions will be ignored, except in  
test mode.  
Table 1. Frequency Select Table FS_A, FS_B and FS_C  
FS_C  
FS_B  
FS_A  
CPU  
100 MHz  
133 MHz  
200 MHz  
266 MHz  
Hi-Z  
SRC  
100 MHz  
100 MHz  
100 MHz  
100 MHz  
Hi-Z  
PCIF/PCI  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
Hi-Z  
REF0  
14.318 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
Hi-Z  
DOT96  
96 MHz  
96 MHz  
96 MHz  
96 MHz  
Hi-Z  
USB  
48 MHz  
48 MHz  
48 MHz  
48 MHz  
Hi-Z  
MID  
0
0
0
1
0
0
1
1
1
1
0
0
x
0
1
0
0
1
1
REF/2  
REF/8  
REF/24  
REF/24  
REF  
REF  
REF  
1
REF/2  
REF/8  
REF  
REF  
REF  
Serial Data Interface  
Data Protocol  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface, various device functions, such as individual  
clock output buffers, can be individually enabled or disabled.  
The registers associated with the Serial Data Interface initial-  
izes to their default setting upon power-up, and therefore use  
of this interface is optional. Clock device register changes are  
normally made upon system initialization, if any are required.  
The interface cannot be used during system operation for pow-  
er management functions.  
The clock driver serial protocol accepts byte write, byte read,  
block write, and block read operations from the controller. For  
block write/read operation, the bytes must be accessed in se-  
quential order from lowest to highest byte (most significant bit  
first) with the ability to stop after any complete byte has been  
transferred. For byte write and byte read operations, the sys-  
tem controller can access individually indexed bytes. The off-  
set of the indexed byte is encoded in the command code, as  
described in Table 2.  
The block write and block read protocol is outlined in Table 3  
while Table 4 outlines the corresponding byte write and byte  
read protocol. The slave receiver address is 11010010 (D2h).  
Table 2. Command Code Definition  
Bit  
Description  
7
0 = Block read or block write operation, 1 = Byte read or byte write operation  
(6:0)  
Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be  
'0000000'  
Table 3. Block Read and Block Write Protocol  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
8:2  
9
Slave address – 7 bits  
Write  
8:2  
9
Slave address – 7 bits  
Write  
10  
Acknowledge from slave  
Command Code – 8 bits  
Acknowledge from slave  
10  
Acknowledge from slave  
Command Code – 8 bits  
Acknowledge from slave  
Repeat start  
18:11  
19  
18:11  
19  
27:20  
Byte Count – 8 bits  
(Skip this step if I2C_EN bit set)  
20  
28  
36:29  
37  
Acknowledge from slave  
Data byte 1 – 8 bits  
27:21  
28  
Slave address – 7 bits  
Read = 1  
Acknowledge from slave  
Data byte 2 – 8 bits  
29  
Acknowledge from slave  
Byte Count from slave – 8 bits  
45:38  
37:30  
Rev 1.0,November 21, 2006  
Page 3 of 17  
CY28410  
Table 3. Block Read and Block Write Protocol (continued)  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
46  
....  
....  
....  
....  
Description  
Acknowledge from slave  
Bit  
38  
Acknowledge  
Data Byte /Slave Acknowledges  
Data Byte N –8 bits  
Acknowledge from slave  
Stop  
46:39  
47  
Data byte 1 from slave – 8 bits  
Acknowledge  
55:48  
56  
Data byte 2 from slave – 8 bits  
Acknowledge  
....  
Data bytes from slave / Acknowledge  
Data Byte N from slave – 8 bits  
NOT Acknowledge  
....  
....  
....  
Stop  
Table 4. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
8:2  
9
Slave address – 7 bits  
Write  
8:2  
9
Slave address – 7 bits  
Write  
10  
Acknowledge from slave  
Command Code – 8 bits  
Acknowledge from slave  
Data byte – 8 bits  
Acknowledge from slave  
Stop  
10  
Acknowledge from slave  
Command Code – 8 bits  
Acknowledge from slave  
Repeated start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
