STK22C48_08 [SIMTEK]

2Kx8 AutoStore nvSRAM; 2Kx8自动存储的nvSRAM
STK22C48_08
型号: STK22C48_08
厂家: SIMTEK CORPORATION    SIMTEK CORPORATION
描述:

2Kx8 AutoStore nvSRAM
2Kx8自动存储的nvSRAM

存储 静态存储器
文件: 总16页 (文件大小:340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK22C48  
2Kx8 AutoStore nvSRAM  
DESCRIPTION  
FEATURES  
• 25, 45 ns Read Access & R/W Cycle Times  
The Simtek STK22C48 is a 16Kb fast static RAM with  
a nonvolatile Quantum Trap storage element included  
with each memory cell.  
• Unlimited Read/Write Endurance  
• Automatic Non-Volatile STORE on Power Loss  
• Non-Volatile STORE Under Hardware Control  
• Automatic RECALL to SRAM on Power Up  
• Unlimited RECALL Cycles  
The SRAM provides the fast access & cycle times,  
ease of use, and unlimited read & write endurance of  
a normal SRAM.  
Data transfers automatically to the non-volatile stor-  
age cells when power loss is detected (the STORE  
operation). On power-up, data is automatically  
restored to the SRAM (the RECALL operation). Both  
STORE and RECALL operations are also available  
under software control.  
• 1 Million STORE Cycles  
• 100-Year Non-volatile Data Retention  
• Single 5.0V +10% Operation  
• Commercial, Industrial, and Military  
Temperatures  
The Simtek nvSRAM is the first monolithic non-vola-  
tile memory to offer unlimited writes and reads. It is  
the highest-performance, most reliable non-volatile  
memory available.  
• 28-Pin 300 mil SOIC or 330 mil SOIC (RoHS-  
Compliant)  
BLOCK DIAGRAM  
V
V
CAP  
CC
POWER  
CONTROL  
Quantum Trap  
32 x 512  
A
A
A
A
A
STORE  
RECALL  
5
6
7
8
9
STORE/  
RECALL  
CONTROL  
HSB  
STATIC RAM  
ARRAY  
32 x 512  
DQ  
DQ  
DQ  
0
1
2
COLUMN I/O  
COLUMN DEC  
DQ  
DQ  
3
4
DQ  
DQ  
DQ  
5
6
7
A
10  
A A A A A  
0 1 2 3 4  
G
E
W
This product conforms to specifications per the  
terms of Simtek standard warranty. The product  
has completed Simtek internal qualification testing  
and has reached production status.  
Rev 2.0  
Document Control #ML0004  
Feb, 2008  
1
STK22C48  
PIN CONFIGURATIONS  
1
V
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
W
HSB  
A
A
NC  
G
CAP  
NC  
CCX  
2
3
A
A
A
A
A
7
6
5
4
4
8
5
9
6
(TOP)  
7
3
2
8
A
A
E
10  
9
A
1
0
10  
11  
12  
13  
14  
A
DQ  
DQ  
DQ  
DQ  
DQ  
7
6
5
DQ  
DQ  
DQ  
V
0
1
2
4
3
SS  
28-pin 300 mil SOIC  
28-pin 330 mil SOIC  
PIN DESCRIPTIONS  
Pin Name  
I/O  
Description  
A
-A  
Input  
I/O  
Address: The 11 address inputs select one of 2,048 bytes in the nvSRAM array  
Data: Bi-directional 8-bit data bus for accessing the nvSRAM  
Chip Enable: The active low E input selects the device  
10  
0
DQ -DQ  
7
0
E
Input  
Input  
W
Write Enable: The active low W enables data on the DQ pins to be written to the address  
location latched by the falling edge of E  
G
Input  
Output Enable: The active low G input enables the data output buffers during read cycles.  
De-asserting G high caused the DQ pins to tri-state.  
