CY284108ZXC [SILICON]

Clock Generator, 400MHz, CMOS, PDSO56, 6 X 12 MM, LEAD FREE, TSSOP-56;
CY284108ZXC
型号: CY284108ZXC
厂家: SILICON    SILICON
描述:

Clock Generator, 400MHz, CMOS, PDSO56, 6 X 12 MM, LEAD FREE, TSSOP-56

时钟 光电二极管 外围集成电路 晶体
文件: 总16页 (文件大小:148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY284108  
Clock Generator for Intel®Blackford and Bayshore Chipsets  
• Low-voltage frequency select input  
Features  
• I2C™ support with readback capabilities  
Compliant with IntelCK410B  
• Ideal Lexmark Spread Spectrum profile for maximum  
electromagnetic interference (EMI) reduction  
• Supports Intel Pentium-4 and Xeon CPUs  
• Selectable CPU frequencies  
• 3.3V power supply  
• Four differential CPU clock pairs  
• Five 100 MHz Differential SRC clock pairs  
• Two buffered Reference Clocks @ 14.31818 MHz  
• One 48 MHz USB clock  
56-pin SSOP and TSSOP packages  
CPU  
x 4  
SRC  
x5  
PCI  
x 7  
REF  
x 2  
USB  
x 1  
• Seven 33 MHz PCI clocks  
Block Diagram  
Pin Configuration  
VDD_REF  
REF[0:1]  
XIN  
XTAL  
OSC  
XOUT  
1
2
3
4
5
6
7
8
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
PLL Ref Freq  
VDD_PCI  
VSS_PCI  
PCI_0  
FSC/TEST_SEL  
REF0  
VDD_CPU  
REF1  
CPUT[0:3], CPUC[0:3],  
Divider  
Network  
CPU_STP#  
PCI_STP#  
PLL1  
VDD_REF  
X1  
X2  
VSS_REF  
FSB/TEST_MODE  
FS_A  
VDD_CPU  
CPUT0  
CPUC0  
VDD_CPU  
CPUT1  
PCI_1  
PCI_2  
PCI_3  
VSS_PCI  
VDD_PCI  
PCIF_0  
PCIF_1  
PCIF_2  
VDD_48  
USB_48  
VSS_48  
VDD_SRC  
SRCT0  
SRCC0  
SRCC1  
SRCT1  
VSS_SRC  
SRCT2  
SRCC2  
SRCC3  
SRCT3  
VDD_SRC  
SRCT4  
SRCC4  
VDD_SRC  
VDD_SRC  
SRCT[0:4], SRCC[0:4]  
FS_[C:A]  
VTT_PWRGD#  
IREF  
9
VDD_PCI  
PCI[0:3]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
VDD_PCIF  
PCIF[0:2]  
CPUC1  
VSS_CPU  
CPUT2  
PD  
VDD_48 MHz  
USB_48  
PLL2  
CPUC2  
VDD_CPU  
CPUT3  
CPUC3  
VDDA  
VSSA  
IREF  
NC  
VTTPWRGD#**/PD  
SDATA  
SCLK  
2
SDATA  
SCLK  
I C  
Logic  
........................ Document #: 38-07713 Rev. *B Page 1 of 16  
400 West Cesar Chavez, Austin, TX 78701 1+(512) 416-8500 1+(512) 416-9669  
www.silabs.com  
CY284108  
Pin Description  
Name  
X1  
Pin Number  
52  
Type  
I
Description  
14.18 MHz crystal input  
14.18 MHz crystal output  
14.18 MHz reference clock  
33 MHz clocks  
X2  
51  
O, SE  
O, SE  
O, SE  
O,SE  
O, SE  
O, DIF  
REF[1:0]  
PCI[3:0]  
PCIF[2:0]  
USB_48  
CPU[T/C][3:0]  
55, 54  
6,5,4,3  
11,10,9  
13  
33 MHz free running clock. Is not disabled via Software PCI_STOP.  
Fixed 48 MHz USB clock output  
37,36;40,39;  
43,42;46,45  
Differential CPU clock outputs  
SRC[T/C][4:0]  
FS_A  
26,27;24,23;  
21,22;19,18;  
16,17  
O, DIF  
Differential serial reference clocks. SRC[T/C]4 is recommended for SATA.  
48  
I
I
3.3V-tolerant input for CPU frequency selection. Refer to DC Electrical  
Specifications table for Vil_FS and Vih_FS specifications.  
FS_B/TEST_MODE 49  
3.3V-tolerant inputs for CPU frequency selection/selects REF/N or Hi-Z  
when in test mode. Refer to DC Electrical Specifications table for Vil_FS and  
Vih_FS specifications.  
At VTTPWRGD# asserted low (see page 10 for diagram), this pin is sampled  
to determine test mode functionality  
0 = Hi-Z  
1 = REF/N  
FS_C/TEST_SEL  
56  
I
3.3V-tolerant inputs for CPU frequency selection/selects test mode if pulled  
to 3.3V when VTT_PWRGD# is asserted low (seepage 10 for diagram).  
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifica-  
tions  
IREF  
33  
31  
I
A precision resistor is attached to this pin, which is connected to the internal  