27:21  
28  
Slave address – 7 bits  
Read  
29  
29  
Acknowledge from slave  
Data from slave – 8 bits  
NOT Acknowledge  
Stop  
37:30  
38  
39  
Control Registers  
Byte 0:Control Register 0  
Bit  
@Pup  
Name  
Description  
7
1
CPUT2_ITP/SRCT7  
CPUC2_ITP/SRCC7  
CPU[T/C]2_ITP/SRC[T/C]7 Output Enable  
0 = Disable (Hi-Z), 1 = Enable  
6
5
4
3
2
1
0
1
1
1
1
1
1
1
SRC[T/C]6  
SRC[T/C]5  
SRC[T/C]4  
SRC[T/C]3  
SRC[T/C]2  
SRC[T/C]1  
Reserved  
SRC[T/C]6 Output Enable  
0 = Disable (Hi-Z), 1 = Enable  
SRC[T/C]5 Output Enable  
0 = Disable (Hi-Z), 1 = Enable  
SRC[T/C]4 Output Enable  
0 = Disable (Hi-Z), 1 = Enable  
SRC[T/C]3 Output Enable  
0 = Disable (Hi-Z), 1 = Enable  
SRC[T/C]2 Output Enable  
0 = Disable (Hi-Z), 1 = Enable  
SRC[T/C]1 Output Enable  
0 = Disable (Hi-Z), 1 = Enable  
Reserved, Set = 1  
Rev 1.0,November 21, 2006  
Page 4 of 17  
CY28410  
Byte 1: Control Register 1  
Bit  
@Pup  
Name  
Description  
7
1
PCIF0  
PCIF0 Output Enable  
0 = Disabled, 1 = Enabled  
6
5
4
1
1
1
DOT_96T/C  
USB_48  
REF  
DOT_96 MHz Output Enable  
0 = Disable (Hi-Z), 1 = Enabled  
USB_48 MHz Output Enable  
0 = Disabled, 1 = Enabled  
REF Output Enable  
0 = Disabled, 1 = Enabled  
3
2
0
1
Reserved  
Reserved  
CPU[T/C]1  
CPU[T/C]1 Output Enable  
0 = Disable (Hi-Z), 1 = Enabled  
1
0
1
0
CPU[T/C]0  
CPU[T/C]0 Output Enable  
0 = Disable (Hi-Z), 1 = Enabled  
CPUT/C  
SRCT/C  
PCIF  
Spread Spectrum Enable  
0 = Spread off, 1 = Spread on  
PCI  
Byte 2: Control Register 2  
Bit  
@Pup  
Name  
Description  
7
1
PCI5  
PCI5 Output Enable  
0 = Disabled, 1 = Enabled  
6
5
4
3
2
1
0
1
1
1
1
1
1
1
PCI4  
PCI3  
PCI2  
PCI1  
PCI0  
PCIF2  
PCIF1  
PCI4 Output Enable  
0 = Disabled, 1 = Enabled  
PCI3 Output Enable  
0 = Disabled, 1 = Enabled  
PCI2 Output Enable  
0 = Disabled, 1 = Enabled  
PCI1 Output Enable  
0 = Disabled, 1 = Enabled  
PCI0 Output Enable  
0 = Disabled, 1 = Enabled  
PCIF2 Output Enable  
0 = Disabled, 1 = Enabled  
PCIF1 Output Enable  
0 = Disabled, 1 = Enabled  
Byte 3: Control Register 3  
Bit  
@Pup  
Name  
Description  
7
0
SRC7  
Allow control of SRC[T/C]7 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with SW PCI_STP#  
6
5
4
3
2
0
0
0
0
0
SRC6  
SRC5  
SRC4  
SRC3  
SRC2  
Allow control of SRC[T/C]6 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with SW PCI_STP#  
Allow control of SRC[T/C]5 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with SW PCI_STP#  
Allow control of SRC[T/C]4 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with SW PCI_STP#  
Allow control of SRC[T/C]3 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with SW PCI_STP#  
Allow control of SRC[T/C]2 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with SW PCI_STP#  
Rev 1.0,November 21, 2006  
Page 5 of 17  
CY28410  
Byte 3: Control Register 3 (continued)  
Bit  
@Pup  
Name  
Description  
1
0
SRC1  
Allow control of SRC[T/C]1 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with SW PCI_STP#  
0
0
Reserved  
Reserved, Set = 0  
Byte 4: Control Register 4  
Bit  
7
@Pup  
Name  
Description  
0
0
Reserved  
DOT96[T/C]  
Reserved, Set = 0  
6
DOT_PWRDWN Drive Mode  
0 = Driven in PWRDWN, 1 = Hi-Z  
5
4
3
0
0
0
PCIF2  
PCIF1  
PCIF0  
Allow control of PCIF2 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with SW PCI_STP#  
Allow control of PCIF1 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with SW PCI_STP#  
Allow control of PCIF0 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with SW PCI_STP#  
2
1
0
1
1
1
Reserved  
Reserved  
Reserved  
Reserved, Set = 1  
Reserved, Set = 1  
Reserved, Set = 1  
Byte 5: Control Register 5  
Bit  
@Pup  
Name  
Description  
7
0
SRC[T/C][7:0]  
SRC[T/C] Stop Drive Mode  
0 = Driven when SW PCI_STP# asserted,1 = Hi-Z when PCI_STP#  