V
V
Power Supply  
Power Supply  
Power: 5.0V, ±10%  
Ground  
CC  
SS  
Rev 2.0  
Document Control #ML0004  
Feb, 2008  
2
STK22C48  
a
ABSOLUTE MAXIMUM RATINGS  
Note a: Stresses greater than those listed under “Absolute Maximum Rat-  
ings” may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at conditions  
above those indicated in the operational sections of this specification  
is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
Voltage on Input Relative to Ground . . . . . . . . . . . . . –0.5V to 7.0V  
Voltage on Input Relative to VSS . . . . . . . . . .0.6V to (V + 0.5V)  
CC  
Voltage on DQ0-7 or HSB . . . . . . . . . . . . . . . .0.5V to (V + 0.5V)  
CC  
Temperature under Bias . . . . . . . . . . . . . . . . . . . . .–55°C to 125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .–65°C to 150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W  
DC Output Current (1 output at a time, 1s duration) . . . . . . . 15mA  
Package Thermal Characteristics - See Website at http://www.simtek.com  
e
DC CHARACTERISTICS  
(V = 5.0V ± 10%)  
CC  
COMMERCIAL  
INDUSTRIAL  
SYMBOL  
PARAMETER  
Average V Current  
UNITS  
NOTES  
MIN  
MAX  
MIN  
MAX  
b
I
85  
65  
90  
65  
mA  
mA  
t
t
= 25ns  
= 45ns  
CC  
1
CC  
AVAV  
AVAV  
c
I
I
Average V Current during STORE  
3
3
mA  
mA  
All Inputs Don’t Care, V = max  
CC  
CC  
CC  
2
3
b
Average V Current at t  
CC  
= 200ns  
W (V – 0.2V)  
CC  
AVAV  
CC  
10  
10  
5V, 25°C, Typical  
All Others Cycling, CMOS Levels  
c
I
I
I
I
I
Average V  
Cycle  
Current during AutoStore  
CAP  
All Inputs Don’t Care  
CC  
4
2
2
mA  
d
Average V Current  
CC  
(Standby, Cycling TTL Input Levels)  
25  
18  
26  
19  
mA  
mA  
t
t
= 25ns, E V  
= 45ns, E V  
SB  
SB  
AVAV  
AVAV  
IH  
IH  
1
d
V
Standby Current  
E (V – 0.2V)  
CC  
CC  
2
1.5  
±1  
±5  
1.5  
±1  
±5  
mA  
μA  
μA  
(Standby, Stable CMOS Input Levels)  
All Others V 0.2V or (V – 0.2V)  
IN CC  
Input Leakage Current  
V = max  
CC  
ILK  
V
= V to V  
CC  
IN  
SS  
Off-State Output Leakage Current  
V = max  
CC  
OLK  
V
= V to V , E or G V  
IH  
IN  
SS  
CC  
V
V
V
V
V
T
Input Logic “1” Voltage  
Input Logic “0” Voltage  
Output Logic “1” Voltage  
Output Logic “0” Voltage  
Logic “0” Voltage on HSB Output  
Operating Temperature  
Storage Capacitance  
2.2  
V
+ .5  
2.2  
V + .5  
CC  
V
V
All Inputs  
All Inputs  
IH  
CC  
V
– .5  
0.8  
V – .5  
SS  
0.8  
IL  
SS  
2.4  
2.4  
V
I
I
I
=–4mA except HSB  
= 8mA except HSB  
= 3mA  
OH  
OL  
BL  
OUT  
OUT  
OUT  
0.4  
0.4  
70  
0.4  
0.4  
85  
V
V
0
–40  
61  
°C  
μF  
A
V
61  
220  
220  
5 Volt rated, 68 μF+20%/-10% Nom.  
CAP  
Note b: ICC and ICC3 are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
Note c: ICC1 and ICC are the average currents required for the duration of the respective STORE cycles (tSTORE ).  
2
4
Note d: E VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
Note e: VCC reference levels throughout this datasheet refer to VCC if that is where the power supply connection is made, or VCAP if VCC is connected to ground.  
5.0V  
AC TEST CONDITIONS  
Input Pulse Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0V to 3V  
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≤ 5ns  
480 Ohms  
Input and Output Timing Reference Levels. . . . . . . . . . . . . . . .1.5V  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Figure 1  
OUTPUT  
30 pF  
255 Ohms  
f
CAPACITANCE  
(T = 25°C, f = 1.0MHz)  
INCLUDING  
SCOPE AND  
FIXTURE  
A
SYMBOL  
PARAMETER  
MAX  
UNITS  
pF  
pF  
CONDITIONS  
C
Input Capacitance  
Output Capacitance  
8
7
ΔV = 0 to 3V  
IN  
C
ΔV = 0 to 3V  
OUT  
Figure 1: AC Output Loading  
Note f: These parameters are guaranteed but not tested.  