current reference  
VTT_PWRGD#/PD  
I, PD  
DF3.3V LVTTL input is a level sensitive strobe used to latch the FS_A,  
FS_B, FS_C/TEST_SELinputs.AfterVTT_PWRGD#(activelow)assertion,  
this pin becomes a realtime input for asserting power down (active high).  
See page 10 for diagram.  
SCLK  
29  
I
SMBus-compatible SCLOCK  
SMBus-compatible SDATA  
3.3V power supply for outputs  
Ground for outputs  
SDATA  
30  
I/O  
VDD_REF  
VSS_REF  
VDD_PCI  
VSS_PCI  
VDD_48  
VSS_48  
53  
PWR  
GND  
PWR  
GND  
PWR  
GND  
PWR  
GND  
PWR  
GND  
PWR  
GND  
50  
1,8  
2,7  
12  
3.3V power supply for outputs  
Ground for outputs  
3.3V power supply for outputs  
Differential CPU clock outputs  
3.3V power supply for outputs  
Ground for outputs  
14  
VDD_SRC  
VSS_SRC  
VDD_CPU  
VSS_CPU  
VDD_A  
15,25,28  
20  
38,44,47  
41  
3.3V power supply for outputs  
Ground for outputs  
35  
3.3V power supply for outputs  
Ground for outputs  
VSS_A  
34  
NC  
32  
No Connection  
........................Document #: 38-07713 Rev. *B Page 2 of 16  
CY284108  
Table 1. CPU Frequency Select Tables  
The registers associated with the Serial Data Interface  
initialize to their default setting upon power-up, and therefore  
use of this interface is optional. Clock device register changes  
are normally made upon system initialization, if any are  
required. The interface cannot be used during system  
operation for power management functions.  
Frequency Select Pins (FS_[C:A])  
Host clock frequency selection is achieved by applying the  
appropriate logic levels to FS_A, FS_B, FS_C inputs prior to  
VTT_PWRGD# assertion (as seen by the clock synthesizer).  
Upon VTT_PWRGD# being sampled low by the clock chip  
(indicating processor VTT voltage is stable), the clock chip  
samples the FS_A, FS_B, and FS_C input values. For all logic  
levels of FS_A, FS_B, and FS_C, VTT_PWRGD# employs a  
Data Protocol  
The clock driver serial protocol accepts byte write, byte read,  
block write, and block read operations from the controller. For  
block write/read operation, the bytes must be accessed in  
sequential order from lowest to highest byte (most significant  
bit first) with the ability to stop after any complete byte has  
been transferred. For byte write and byte read operations, the  
system controller can access individually indexed bytes. The  
offset of the indexed byte is encoded in the command code,  
as described in Table 2.  
one-shot functionality in that once  
a
valid low on  
VTT_PWRGD# has been sampled, all further VTT_PWRGD#,  
FS_A, FS_B, and FS_C transitions will be ignored, except in  
test mode. FS_C is a three level input, when sampled at a  
voltage greater than 2.0V by VTTPWRGD#, the device will  
enter test mode as selected by the voltage level on the FS_B  
input.  
Serial Data Interface  
The block write and block read protocol is outlined in Table 3  
while Table 4 outlines the corresponding byte write and byte  
read protocol. The slave receiver address is 11010010 (D2h).  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface, various device functions, such as individual  
clock output buffers, can be individually enabled or disabled.  
Table 2. Command Code Definition  
Bit  
Description  
7
0 = Block read or block write operation, 1 = Byte read or byte write operation  
Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000'  
(6:0)  
........................Document #: 38-07713 Rev. *B Page 3 of 16  
 