asserted  
6
5
4
3
0
0
0
0
Reserved  
Reserved  
Reserved, Set = 0  
Reserved, Set = 0  
Reserved, Set = 0  
Reserved  
SRC[T/C][7:0]  
SRC[T/C] PWRDWN Drive Mode  
0 = Driven when PD asserted,1 = Hi-Z when PD asserted  
2
1
0
0
0
0
CPU[T/C]2  
CPU[T/C]1  
CPU[T/C]0  
CPU[T/C]2 PWRDWN Drive Mode  
0 = Driven when PD asserted,1 = Hi-Z when PD asserted  
CPU[T/C]1 PWRDWN Drive Mode  
0 = Driven when PD asserted,1 = Hi-Z when PD asserted  
CPU[T/C]0 PWRDWN Drive Mode  
0 = Driven when PD asserted,1 = Hi-Z when PD asserted  
Byte 6: Control Register 6  
Bit  
@Pup  
Name  
Description  
7
0
REF/N or Hi-Z Select  
1 = REF/N Clock, 0 = Hi-Z  
6
0
Test Clock Mode Entry Control  
1 = REF/N or Hi-Z mode, 0 = Normal operation  
5
4
0
1
Reserved  
REF  
Reserved, Set = 0  
REF Output Drive Strength  
0 = Low, 1 = High  
3
1
PCIF, SRC, PCI  
SW PCI_STP# Function  
0=SW PCI_STP assert, 1 = SW PCI_STP deassert  
When this bit is set to 0, all STOPPABLE PCI, PCIF and SRC outputs will  
be stopped in a synchronous manner with no short pulses.  
When this bit is set to 1, all STOPPED PCI, PCIF and SRC outputs will  
resume in a synchronous manner with no short pulses.  
Rev 1.0,November 21, 2006  
Page 6 of 17  
CY28410  
Byte 6: Control Register 6 (continued)  
Bit  
@Pup  
Name  
Description  
2
Externally  
selected  
CPUT/C  
FS_C. Reflects the value of the FS_C pin sampled on power-up  
0 = FS_C was low during VTT_PWRGD# assertion  
1
0
Externally  
selected  
CPUT/C  
CPUT/C  
FS_B. Reflects the value of the FS_B pin sampled on power-up  
0 = FS_B was low during VTT_PWRGD# assertion  
Externally  
selected  
FS_A. Reflects the value of the FS_A pin sampled on power-up  
0 = FS_A was low during VTT_PWRGD# assertion  
Byte 7: Vendor ID  
Bit  
7
@Pup  
Name  
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
Description  
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
0
0
1
0
1
0
0
0
6
5
4
3
2
Vendor ID Bit 2  
Vendor ID Bit 2  
1
Vendor ID Bit 1  
Vendor ID Bit 1  
0
Vendor ID Bit 0  
Vendor ID Bit 0  
Crystal Recommendations  
Crystal Loading  
The CY28410 requires a Parallel Resonance Crystal. Substi-  
tuting a series resonance crystal will cause the CY28410 to  
operate at the wrong frequency and \violate the ppm specifi-  
cation. For most applications there is a 300ppm frequency shift  
between series and parallel crystals due to incorrect loading.  
Crystal loading plays a critical role in achieving low ppm perfor-  
mance. To realize low ppm performance, the total capacitance  
the crystal will see must be considered to calculate the appro-  
priate capacitive loading (CL).  
The following diagram shows a typical crystal configuration  
using the two trim capacitors. An important clarification for the  
following discussion is that the trim capacitors are in series  
with the crystal not parallel. It’s a common misconception that  
load capacitors are in parallel with the crystal and should be  
approximately equal to the load capacitance of the crystal.  
This is not true.  
Table 5. Crystal Recommendations  
Frequency  
(Fund)  
Drive  
(max.)  
ShuntCap Motional  
(max.)  
Tolerance  
(max.)  
Stability  
(max.)  
Aging  
(max.)  
Cut  
Loading Load Cap  
Parallel 20 pF  
(max.)  
14.31818 MHz  
AT  
0.1 mW  
5 pF  
0.016 pF  
35 ppm  
30 ppm  
5 ppm  
Rev 1.0,November 21, 2006  
Page 7 of 17  
CY28410  
Figure 1. Crystal Capacitive Clarification  
Calculating Load Capacitors  
In addition to the standard external trim capacitors, trace  
capacitance and pin capacitance must also be considered to  
correctly calculate crystal loading. As mentioned previously,  
the capacitance on each side of the crystal is in series with the  
crystal. This means the total capacitance on each side of the  
crystal must be twice the specified crystal load capacitance  