Rev 2.0  
Document Control #ML0004  
Feb, 2008  
3
STK22C48  
SRAM READ CYCLES #1 & #2  
e
(V = 5.0V ± 10%)  
CC  
SYMBOLS  
NO.  
STK22C48-25  
STK22C48-45  
PARAMETER  
Chip Enable Access Time  
UNITS  
#1, #2  
Alt.  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
25  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
RC  
AA  
g
g
t
Read Cycle Time  
25  
45  
AVAV , ELEH  
h
3
Address Access Time  
25  
10  
45  
20  
AVQV  
4
Output Enable to Data Valid  
GLQV  
OE  
OH  
LZ  
h
5
Output Hold after Address Change  
Address Change or Chip Enable to Output Active  
Address Change or Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
5
5
5
5
AXQX  
6
ELQX  
i
7
10  
10  
25  
15  
15  
45  
EHQZ  
HZ  
8
0
0
0
0
GLQX  
OLZ  
OHZ  
PA  
i
9
GHQZ  
f
10  
11  
ELICCH  
f
Chip Disable to Power Standby  
EHICCL  
PS  
Note g: W and HSB must be high during SRAM READ cycles.  
Note h: Device is continuously selected with E and G both low.  
Note i: Measured ± 200mV from steady state output voltage.  
g, h  
SRAM READ CYCLE #1: Address Controlled  
2
AVAV  
t
ADDRESS  
3
AVQV  
t
5
AXQX  
t
DQ (DATA OUT)  
DATA VALID  
g
SRAM READ CYCLE #2: E and G Controlled  
ADDRESS  
2
29  
tE LE H  
tEHAX  
1
11  
tEL Q V  
tEHI CC L  
6
E
tELQ X  
27  
7
tEHQ Z  
3
tAV QV  
G
9
4
tG L QV  
tGH Q Z  
8
tG L Q X  
DQ (DATA OUT)  
DATA VAL ID  
10  
tELI CC H  
AC TIVE  
STAND BY  
ICC  
Rev 2.0  
Document Control #ML0004  
Feb, 2008  
4
STK22C48  
e
SRAM WRITE CYCLES #1 & #2  
(V = 5.0V ± 10%)  
CC  
SYMBOLS  
STK22C48-25 STK22C48-45  
NO.  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
tWC  
tWP  
tCW  
tDW  
tDH  
tAW  
tAS  
MIN  
25  
20  
20  
10  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
tAVAV  
tAVAV  
tWLEH  
tELEH  
tDVEH  
tEHDX  
tAVEH  
tAVEL  
tEHAX  
Write Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWLWH  
tELWH  
tDVWH  
tWHDX  
tAVWH  
tAVWL  
tWHAX  
Write Pulse Width  
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
20  
0
30  
0
tWR  
tWZ  
tOW  
0
0
i, j  
tWLQZ  
10  
15  
tWHQX  
5
5
Note j: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note k: E or W must be VIH during address transitions.  
Note l: HSB must be high during SRAM WRITE cycles.  
k, l  
SRAM WRITE CYCLE #1: W Controlled  
12  
tAVAV  
ADDRESS  
19  
tWHAX  
14  
tELWH  
E
17  
tAVWH  
18  
tAVWL  
13  
W
tWLWH  
15  
tDVWH  
16  
tWHDX  
DATA IN  
DATA VALID  
20  
tWLQZ  
21  
tWHQX  
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
k, l  
SRAM WRITE CYCLE #2: E Controlled  
12  
tAVAV  
ADDRESS  
14  
tELEH  
18  
tAVEL  
19  
tEHAX  
E
17  
tAVEH  
13  
tWLEH  
W
15  
tDVEH  
16  
tEHDX  
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
Rev 2.0  
Document Control #ML0004  
Feb, 2008  
5
STK22C48  
HARDWARE MODE SELECTION  
E
W
HSB  
A
- A (hex)  
MODE  
I/O  
Output High Z  
Output Data  
Input Data  
POWER  
Standby  
NOTES  
12  
0
H
L
X
H
L
H
H
H
L
X
X
X
X
Not Selected  
Read SRAM  
Write SRAM  
Active  
Active  
n
L
X
X
Nonvolatile STORE  
Output High Z  
lCC  
2
m
Note m: HSB STORE operation occurs only if an SRAM write has been done since the last nonvolatile cycle. After the STORE (if any) completes, the  
part will go into standby mode, inhibiting all operations until HSB rises.  