CY284108  
Table 3. Block Read and Block Write Protocol  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
8:2  
9
Slave address – 7 bits  
Write  
8:2  
9
Slave address – 7 bits  
Write  
10  
Acknowledge from slave  
Command Code – 8 bits  
Acknowledge from slave  
10  
Acknowledge from slave  
Command Code – 8 bits  
Acknowledge from slave  
Repeat start  
18:11  
19  
18:11  
19  
27:20  
Byte Count – 8 bits  
20  
(Skip this step if I2C_EN bit set)  
28  
36:29  
37  
Acknowledge from slave  
Data byte 1 – 8 bits  
27:21  
28  
Slave address – 7 bits  
Read = 1  
Acknowledge from slave  
Data byte 2 – 8 bits  
29  
Acknowledge from slave  
Byte Count from slave – 8 bits  
Acknowledge  
45:38  
46  
37:30  
38  
Acknowledge from slave  
Data Byte /Slave Acknowledges  
Data Byte N –8 bits  
....  
46:39  
47  
Data byte 1 from slave – 8 bits  
Acknowledge  
....  
....  
Acknowledge from slave  
Stop  
55:48  
56  
Data byte 2 from slave – 8 bits  
Acknowledge  
....  
....  
Data bytes from slave / Acknowledge  
Data Byte N from slave – 8 bits  
NOT Acknowledge  
....  
....  
....  
Stop  
Table 4. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
8:2  
9
Slave address – 7 bits  
Write  
8:2  
9
Slave address – 7 bits  
Write  
10  
Acknowledge from slave  
Command Code – 8 bits  
Acknowledge from slave  
Data byte – 8 bits  
Acknowledge from slave  
Stop  
10  
Acknowledge from slave  
Command Code – 8 bits  
Acknowledge from slave  
Repeated start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
27:21  
28  
Slave address – 7 bits  
Read  
29  
29  
Acknowledge from slave  
Data from slave – 8 bits  
NOT Acknowledge  
Stop  
37:30  
38  
39  
Control Registers  
........................Document #: 38-07713 Rev. *B Page 4 of 16  
CY284108  
Byte 0: Control Register 0  
Bit  
7
@Pup  
Name  
Description  
1
1
1
1
RESERVED  
RESERVED  
RESERVED  
SRC[T/C]4  
RESERVED  
6
RESERVED  
5
RESERVED  
4
SRC[T/C]4 Output Enable  
0 = Disable (Tri-state), 1 = Enable  
3
2
1
0
1
1
1
1
SRC[T/C]3  
SRC[T/C]2  
SRC[T/C]1  
SRC[T/C]0  
SRC[T/C]3 Output Enable  
0 = Disable (Tri-state), 1 = Enable  
SRC[T/C]2 Output Enable  
0 = Disable (Tri-state), 1 = Enable  
SRC[T/C]1 Output Enable  
0 = Disable (Tri-state), 1 = Enable  
SRC[T/C]0 Output Enable  
0 = Disable (Tri-state), 1 = Enable  
Byte 1: Control Register 1  
Bit  
@Pup  
Name  
Description  
7
1
REF1  
REF1 Output Enable  
0 = Disable, 1 = Enable  
6
5
4
1
1
1
REF0  
REF0 Output Enable  
0 = Disable, 1 = Enable  
CPU[T/C]3  
CPU[T/C]2  
CPU[T/C]3 Output Enable  
0 = Disable (Tri-state), 1 = Enable  
CPU[T/C]2 Output Enable  
0 = Disable (Tri-state), 1 = Enable  
3
2
1
1
RESERVED  
CPU[T/C]1  
RESERVED  
CPU[T/C]1 Output Enable  
0 = Disable (Tri-state), 1 = Enable  
1
0
1
0
CPU[T/C]0  
CPU[T/C]0 Output Enable  
0 = Disable (Tri-state), 1 = Enable  
CPU  
SRC  
PCIF  
PCI  
PLL1 Spread Spectrum Enable  
0 = Spread off, 1 = Spread on  
Byte 2: Control Register 2  
Bit  
@Pup  
Name  
Description  
7
1
PCI3  
PCI3 Output Enable  
0 = Disable, 1 = Enable  
6
5
4
3
2
1
1
1
1
1
1
1
PCI2  
PCI1  
PCI2 Output Enable  
0 = Disable, 1 = Enable  
PCI1 Output Enable  
0 = Disable, 1 = Enable  
PCI0  
PCI0 Output Enable  
0 = Disable, 1 = Enable  
PCIF2  
PCIF1  
PCIF0  
PCIF2 Output Enable  
0 = Disable, 1 = Enable  
PCIF1 Output Enable  
0 = Disable, 1 = Enable  
PCIF0 Output Enable  
0 = Disable, 1 = Enable  
........................Document #: 38-07713 Rev. *B Page 5 of 16  
CY284108  
Byte 2: Control Register 2 (continued)  
Bit  
@Pup  
Name  
Description  
Description  
0
1
USB48  
USB_48 Output Enable  
0 = Disable, 1 = Enable  
Byte 3: Control Register 3  
Bit  
@Pup  
Name  
7
0
PCIF2  
Allow control of PCIF2 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with SW PCI_STP#  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
PCIF1  
Allow control of PCIF1 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with SW PCI_STP#  
PCIF0  
Allow control of PCIF0 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with SW PCI_STP#  
SRC[T/C]4  
SRC[T/C]3  
SRC[T/C]2  
SRC[T/C]1  
SRC[T/C]0  
Allow control of SRC[T/C]4 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]3 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]2 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]1 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]0 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Byte 4: Control Register 4  
Bit  
@Pup  
Name  
Description  
7
0
CPU[T/C]3  
CPU[T/C]3 PD drive mode  
0 = Driven in power down, 1 = Tri-state  
6
5
4
0
0
0
CPU[T/C]2  
CPU[T/C]1  
CPU[T/C]0  
CPU[T/C]2 PD drive mode  
0 = Driven in power down, 1 = Tri-state  
CPU[T/C]1 PD drive mode  
0 = Driven in power down, 1 = Tri-state  
CPU[T/C]0 PD drive mode  
0 = Driven in power down, 1 = Tri-state  
3
2
1
0
0
0
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Byte 5: Control Register 5  
Bit  
7
@Pup  
Name  
Description  
0
0
RESERVED  
RESERVED  
6
SRC[T/C][4:0] PCI_STP# Stoppable SRC[T/C][4:0] drive mode upon PCI_STP# assertion  
drive mode 0 = Driven in PCI_STOP#, 1 = Tri-state  
5
0
SRC[T/C][4:0] PWRDWN SRC[T/C][4:0] PWRDWN drive mode  
Drive mode  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0 = Driven in power down, 1 = Tri-state  