(CL). While the capacitance on each side of the crystal is in  
series with the crystal, trim capacitors (Ce1,Ce2) should be  
calculated to provide equal capacitive loading on both sides.  
Clock Chip  
Ci2  
Ci1  
Pin  
3 to 6p  
X2  
X1  
Cs2  
Cs1  
Trace  
2.8pF  
XTAL  
Ce1  
Ce2  
Trim  
33pF  
Figure 2. Crystal Loading Example  
As mentioned previously, the capacitance on each side of the  
crystal is in series with the crystal. This mean the total capac-  
itance on each side of the crystal must be twice the specified  
load capacitance (CL). While the capacitance on each side of  
the crystal is in series with the crystal, trim capac-  
itors(Ce1,Ce2) should be calculated to provide equal capaci-  
tance loading on both sides.  
Load Capacitance (each side)  
Ce = 2 * CL – (Cs + Ci)  
Total Capacitance (as seen by the crystal)  
1
CLe  
=
Use the following formulas to calculate the trim capacitor  
values fro Ce1 and Ce2.  
1
Ce2 + Cs2 + Ci2  
1
Ce1 + Cs1 + Ci1  
(
)
+
CL ................................................... Crystal load capacitance  
(lead frame, bond wires etc.)  
CLe .........................................Actual loading seen by crystal  
using standard value trim capacitors  
PD (Power-down) Clarification  
The VTT_PWRGD# /PD pin is a dual function pin. During initial  
power-up, the pin functions as VTT_PWRGD#. Once  
VTT_PWRGD# has been sampled low by the clock chip, the  
pin assumes PD functionality. The PD pin is an asynchronous  
active high input used to shut off all clocks cleanly prior to  
Ce .....................................................External trim capacitors  
Cs ............................................. Stray capacitance (terraced)  
Ci .......................................................... Internal capacitance  
Rev 1.0,November 21, 2006  
Page 8 of 17  
CY28410  
shutting off power to the device. This signal is synchronized  
internal to the device prior to powering down the clock synthe-  
sizer. PD is also an asynchronous input for powering up the  
system. When PD is asserted high, all clocks are driven to a  
low value and held prior to turning off the VCOs and the crystal  
oscillator.  
below shows CPUT = 133 MHz and PD drive mode = ‘1’ for all  
differential outputs. This diagram and description is applicable  
to valid CPU frequencies 100,133,166,200,266,333, and 400  
MHz. In the event that PD mode is desired as the initial  
power-on state, PD must be asserted high in less than 10 uS  
after asserting VTT_PWRGD#.  
PD (Power-down) – Assertion  
PD Deassertion  
When PD is sampled high by two consecutive rising edges of  
CPUC, all single-ended outputs will be held low on their next  
high to low transition and differential clocks must be held high  
or Hi-Z (depending on the state of the control register drive  
mode bit) on the next diff clock# high to low transition within 4  
clock periods. When the SMBus PD drive mode bit corre-  
sponding to the differential (CPU, SRC, and DOT) clock output  
of interest is programmed to ‘0’, the clock output must be held  
with “Diff clock” pin driven high at 2 x Iref, and “Diff clock#”  
tristate. If the control register PD drive mode bit corresponding  
to the output of interest is programmed to “1”, then both the  
“Diff clock” and the “Diff clock#” are Hi-Z. Note the example  
The power-up latency is less than 1.8 ms. This is the time from  
the deassertion of the PD pin or the ramping of the power  
supply until the time that stable clocks are output from the  
clock chip. All differential outputs stopped in a three-state  
condition resulting from power-down must be driven high in  
less than 300 Ps of PD deassertion to a voltage greater than  
200 mV. After the clock chip’s internal PLL is powered up and  