Note n: I/O state assumes G < VIL. Activation of nonvolatile cycles does not depend on state of G.  
e
HARDWARE STORE CYCLE  
(V = 5.0V ± 10%)  
CC  
SYMBOLS  
NO.  
STK22C48  
PARAMETER  
UNITS NOTES  
Standard  
tSTORE  
tDELAY  
Alternate  
MIN  
1
MAX  
22  
23  
24  
25  
26  
tHLHZ  
STORE Cycle Duration  
10  
ms  
μs  
ns  
ns  
ns  
i, o  
i, p  
tHLQZ  
Time Allowed to Complete SRAM Cycle  
Hardware STORE High to Inhibit Off  
Hardware STORE Pulse Width  
tRECOVER  
tHLHX  
tHHQX  
700  
300  
o, q  
15  
tHLBL  
Hardware STORE Low to Store Busy  
Note o: E and G low for output behavior.  
Note p: E and G low and W high for output behavior.  
Note q: tRECOVER is only applicable after tSTORE is complete.  
HARDWARE STORE CYCLE  
25  
tHLHX  
HSB (IN)  
24  
tRECOVER  
22  
tSTORE  
26  
tHLBL  
HSB (OUT)  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
DATA VALID  
23  
tDELAY  
DQ (DATA OUT)  
DATA VALID  
Rev 2.0  
Document Control #ML0004  
Feb, 2008  
6
STK22C48  
(V = 5.0V ± 10%)  
e
AutoStore™/POWER-UP RECALL  
CC  
SYMBOLS  
NO.  
STK22C48  
PARAMETER  
UNITS NOTES  
Standard  
tRESTORE  
tSTORE  
Alternate  
MIN  
MAX  
27  
28  
29  
30  
31  
32  
Power-up RECALL Duration  
STORE Cycle Duration  
550  
10  
μs  
ms  
ns  
μs  
V
r
p, s  
l
tHLHZ  
tVSBL  
Low Voltage Trigger (VSWITCH) to HSB Low  
Time Allowed to Complete SRAM Cycle  
Low Voltage Trigger Level  
300  
tDELAY  
tBLQZ  
1
o
VSWITCH  
VRESET  
4.0  
4.5  
3.6  
Low Voltage Reset Level  
V
Note r: tRESTORE starts from the time VCC rises above VSWITCH  
.
Note s: HSB is asserted low for 1μs when VCAP drops through VSWITCH. If an SRAM write has not taken place since the last nonvolatile cycle, HSB will be  
released and no STORE will take place.  
AutoStore™/POWER-UP RECALL  
VCC  
31  
VSWITCH  
32  
VRESET  
TM  
AutoStore  
POWER-UP RECALL  
29  
tVSBL  
28  
tSTORE  
27  
tRESTORE  
HSB  
30  
tDELAY  
W
DQ (DATA OUT)  
POWER-UP  
RECALL  
BROWN OUT  
NO STORE  
BROWN OUT  
AutoStore  
BROWN OUT  
AutoStore  
(NO SRAM WRITES)  
NO RECALL  
NO RECALL  
RECALL WHEN  
(V DID NOT GO  
(V DID NOT GO  
V
RETURNS  
CC  
CC  
CC  
BELOW V  
)
BELOW V  
)
ABOVE V  
SWITCH  
RESET  
RESET  
Rev 2.0  
Document Control #ML0004  
Feb, 2008  
7
STK22C48  
nvSRAM OPERATION  
The STK22C48 has two separate modes of opera-  
tion: SRAM mode and nonvolatile mode. In SRAM  
mode, the memory operates as a standard fast static  
RAM. In nonvolatile mode, data is transferred from  
SRAM to Nonvolatile Elements (the STORE opera-  
tion) or from Nonvolatile Elements to SRAM (the  
RECALL operation). In this mode SRAM functions are  
disabled.  
POWER-UP RECALL  
During power up, or after any low-power condition  
(VCAP < VRESET), an internal RECALL request will be  
latched. When VCAP once again exceeds the sense  
voltage of VSWITCH, a RECALL cycle will automatically  
be initiated and will take tRESTORE to complete.  
If the STK22C48 is in a WRITE state at the end of  
power-up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10K Ohm resistor  
should be connected either between W and system  
NOISE CONSIDERATIONS  
The STK22C48 is a high-speed memory and so  
must have a high-frequency bypass capacitor of  
approximately 0.1μF connected between VCAP and  
VSS, using leads and traces that are as short as pos-  
sible. As with all high-speed CMOS ICs, normal care-  
ful routing of power, ground and signals will help  
prevent noise problems.  