RESERVED, Set = 0  
RESERVED  
4
3
2
1
0
0
0
0
RESERVED  
RESERVED  
........................Document #: 38-07713 Rev. *B Page 6 of 16  
CY284108  
Byte 5: Control Register 5 (continued)  
Bit  
@Pup  
Name  
Description  
Description  
0
0
RESERVED  
RESERVED  
Byte 6: Control Register 6  
Bit  
@Pup  
Name  
7
0
TEST_SEL  
REF/N or Tri-state Select  
0 = Tri-state, 1 = REF/N Clock  
6
0
TEST_MODE  
Test Clock Mode Entry Control  
0 = Normal operation, 1 = REF/N or Tri-state mode  
5
4
0
1
RESERVED  
REF  
RESERVED, Set = 0  
REF Output Drive Strength  
0 = Low, 1 = High  
3
1
PCI_Stop Control  
SW PCI_STP# Function  
0 = SW PCI_STP# assert, 1 = SW PCI_STP# deassert  
When this bit is set to 0, all STOPPABLE PCI, PCIF and SRC outputs will  
be stopped in a synchronous manner with no short pulses.  
When this bit is set to 1, all STOPPED PCI, PCIF and SRC outputs will  
resume in a synchronous manner with no short pulses.  
2
1
0
HW  
HW  
HW  
FS_C  
FS_B  
FS_A  
FS_C Reflects the value of the FS_C pin sampled on power up  
0 = FS_C was low during VTT_PWRGD# assertion  
FS_B Reflects the value of the FS_B pin sampled on power up  
0 = FS_B was low during VTT_PWRGD# assertion  
FS_A Reflects the value of the FS_A pin sampled on power up  
0 = FS_A was low during VTT_PWRGD# assertion  
Byte 7: Vendor ID  
Bit  
7
@Pup  
Name  
Description  
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
0
0
0
0
1
0
0
0
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
6
5
4
3
2
Vendor ID Bit 2  
Vendor ID Bit 2  
1
Vendor ID Bit 1  
Vendor ID Bit 1  
0
Vendor ID Bit 0  
Vendor ID Bit 0  
........................Document #: 38-07713 Rev. *B Page 7 of 16  
CY284108  
Table 5. Crystal Recommendations  
Frequency  
Drive  
(max.)  
Shunt Cap Motional  
Tolerance  
(max.)  
Stability  
(max.)  
Aging  
(max.)  
(Fund)  
Cut  
Loading Load Cap  
(max.)  
(max.)  
14.31818 MHz  
AT  
Parallel 20 pF  
0.1 mW  
5 pF  
0.016 pF  
35 ppm  
30 ppm  
5 ppm  
The CY284108 requires a parallel resonance crystal. Substi-  
tuting a series resonance crystal will cause the CY284108 to  
operate at the wrong frequency and violate the ppm specifi-  
cation. For most applications there is a 300-ppm frequency  
shift between series and parallel crystals due to incorrect  
loading.  
Clock Chip  
Ci2  
Ci1  
Pin  
3 to 6p  
Crystal Loading  
Crystal loading plays a critical role in achieving low ppm perfor-  
mance. To realize low ppm performance, the total capacitance  
the crystal will see must be considered to calculate the appro-  
priate capacitive loading (CL).  
X2  
X1  
Cs2  
Cs1  
Trace  
2.8 pF  
Figure shows a typical crystal configuration using the two trim  
capacitors. An important clarification for the following  
discussion is that the trim capacitors are in series with the  
crystal not parallel. It is a common misconception that load  
capacitors are in parallel with the crystal and should be  
approximately equal to the load capacitance of the crystal.  
This is not true.  
XTAL  
Ce1  
Ce2  
Trim  
33 pF  
Figure 3. Crystal Loading Example  
Use the following formulas to calculate the trim capacitor  
values for Ce1 and Ce2.  
Load Capacitance (each side)  
Ce = 2 * CL – (Cs + Ci)  
Total Capacitance (as seen by the crystal)  
1
CLe  
=
1
1
(
)
+
Ce2 + Cs2 + Ci2  
Ce1 + Cs1 + Ci1  
Figure 1. Crystal Capacitive Clarification  
CL....................................................Crystal load capacitance  
CLe......................................... Actual loading seen by crystal  
using standard value trim capacitors  
Calculating Load Capacitors  
Ce..................................................... External trim capacitors  
Cs..............................................Stray capacitance (terraced)  
In addition to the standard external trim capacitors, trace  
capacitance and pin capacitance must also be considered to  
correctly calculate crystal loading. As mentioned previously,  
the capacitance on each side of the crystal is in series with the  
crystal. This means the total capacitance on each side of the  
crystal must be twice the specified crystal load capacitance  
(CL). While the capacitance on each side of the crystal is in  
series with the crystal, trim capacitors (Ce1,Ce2) should be  
Ci ...........................................................Internal capacitance  
(lead frame, bond wires etc.)  
PD (Power-down) Clarification  
The VTT_PWRGD# /PD pin is a dual-function pin. During  
initial power up, the pin functions as VTT_PWRGD#. Once  
VTT_PWRGD# has been sampled low by the clock chip, the  
pin assumes PD functionality. The PD pin is an asynchronous  
active HIGH input used to shut off all clocks cleanly prior to  
shutting off power to the device. This signal is synchronized  
internal to the device prior to powering down the clock synthe-  
sizer. PD is also an asynchronous input for powering up the  
system. When PD is asserted high, drive all clocks to a low  
value and hold prior to turning off the VCOs and the crystal  
oscillator.  
calculated to provide equal capacitive loading on both sides.  
Figure 2.  
........................Document #: 38-07713 Rev. *B Page 8 of 16  
 