locked, all outputs are enabled within a few clock cycles of  
each other. Below is an example showing the relationship of  
clocks coming up.  
PD  
CPUT, 133MHz  
CPUC, 133MHz  
SRCT 100MHz  
SRCC 100MHz  
USB, 48MHz  
DOT96T  
DOT96C  
PCI, 33 MHz  
REF  
Figure 3. Power-down Assertion Timing Waveform  
Rev 1.0,November 21, 2006  
Page 9 of 17  
CY28410  
Tstable  
<1.8nS  
PD  
CPUT, 133MHz  
CPUC, 133MHz  
SRCT 100MHz  
SRCC 100MHz  
USB, 48MHz  
DOT96T  
DOT96C  
PCI, 33MHz  
REF  
Tdrive_PWRDN#  
<300PS, >200mV  
Figure 4. Power-down Deassertion Timing Waveform  
FS_A, FS_B,FS_C  
VTT_PWRGD#  
PWRGD_VRM  
0.2-0.3mS  
Delay  
Wait for  
VTT_PWRGD#  
Device is not affected,  
VTT_PWRGD# is ignored  
Sample Sels  
State 2  
VDD Clock Gen  
Clock State  
State 0  
Off  
State 1  
State 3  
On  
Clock Outputs  
Clock VCO  
On  
Off  
Figure 5. VTT_PWRGD# Timing Diagram  
S2  
S1  
VTT_PWRGD# = Low  
Delay  
>0.25mS  
Sample  
Inputs straps  
VDD_A = 2.0V  
Wait for <1.8ms  
S0  
S3  
VDD_A = off  
Normal  
Operation  
Enable Outputs  
Power Off  
VTT_PWRGD# = toggle  
Figure 6. Clock Generator Power-up/Run State Diagram  
Rev 1.0,November 21, 2006  
Page 10 of 17  
CY28410  
Absolute Maximum Conditions  
Parameter  
VDD  
Description  
Core Supply Voltage  
Condition  
Min.  
–0.5  
–0.5  
Max.  
4.6  
Unit  
V
VDD_A  
VIN  
Analog Supply Voltage  
Input Voltage  
4.6  
V
Relative to VSS  
–0.5 VDD + 0.5 VDC  
TS  
Temperature, Storage  
Temperature, Operating Ambient  
Temperature, Junction  
Non-functional  
Functional  
Functional  
SSOP  
–65  
0
150  
70  
°C  
°C  
TA  
TJ  
150  
°C  
ØJC  
Dissipation, Junction to Case  
(Mil-Spec 883E Method 1012.1)  
39.56  
°C/W  
TSSOP  
20.62  
45.29  
62.26  
ØJA  
Dissipation, Junction to Ambient  
JEDEC (JESD 51)  
SSOP  
°C/W  
V
TSSOP  
ESDHBM  
UL-94  
MSL  
ESD Protection (Human Body Model)  
Flammability Rating  
MIL-STD-883, Method 3015  
At 1/8 in.  
2000  
V–0  
1
Moisture Sensitivity Level  
Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing  
is NOT required.  
DC Electrical Specifications  
Parameter  
Description  
Condition  
Min.  
Max.  
Unit  
VDD_A,  
3.3V Operating Voltage  
3.3 5%  
3.135  
3.465  
V
VDD_REF,  
VDD_PCI,  
VDD_3V66,  
VDD_48,  
VDD_CPU  
VILI2C  
VIHI2C  
VIL_FS  
VIH_FS  
VILFS_C  
VIMFS_C  
VIH FS_C  
VIL  
Input Low Voltage  
SDATA, SCLK  
SDATA, SCLK  
2.2  
1.0  
V
V
Input High Voltage  
FS_A/FS_B Input Low Voltage  
FS_A/FS_B Input High Voltage  
FS_C Low Range  
VSS – 0.3  
0.7  
0.35  
V
VDD + 0.5  
0.35  
V
0
V
FS_C Mid Range  
0.7  
1.7  
V
FS_C High Range  
2.1  
VDD  
V
Input Low Voltage  
VSS – 0.5  
2.0  
0.8  
V
VIH  
Input High Voltage  
VDD + 0.5  
V
IIL  
Input Low Leakage Current  
Input High Leakage Current  
Output Low Voltage  
except internal pull-up resistors, 0 < VIN < VDD  
except internal pull-down resistors, 0 < VIN < VDD  
IOL = 1 mA  
–5  
PA  
PA  
V
IIH  
5
0.4  
VOL  
VOH  
Output High Voltage  
High-impedance Output Current  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
IOH = –1 mA  
2.4  
V
IOZ  
–10  
10  
PA  
pF  
pF  
nH  
V
CIN  
2
5
COUT  
LIN  
3
6
7
VXIH  
Xin High Voltage  
0.7VDD  
VDD  
0.3VDD  
550  
70  
VXIL  
Xin Low Voltage  
0
V
IDD3.3V  
IPD3.3V  
Dynamic Supply Current  
Power-down Supply Current  
At max load and freq per Figure 8  
mA  
mA  
PD asserted, Outputs driven  
Rev 1.0,November 21, 2006  
Page 11 of 17  
CY28410  
DC Electrical Specifications (continued)  
Parameter  
Description  
Condition  
PD asserted, Outputs Hi-Z  
Min.  
Max.  
Unit  
IPD3.3V  
Power-down Supply Current  
2
mA  
AC Electrical Specifications  
Parameter  
Description  
Condition  
Min.  
Max.  
Unit  
Crystal  
TDC  
XIN Duty Cycle  
XIN Period  
The device will operate reliably with input  