VCC or between E and system VCC.  
AutoStore MODE  
The STK22C48 can be powered in one of three  
modes.  
During normal AutoStore operation, the STK22C48  
will draw current from VCC to charge a capacitor con-  
nected to the VCAP pin. This stored charge will be  
used by the chip to perform a single STORE opera-  
tion. After power up, when the voltage on the VCAP  
pin drops below VSWITCH, the part will automatically  
disconnect the VCAP pin from VCC and initiate a  
STORE operation.  
SRAM READ  
The STK22C48 performs a READ cycle whenever E  
and G are low and W and HSB are high. The  
address specified on pins A0-10 determines which of  
the 2,048 data bytes will be accessed. When the  
READ is initiated by an address transition, the out-  
puts will be valid after a delay of tAVQV (READ cycle  
#1). If the READ is initiated by E or G, the outputs will  
be valid at tELQV or at tGLQV, whichever is later (READ  
cycle #2). The data outputs will repeatedly respond to  
address changes within the tAVQV access time without  
the need for transitions on any control input pins, and  
will remain valid until another address change or until  
E or G is brought high, or W or HSB is brought low.  
Figure 2 shows the proper connection of capacitors  
for automatic store operation. A charge storage  
capacitor having a capacity of between 68μF and  
220μF (± 20%) rated at 6V should be provided.  
In system power mode, both VCC and VCAP are con-  
nected to the + 5V power supply without the 68μF  
capacitor. In this mode the AutoStore function of the  
SRAM WRITE  
10kΩ∗  
A WRITE cycle is performed whenever E and W are  
low and HSB is high. The address inputs must be  
stable prior to entering the WRITE cycle and must  
remain stable until either E or W goes high at the  
end of the cycle. The data on the common I/O pins  
DQ0-7 will be written into the memory if it is valid tDVWH  
before the end of a W controlled WRITE or tDVEH  
before the end of an E controlled WRITE.  
1
32  
31  
30  
+
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
common I/O lines. If G is left low, internal circuitry  
will turn off the output buffers tWLQZ after W goes low.  
16  
17  
Figure 2: AutoStore Mode  
*If HSB is not used, it should be left unconnected.  
Rev 2.0  
Document Control #ML0004  
Feb, 2008  
8
STK22C48  
condition while the STORE (initiated by any means)  
STK22C48 will operate on the stored system charge  
as power goes down. The user must, however, guar-  
antee that VCC does not drop below 3.6V during the  
10ms STORE cycle.  
is in progress. Pull up this pin with an external 10K  
ohm resistor to V  
if HSB is used as a driver.  
CAP  
SRAM READ and WRITE operations that are in  
progress when HSB is driven low by any means are  
given time to complete before the STORE operation  
is initiated. After HSB goes low, the STK22C48 will  
AutoStore INHIBIT MODE  
If an automatic STORE on power loss is not required,  
then VCC can be tied to ground and + 5V applied to  
VCAP (Figure 3). This is the AutoStore Inhibit mode,  
in which the AutoStore function is disabled. If the  
STK22C48 is operated in this configuration, refer-  
ences to VCC should be changed to VCAP throughout  
this data sheet. In this mode, STORE operations may  
be triggered with the HSB pin. To enable or disable  
AutoStore using an IO port pin, see “PREVENTING  
STORES” on page 9.  
continue SRAM operations for tDELAY. During tDELAY  
,
multiple SRAM READ operations may take place. If a  
WRITE is in progress when HSB is pulled low it will  
be allowed a time, tDELAY, to complete. However, any  
SRAM WRITE cycles requested after HSB goes low  
will be inhibited until HSB returns high.  
The HSB pin can be used to synchronize multiple  
STK22C48s while using a single larger capacitor. To  
operate in this mode the HSB pin should be con-  
nected together to the HSB pins from the other  
STK22C48s. An external pull-up resistor to + 5V is  
required since HSB acts as an open drain pull down.  
The VCAP pins from the other STK22C48 parts can  
be tied together and share a single capacitor. The  
capacitor size must be scaled by the number of  
devices connected to it. When any one of the  
STK22C48s detects a power loss and asserts HSB,  
the common HSB pin will cause all parts to request a  
STORE cycle (a STORE will take place in those  
STK22C48s that have been written since the last  
nonvolatile cycle).  