CY284108  
PD (Power-down) Assertion  
power-on state, PD must be asserted high in less than 10 s  
after asserting Vtt_PwrGd#.  
When PD is sampled high by two consecutive rising edges of  
CPUC, all single-ended outputs will be held low on their next  
high to low transition and differential clocks must held high or  
tri-stated (depending on the state of the control register drive  
mode bit) on the next diff clock# high to low transition within 4  
clock periods. When the SMBus PD drive mode bit corre-  
sponding to the differential (CPU and SRC) clock output of  
interest is programmed to ‘0’, the clock outputs are held with  
“Diff clock” pin driven high at 2 x Iref, and “Diff clock#” tri-state.  
If the control register PD drive mode bit corresponding to the  
output of interest is programmed to “1”, then both the “Diff  
clock” and the “Diff clock#” are tri-state. Note that Figure 4  
shows CPUT = 133 MHz and PD drive mode = ‘1’ for all differ-  
ential outputs. This diagram and description is applicable to  
valid CPU frequencies 100, 133, 166, 200, 266, 333, and  
400 MHz. In the event that PD mode is desired as the initial  
PD Deassertion  
The power-up latency is less than 1.8 ms. This is the time from  
the deassertion of the PD pin or the ramping of the power  
supply until the time that stable clocks are output from the  
clock chip. All differential outputs stopped in a three-state  
condition resulting from power down will be driven high in less  
than 300 s of PD deassertion to a voltage greater than  
200 mV. After the clock chip’s internal PLL is powered up and  
locked, all outputs will be enabled within a few clock cycles of  
each other. Figure 5 is an example showing the relationship of  
clocks coming up.  
PD  
CPUT, 133 MHz  
CPUC, 133 MHz  
SRCT 100 MHz  
SRCC 100 MHz  
USB, 48 MHz  
PCI, 33 MHz  
REF  
Figure 4. Power-down Assertion Timing Waveform  
Tstable  
<1.8 ms  
PD  
CPUT, 133 MHz  
CPUC, 133 MHz  
SRCT 100 MHz  
SRCC 100 MHz  
USB, 48 MHz  
PCI, 33 MHz  
REF  
Tdrive_PWRDN#  
<300 s, >200 mV  
Figure 5. Power-down Deassertion Timing Waveform  
........................Document #: 38-07713 Rev. *B Page 9 of 16  
 