duty cycles up to 30/70 but the REF clock  
duty cycle will not be within specification  
47.5  
52.5  
71.0  
%
TPERIOD  
When XIN is driven from an external clock  
source  
69.841  
ns  
TR / TF  
TCCJ  
XIN Rise and Fall Times  
XIN Cycle to Cycle Jitter  
Long-term Accuracy  
Measured between 0.3VDD and 0.7VDD  
As an average over 1-Ps duration  
Over 150 ms  
10.0  
500  
300  
ns  
ps  
LACC  
ppm  
CPU at 0.7V  
TDC  
CPUT and CPUC Duty Cycle  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
43  
57  
%
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIODSS  
100-MHz CPUT and CPUC Period  
133-MHz CPUT and CPUC Period  
200-MHz CPUT and CPUC Period  
266-MHz CPUT and CPUC Period  
9.997001 10.00300 ns  
7.497751 7.502251 ns  
4.998500 5.001500 ns  
3.748875 3.751125 ns  
100-MHz CPUT and CPUC Period,  
SSC  
9.997001 10.05327 ns  
7.497751 7.539950 ns  
4.998500 5.026634 ns  
3.748875 3.769975 ns  
9.912001 10.08800 ns  
7.412751 7.587251 ns  
9.912001 10.13827 ns  
7.412751 7.624950 ns  
4.913500 5.111634 ns  
3.663875 3.854975 ns  
2.414250 2.598317 ns  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODAbs  
TPERIODAbs  
133-MHz CPUT and CPUC Period,  
SSC  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
200-MHz CPUT and CPUC Period,  
SSC  
266-MHz CPUT and CPUC Period,  
SSC  
100-MHz CPUT and CPUC Absolute Measured at crossing point VOX  
period  
133-MHz CPUT and CPUC Absolute Measured at crossing point VOX  
period  
TPERIODSSAbs 100-MHz CPUT and CPUC Absolute Measured at crossing point VOX  
period, SSC  
TPERIODSSAbs 133-MHz CPUT and CPUC Absolute Measured at crossing point VOX  
period, SSC  
TPERIODSSAbs 200-MHz CPUT and CPUC Absolute Measured at crossing point VOX  
period, SSC  
TPERIODSSAbs 266-MHz CPUT and CPUC Absolute Measured at crossing point VOX  
period, SSC  
TPERIODSSAbs 400-MHz CPUT and CPUC Absolute Measured at crossing point VOX  
period, SSC  
TSKEW  
Any CPUT/C to CPUT/C Clock Skew, Measured at crossing point VOX  
SSC  
100  
ps  
TCCJ2  
TCCJ  
CPU2_ITP Cycle to Cycle Jitter  
CPUT/C Cycle to Cycle Jitter  
CPU2_ITP to CPU0 Clock Skew  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
125  
115  
150  
ps  
ps  
ps  
TSKEW2  
TR / TF  
CPUT and CPUC Rise and Fall Times Measured from VOL = 0.175 to VOH  
0.525V  
=
175  
1100  
ps  
Rev 1.0,November 21, 2006  
Page 12 of 17  
CY28410  
AC Electrical Specifications (continued)  
Parameter  
TRFM  
Description  
Rise/Fall Matching  
Condition  
Min.  
Max.  
Unit  
Determined as a fraction of 2*(TR – TF)/(TR  
+ TF)  
20  
%
'TR  
Rise Time Variation  
125  
125  
850  
ps  
ps  
'TF  
Fall Time Variation  
VHIGH  
VLOW  
VOX  
Voltage High  
Math averages Figure 8  
Math averages Figure 8  
660  
–150  
250  
mV  
mV  
mV  
Voltage Low  
Crossing Point Voltage at 0.7V Swing  
Maximum Overshoot Voltage  
550  
VOVS  
VHIGH  
0.3  
+
V
VUDS  
VRB  
Minimum Undershoot Voltage  
Ring Back Voltage  
–0.3  
V
V
See Figure 8. Measure SE  
0.2  
SRC  
TDC  
SRCT and SRCC Duty Cycle  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
45  
55  
%
TPERIOD  
100-MHz SRCT and SRCC Period  
9.997001 10.00300 ns  
9.997001 10.05327 ns  
TPERIODSS  
100-MHz SRCT and SRCC Period,  
SSC  
TPERIODAbs  
100-MHz SRCT and SRCC Absolute Measured at crossing point VOX  
Period  
10.12800 9.872001 ns  
9.872001 10.17827 ns  
TPERIODSSAbs 100-MHz SRCT and SRCC Absolute Measured at crossing point VOX  
Period, SSC  
TSKEW  
TCCJ  
SRC Skew  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
250  
125  
300  
ps  
ps  
SRCT/C Cycle to Cycle Jitter  
SRCT/C Long Term Accuracy  
LACC  
ppm  
TR / TF  
SRCT and SRCC Rise and Fall Times Measured from VOL = 0.175 to VOH  
0.525V  
=
175  
1100  
20  
ps  
%
TRFM  
Rise/Fall Matching  
Determined as a fraction of 2*(TR – TF)/(TR  