 
CY284108  
FS_A, FS_B,FS_C  
VTT_PWRGD#  
PWRGD_VRM  
0.2-0.3 ms  
Delay  
Wait for  
VTT_PWRGD#  
Device is not affected,  
VTT_PWRGD# is ignored  
Sample Sels  
State 2  
VDD Clock Gen  
Clock State  
State 0  
Off  
State 1  
State 3  
On  
Clock Outputs  
Clock VCO  
On  
Off  
Figure 6. VTT_PWRGD# Timing Diagram  
S2  
S1  
VTT_PWRGD# = Low  
Delay >  
Sample  
0.25 ms  
Inputs straps  
VDD_A = 2.0V  
Wait for <1.8 ms  
S0  
S3  
VDD_A = off  
Normal  
Operation  
Enable Outputs  
Power Off  
VTT_PWRGD# = toggle  
Figure 7. Clock Generator Power-up/Run State Diagram  
......................Document #: 38-07713 Rev. *B Page 10 of 16  
CY284108  
Absolute Maximum Conditions  
Parameter  
VDD  
Description  
Core Supply Voltage  
Condition  
Min.  
–0.5  
–0.5  
–0.5  
–65  
0
Max.  
4.6  
Unit  
V
VDD_A  
VIN  
Analog Supply Voltage  
Input Voltage  
4.6  
V
Relative to VSS  
Non-functional  
VDD + 0.5 VDC  
TS  
Temperature, Storage  
150  
70  
150  
20  
60  
°C  
°C  
TA  
Temperature, Operating Ambient Functional  
TJ  
Temperature, Junction  
Functional  
°C  
ØJC  
Dissipation, Junction to Case  
Dissipation, Junction to Ambient  
Mil-STD-883E Method 1012.1  
JEDEC (JESD 51)  
°C/W  
°C/W  
V
ØJA  
ESDHBM  
ESD Protection  
MIL-STD-883, Method 3015  
2000  
(Human Body Model)  
UL-94  
MSL  
Flammability Rating  
At 1/8 in.  
V–0  
1
Moisture Sensitivity Level  
Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
DC Electrical Specifications  
Parameter  
All VDDs  
VILI2C  
VIHI2C  
VIL_FS  
VIH_FS  
VIMFS_C  
VIH FS_C  
VIL  
Description  
3.3V Operating Voltage  
Input Low Voltage  
Condition  
Min.  
Max.  
Unit  
V
3.3 ± 5%  
3.135  
3.465  
SDATA, SCLK  
SDATA, SCLK  
1.0  
V
Input High Voltage  
2.2  
V
FS_[A:B] Input Low Voltage  
FS_[A:B] Input High Voltage  
FS_C Mid Range  
VSS – 0.3  
0.35  
V
0.7  
VDD + 0.5  
V
0.7  
2.0  
V
FS_C High Range  
2.0  
VDD + 0.3  
V
3.3V Input Low Voltage  
3.3V Input High Voltage  
Input Low Leakage Current  
Input High Leakage Current  
3.3V Output Low Voltage  
3.3V Output High Voltage  
High-impedance Output Current  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
VSS – 0.3  
0.8  
V
VIH  
2.0  
VDD + 0.3  
V
IIL  
Except internal pull-up resistors, 0 < VIN < VDD  
Except internal pull-down resistors, 0 < VIN < VDD  
IOL = 1 mA  
–5  
5
A  
A  
V
IIH  
VOL  
0.4  
VOH  
IOH = –1 mA  
2.4  
V
IOZ  
–10  
10  
A  
pF  
pF  
nH  
V
CIN  
3
5
COUT  
LIN  
3
6
7
VXIH  
Xin High Voltage  
0.7VDD  
VDD  
0.3VDD  
500  
70  
VXIL  
Xin Low Voltage  
0
V
IDD3.3V  
IPD3.3V  
IPT3.3V  
Dynamic Supply Current  
Power-down Supply Current  
Power-down Supply Current  
At max. load and freq. per Figure 9  
PD asserted, Outputs Driven  
PD asserted, Outputs Tri-state  
mA  
mA  
mA  
12  
...................... Document #: 38-07713 Rev. *B Page 11 of 16  
CY284108  
AC Electrical Specifications  
Parameter  
Crystal  
TDC  
Description  
Condition  
Min.  
Max.  
Unit  
XIN Duty Cycle  
XIN Period  
Thedevice willoperate reliably with input  
dutycyclesupto30/70buttheREFclock  
duty cycle will not be within specification  
47.5  
52.5  
%
TPERIOD  
When XIN is driven from an external  
clock source  
69.841  
71.0  
ns  
TR / TF  
TCCJ  
XIN Rise and Fall Times  
XIN Cycle to Cycle Jitter  
Long-term Accuracy  
Measured between 0.3VDD and 0.7VDD  
As an average over 1-s duration  
Over 150 ms  
10.0  
500  
300  
ns  
ps  
LACC  
ppm  
CPU at 0.7V  
TDC  
CPUT and CPUC Duty Cycle  
100-MHz CPUT and CPUC Period  
133-MHz CPUT and CPUC Period  
166-MHz CPUT and CPUC Period  
200-MHz CPUT and CPUC Period  
266-MHz CPUT and CPUC Period  
333-MHz CPUT and CPUC Period  
400-MHz CPUT and CPUC Period  
CPU0 to CPU1  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
45  
55  
%
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TSKEW  
TCCJ  
9.997001 10.00300 ns  
7.497751 7.502251 ns  
5.998201 6.001801 ns  
4.998500 5.001500 ns  
3.748875 3.751125 ns  
2.999100 3.000900 ns  
2.499250 2.500750 ns  
100  
85  
ps  
ps  
CPUT/C Cycle to Cycle Jitter  
Long Term Accuracy  
LACC  
Measured using frequency counter over  
0.15seconds.  
300  
ppm  
TR / TF  
TRFM  
CPUT and CPUC Rise and Fall Times MeasuredfromVOL = 0.175 to VOH = 0.525V  
175  
1100  
20  
ps  
%
Rise/Fall Matching  
Determined as a fraction of  
2 * (TR – TF)/(TR + TF)  
TR  
Rise Time Variation  
125  
ps  
ps  
mV  
mV  
mV  
V
TF  
Fall Time Variation  