+ TF)  
'TR  
Rise Time Variation  
125  
125  
850  
ps  
ps  
'TF  
Fall Time Variation  
VHIGH  
VLOW  
VOX  
Voltage High  
Math averages Figure 8  
Math averages Figure 8  
660  
–150  
250  
mV  
mV  
mV  
Voltage Low  
Crossing Point Voltage at 0.7V Swing  
Maximum Overshoot Voltage  
550  
VOVS  
VHIGH  
0.3  
+
V
VUDS  
VRB  
Minimum Undershoot Voltage  
Ring Back Voltage  
–0.3  
V
V
See Figure 8. Measure SE  
0.2  
PCI/PCIF  
TDC  
PCI Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
45  
55  
%
TPERIOD  
Spread Disabled PCIF/PCI Period  
29.99100 30.00900 ns  
29.9910 30.15980 ns  
29.49100 30.50900 ns  
29.49100 30.65980 ns  
TPERIODSS  
Spread Enabled PCIF/PCI Period,  
SSC  
TPERIODAbs  
Spread Disabled PCIF/PCI Period  
Measurement at 1.5V  
Measurement at 1.5V  
TPERIODSSAbs Spread Enabled PCIF/PCI Period,  
SSC  
THIGH  
TLOW  
PCIF and PCI high time  
Measurement at 2.4V  
11.5  
11.5  
0.5  
ns  
ns  
ns  
PCIF and PCI low time  
Measurement at 0.4V  
TR / TF  
PCIF and PCI rise and fall times  
Measured between 0.8V and 2.0V  
2.0  
Rev 1.0,November 21, 2006  
Page 13 of 17  
CY28410  
AC Electrical Specifications (continued)  
Parameter  
TSKEW  
Description  
Condition  
Min.  
Max.  
500  
Unit  
ps  
Any PCI clock to Any PCI clock Skew Measurement at 1.5V  
TCCJ  
PCIF and PCI Cycle to Cycle Jitter  
Measurement at 1.5V  
500  
ps  
DOT  
TDC  
DOT96T and DOT96C Duty Cycle  
DOT96T and DOT96C Period  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
45  
55  
%
TPERIOD  
10.41354 10.41979 ns  
10.16354 10.66979 ns  
TPERIODAbs  
DOT96T and DOT96C Absolute  
Period  
TCCJ  
DOT96T/C Cycle to Cycle Jitter  
DOT96T/C Long Term Accuracy  
Measured at crossing point VOX  
Measured at crossing point VOX  
250  
100  
ps  
LACC  
ppm  
TR / TF  
DOT96T and DOT96C Rise and Fall Measured from VOL = 0.175 to VOH =  
175  
1100  
20  
ps  
%
Times  
0.525V  
TRFM  
Rise/Fall Matching  
Determined as a fraction of 2*(TR – TF)/(TR  
+ TF)  
'TR  
Rise Time Variation  
125  
125  
850  
ps  
ps  
'TF  
Fall Time Variation  
VHIGH  
VLOW  
VOX  
Voltage High  
Math averages Figure 8  
Math averages Figure 8  
660  
–150  
250  
mV  
mV  
mV  
Voltage Low  
Crossing Point Voltage at 0.7V Swing  
Maximum Overshoot Voltage  
550  
VOVS  
VHIGH  
0.3  
+
V
VUDS  
VRB  
Minimum Undershoot Voltage  
Ring Back Voltage  
–0.3  
V
V
See Figure 8. Measure SE  
0.2  
USB  
TDC  
Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 2.4V  
Measurement at 0.4V  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
45  
55  
%
TPERIOD  
TPERIODAbs  
THIGH  
Period  
20.83125 20.83542 ns  
20.48125 21.18542 ns  
Absolute Period  
USB high time  
USB low time  
8.094  
7.694  
0.475  
10.036  
9.836  
1.4  
ns  
ns  
ns  
ps  
TLOW  
TR / TF  
TCCJ  
Rise and Fall Times  
Cycle to Cycle Jitter  
USB Long Term Accuracy  
350  
LACC  
100  
ppm  
REF  
TDC  
REF Duty Cycle  
Measurement at 1.5V  
45  
55  
%
TPERIOD  
TPERIODAbs  
TR / TF  
REF Period  
Measurement at 1.5V  
69.8203 69.8622 ns  
68.82033 70.86224 ns  
REF Absolute Period  
REF Rise and Fall Times  
REF Cycle to Cycle Jitter  
Measurement at 1.5V  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
0.35  
2.0  
V/ns  
ps  
TCCJ  
1000  
ENABLE/DISABLE and SET-UP  
TSTABLE Clock Stabilization from Power-up  
TSS  
10.0  
0
1.8  
ms  
ns  
ns  
Stopclock Set-up Time  
Stopclock Hold Time  
TSH  
Rev 1.0,November 21, 2006  
Page 14 of 17  
CY28410  
Test and Measurement Set-up  
For PCI Single-ended Signals and Reference  
The following diagram shows the test load configurations for  
the single-ended PCI, USB, and REF output signals.  
Measurement  
Point  
ꢂꢃ:  
ꢂꢃ:  
ꢀꢁ:  
5pF  
PCI/  
USB  
Measurement  
Point  
ꢀꢁ:  
5pF  
Measurement  
Point  
5pF  
ꢂꢃ:  