125  
VHIGH  
VLOW  
VOX  
Voltage High  
Math averages Figure 9  
Math averages Figure 9  
660  
–150  
250  
850  
Voltage Low  
Crossing Point Voltage at 0.7V Swing  
Maximum Overshoot Voltage  
Minimum Undershoot Voltage  
Ring Back Voltage  
550  
VOVS  
VUDS  
VRB  
VHIGH + 0.3  
–0.3  
V
See Figure 9. Measure SE  
0.2  
V
SRC  
TDC  
SRCT and SRCC Duty Cycle  
100-MHz SRCT and SRCC Period  
Any SRCT/C to SRCT/C Clock Skew  
SRCT/C Cycle to Cycle Jitter  
SRCT/C Long Term Accuracy  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
45  
55  
%
TPERIOD  
TSKEW  
TCCJ  
LACC  
TR / TF  
TRFM  
9.997001 10.00300 ns  
250  
125  
300  
1100  
20  
ps  
ps  
ppm  
ps  
SRCT and SRCC Rise and Fall Times MeasuredfromVOL = 0.175 to VOH = 0.525V  
175  
Rise/Fall Matching  
Determined as a fraction of  
2 * (TR – TF)/(TR + TF)  
%
TR  
Rise TimeVariation  
Fall Time Variation  
Voltage High  
125  
125  
850  
ps  
ps  
TF  
VHIGH  
Math averages Figure 9  
660  
mV  
......................Document #: 38-07713 Rev. *B Page 12 of 16  
CY284108  
AC Electrical Specifications (continued)  
Parameter  
VLOW  
Description  
Condition  
Min.  
–150  
210  
Max.  
Unit  
mV  
mV  
V
Voltage Low  
Math averages Figure 9  
VOX  
Crossing Point Voltage at 0.7V Swing  
Maximum Overshoot Voltage  
Minimum Undershoot Voltage  
Ring Back Voltage  
550  
VOVS  
VHIGH + 0.3  
VUDS  
–0.3  
V
VRB  
See Figure 9. Measure SE  
0.2  
V
PCI/PCIF  
TDC  
PCI Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
45  
55  
%
TPERIOD  
TPERIODSS  
THIGH  
TLOW  
Spread Disabled PCIF/PCI Period  
29.99100 30.00900 ns  
29.9910 30.15980 ns  
Spread Enabled PCIF/PCI Period, SSC Measurement at 1.5V  
PCIF and PCI High Time  
PCIF and PCI Low Time  
PCI Edge Rates  
Measurement at 2.4V  
12.0  
12.0  
0.89  
ns  
ns  
Measurement at 0.4V  
TR / TF  
TSKEW  
TCCJ  
Measured between 0.8V and 2.0V  
4.0  
585  
500  
V/ns  
ps  
Any PCI Clock to Any PCI clock Skew Measurement at 1.5V  
PCIF and PCI Cycle to Cycle Jitter  
Measurement at 1.5V  
ps  
USB48  
TDC  
USB Duty Cycle  
USB Period,  
Measurement at 1.5V  
45  
55  
%
TPERIOD  
Measurement at 1.5V, mean value over 20.8271  
20.8396  
ns  
1 s  
LACC  
Long Accuracy  
Measured at 1.5V using frequency  
counter over 0.15s  
100  
ppm  
THIGH  
TLOW  
TR / TF  
TCCJ  
TLTJ  
USB High Time  
USB Low Time  
Measurement at 2.0V  
8.094  
7.694  
1.0  
11.000  
11.000  
4.0  
ns  
ns  
Measurement at 0.8V  
USB Edge Rates  
Cycle to Cycle Jitter  
Long Term Jitter  
Measured between 0.8V and 2.0V  
Measurement taken @1.5V waveform  
Measurement taken from cross point  
V/ns  
ps  
350  
650  
ps  
V
OX @ 1 s  
Measurement taken from cross point  
OX @ 10 s  
Measurement taken from cross point  
OX @ 125 s  
TLTJ  
TLTJ  
Long Term Jitter  
Long Term Jitter  
1
1
ns  
ns  
V
V
REF  
TDC  
REF Duty Cycle  
Measurement at 1.5V  
45  
69.827  
0.55  
55  
69.855  
4.0  
ns  
ns  
TPERIOD  
TR / TF  
TCCJ  
REF Period  
Measurement at 1.5V  
REF Edge Rates  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
V/ns  
ps  
REF Cycle to Cycle Jitter  
REF Clock to Other REF Clock skew  
1000  
500  
TSKEW  
Measurement at 1.5V  
ps  
ENABLE/DISABLE and SET-UP  
TSTABLE Clock Stabilization from Power-up  
1.8  
ms  
......................Document #: 38-07713 Rev. *B Page 13 of 16  
CY284108  
Test and Measurement Set-up  
For PCI Single-ended Signals and Reference  
Figure 8 shows the test load configurations for the single-ended PCI, USB, and REF output signals.  
Measurement  
12  
Point  
60  
60  
5 pF  
Measurement  
Point  
12  
PCI/  
USB  
5 pF  
Measurement  
Point  
5 pF  
12  
60  
Measurement  
Point  
5 pF  
Measurement  
Point  
5 pF  
12  
12  
REF  
60  
60  
Figure 8. Single-ended Load Configuration  
For Differential CPU, SRC and DOT96 Output Signals  
Figure 9 shows the test load configuration for the differential CPU and SRC outputs.  
M e a s u re m e n t  
3 3  
C P U T  
S R C T  
D O T 9 6 T  
P o in t  
2 p F  
2 p F  
4 9 .9   
1 0 0  D iffe re n tia l  
M e a su re m e n t  
P o in t  
C P U C  
S R C C  
D O T 9 6 C  
IR E F  
3 3   
4 9 .9   
4 7 5   
Figure 9. 0.7V Single-ended Load Configuration  
3 .3 V s ig n a ls  
T D C  
-
-
3 .3 V  
2 .4 V  
1 .5 V  
0 .4 V  
0 V  
T R  
T F  
Figure 10. Single-ended Output Signals (for AC Parameters Measurement)  
......................Document #: 38-07713 Rev. *B Page 14 of 16  
 
 
CY284108  
Ordering Information  
Part Number  
Lead-free  
Package Type  
Product Flow  
CY284108OXC  
CY284108OXCT  
CY284108ZXC  
CY284108ZXCT  
56-pin SSOP  
Commercial, 0° to 85°C  
Commercial, 0° to 85°C  
Commercial, 0° to 85°C  
Commercial, 0° to 85°C  
56-pin SSOP – Tape and Reel  
56-pin TSSOP  
56-pin TSSOP – Tape and Reel  
Package Diagrams  
56-Lead Shrunk Small Outline Package O56  
.020  
28  
1
0.395  
0.420  
0.292  
0.299  
DIMENSIONS IN INCHES MIN.  
MAX.  
29  
56  
0.720  
0.730  
SEATING PLANE  
0.005  
0.010  
0.088  
0.092  
0.095  
0.110  
.010  
GAUGE PLANE  
0.110  
0.024  
0.040  
0.025  
BSC  
0.008  
0.016  
0°-8°  
0.008  
0.0135  
......................Document #: 38-07713 Rev. *B Page 15 of 16  
CY284108  
Package Diagrams (continued)  
56-Lead Thin Shrunk Small Outline Package, Type II (6 mm x 12 mm) Z5624  
NOTE :  
1. JEDEC STD REF MO-153  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.006 in (0.152 mm) PER SIDE  
MIN.  
3. DIMENSIONS IN MM. [INCHES]  
MAX.  
3. PACKAGE WEIGHT 0.42gms  
0.249[0.009]  
28  
1
7.950[0.313]  
8.255[0.325]  
5.994[0.236]  
6.198[0.244]  
PART #  
Z5624 STANDARD PKG.  
ZZ5624 LEAD FREE PKG.  
29  
56  
13.894[0.547]  
14.097[0.555]  
1.100[0.043]  
MAX.  
GAUGE PLANE  
0.25[0.010]  
0.20[0.008]  
0.508[0.020]  
0.762[0.030]  
0.051[0.002]  
0.152[0.006]  
0.851[0.033]  
0.950[0.037]  
0.500[0.020]  
BSC  
0°-8°  
0.100[0.003]  
0.200[0.008]  
0.170[0.006]  
0.279[0.011]  
SEATING  
PLANE  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Sil-  
icon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the  
use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or  
parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, repre-  
sentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized appli-  
cation, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
......................Document #: 38-07713 Rev. *B Page 16 of 16  

相关型号:

CY28410OC

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY28410OC

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR

CY28410OCT

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY28410OCT

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR

CY28410OXC

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY28410OXC

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR

CY28410OXC-2

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR

CY28410OXC-2

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY28410OXC-2T

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR

CY28410OXC-2T

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY28410OXCT

Clock Generator for Intel Grantsdale Chipset
CYPRESS

CY28410OXCT

Clock Generator for Intel Grantsdale Chipset
SPECTRALINEAR