ꢂꢃ:  
ꢂꢃ:  
ꢀꢁ:  
Measurement  
Point  
5pF  
ꢀꢁ:  
REF  
Measurement  
Point  
ꢀꢁ:  
5pF  
Figure 7. Single-ended Load Configuration  
For Differential CPU, SRC and DOT96 Output Signals  
The following diagram shows the test load configuration for the  
differential CPU and SRC outputs.  
M e a s u re m e n t  
P o in t  
ꢄ ꢄ :  
C P U T  
S R C T  
D O T 9 6 T  
2 p F  
ꢅ ꢆ ꢇꢆ :  
ꢀ ꢃ ꢃ : ꢊD iffe re n tia l  
M e a s u re m e n t  
P o in t  
2 p F  
ꢄ ꢄ :  
C P U C  
S R C C  
D O T 9 6 C  
IR E F  
ꢅ ꢆ ꢇꢆ :  
ꢅ ꢈ ꢉ :  
Figure 8. 0.7V Single-ended Load Configuration  
3 .3 V s ig n a ls  
T D C  
-
-
3 .3 V  
2 .4 V  
1 .5 V  
0 .4 V  
0 V  
T R  
T F  
Figure 9. Single-ended Output Signals (for AC Parameters Measurement)  
Rev 1.0,November 21, 2006  
Page 15 of 17  
CY28410  
Ordering Information  
Part Number  
Standard  
Package Type  
Product Flow  
CY28410OC  
56-pin SSOP  
Commercial, 0q to 70qC  
Commercial, 0q to 70qC  
Commercial, 0q to 70qC  
Commercial, 0q to 70qC  
CY28410OCT  
CY28410ZC  
56-pin SSOP – Tape and Reel  
56-pin TSSOP  
CY28410ZCT  
Lead-free (Planned)  
CY28410OXC  
CY28410OXCT  
CY28410ZXC  
CY28410ZXCT  
56-pin TSSOP – Tape and Reel  
56-pin SSOP  
Commercial, 0q to 70qC  
Commercial, 0q to 70qC  
Commercial, 0q to 70qC  
Commercial, 0q to 70qC  
56-pin SSOP – Tape and Reel  
56-pin TSSOP  
56-pin TSSOP – Tape and Reel  
Rev 1.0,November 21, 2006  
Page 16 of 17  
CY28410  
Package Drawing and Dimensions  
56-lead Shrunk Small Outline Package O56  
56-Lead Thin Shrunk Small Outline Package, Type II (6 mm x 12 mm) Z56  
0.249[0.009]  
28  
1
DIMENSIONS IN MM[INCHES] MIN.  
MAX.  
7.950[0.313]  
8.255[0.325]  
REFERENCE JEDEC MO-153  
PACKAGE WEIGHT 0.42gms  
5.994[0.236]  
6.198[0.244]  
PART #  
Z5624 STANDARD PKG.  
ZZ5624 LEAD FREE PKG.  
29  
56  
13.894[0.547]  
14.097[0.555]  
1.100[0.043]  
MAX.  
GAUGE PLANE  
0.25[0.010]  
0.20[0.008]  
0.508[0.020]  
0.762[0.030]  
0.051[0.002]  
0.152[0.006]  
0.851[0.033]  
0.950[0.037]  
0.500[0.020]  
BSC  
0°-8°  
0.100[0.003]  
0.200[0.008]  
0.170[0.006]  
0.279[0.011]  
SEATING  
PLANE  
While SLI has reviewed all information herein for accuracy and reliability, Spectra Linear Inc. assumes no responsibility for the use of any cir-  
cuitry or for the infringement of any patents or other rights of third parties which would result from each use. This product is intended for use in  
normal commercial applications and is not warranted nor is it intended for use in life support, critical medical instruments, or any other applica-  
tion requiring extended temperature range, high reliability, or any other extraordinary environmental requirements unless pursuant to additional  
processing by Spectra Linear Inc., and expressed written agreement by Spectra Linear Inc. Spectra Linear Inc. reserves the right to change any  
circuitry or specification without notice.  
Rev 1.0, November 21, 2006  
Page 17 of 17  

相关型号:

CY28410OCT

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY28410OCT

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR

CY28410OXC

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY28410OXC

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR

CY28410OXC-2

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR

CY28410OXC-2

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY28410OXC-2T

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR

CY28410OXC-2T

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY28410OXCT

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY28410OXCT

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR

CY28410SPC

Processor Specific Clock Generator, 400MHz, CMOS, PDSO56, LEAD FREE, SSOP-56
CYPRESS

CY28410SPCT

Processor Specific Clock Generator, 400MHz, CMOS, PDSO56, LEAD FREE, SSOP-56
CYPRESS