1
32  
31  
30  
17  
16  
Figure 3: AutoStore Inhibit Mode  
During any STORE operation, regardless of how it  
was initiated, the STK22C48 will continue to drive  
the HSB pin low, releasing it only when the STORE is  
complete. Upon completion of the STORE operation  
the STK22C48 will remain disabled until the HSB pin  
returns high.  
In order to prevent unneeded STORE operations,  
automatic STOREs as well as those initiated by  
externally driving HSB low will be ignored unless at  
least one WRITE operation has taken place since the  
most recent STORE or RECALL cycle.  
If the power supply drops faster than 20 μs/volt  
before VCC reaches VSWITCH, then a 2.2 ohm resistor  
should be inserted between VCC and the system sup-  
ply to avoid momentary excess of current between  
Vcc and Vcap.  
If HSB is not used, it should be left unconnected.  
PREVENTING STORES  
The STORE function can be disabled on the fly by  
holding HSB high with a driver capable of sourcing  
30mA at a VOH of at least 2.2V, as it will have to  
overpower the internal pull-down device that drives  
HSB low for 20μs at the onset of a STORE. When the  
STK22C48 is connected for AutoStore operation  
(system VCC connected to VCC and a 68μF capacitor  
on VCAP) and VCC crosses VSWITCH on the way down,  
the STK22C48 will attempt to pull HSB low; if HSB  
doesn’t actually get below VIL, the part will stop try-  
ing to pull HSB low and abort the STORE attempt.  
HSB OPERATION  
The STK22C48 provides the HSB pin for controlling  
and acknowledging the STORE operations. The HSB  
pin is used to request a hardware STORE cycle.  
When the HSB pin is driven low, the STK22C48 will  
conditionally initiate a STORE operation after tDELAY  
;
an actual STORE cycle will only begin if a WRITE to  
the SRAM took place since the last STORE or  
RECALL cycle. The HSB pin has a very resistive pul-  
lup and is internally driven low to indicate a busy  
Rev 2.0  
Document Control #ML0004  
Feb, 2008  
9
STK22C48  
shows the relationship between ICC and READ cycle  
time. Worst-case current consumption is shown for  
both CMOS and TTL input levels (commercial tem-  
perature range, VCC = 5.5V, 100% duty cycle on chip  
enable). Figure 5 shows the same relationship for  
WRITE cycles. If the chip enable duty cycle is less  
than 100%, only standby current is drawn when the  
chip is disabled. The overall average current drawn  
by the STK22C48 depends on the following items: 1)  
CMOS vs. TTL input levels; 2) the duty cycle of chip  
enable; 3) the overall cycle rate for accesses; 4) the  
ratio of READs to WRITEs; 5) the operating tempera-  
HARDWARE PROTECT  
The STK22C48 offers hardware protection against  
inadvertent STORE operation and SRAM WRITEs dur-  
ing low-voltage conditions. When VCAP < VSWITCH, all  
externally initiated STORE operations and SRAM  
WRITEs are inhibited.  
AutoStore can be completely disabled by tying VCCX  
to ground and applying + 5V to VCAP. This is the  
AutoStore  
Inhibit mode; in this mode STOREs are only  
initiated by explicit request using the HSB pin.  
LOW AVERAGE ACTIVE POWER  
ture; 6) the V level; and 7) I/O loading.  
cc  
The STK22C48 draws significantly less current  
when it is cycled at times longer than 50ns. Figure 4  
100  
80  
100  
80  
60  
60  
TTL  
CMOS  
40  
40  
TTL  
20  
20  
CMOS  
150 200  
0
0
50  
100  
Cycle Time (ns)  
Figure 4: Icc (max) Reads  
50  
100  
Cycle Time (ns)  
Figure 5: Icc (max) Writes  
150  
200  
Rev 2.0  
Document Control #ML0004  
Feb, 2008  
10  
STK22C48  
desired state as a safeguard against events that  
might flip the bit inadvertently (program bugs,  
incoming inspection routines, etc.).  
BEST PRACTICES  
nvSRAM products have been used effectively for  
over 15 years. While ease-of-use is one of the  
product’s main system values, experience gained  
working with hundreds of applications has resulted  
in the following suggestions as best practices:  
• The V  
value specified in this datasheet  
cap  
includes a minimum and a maximum value size.  
Best practice is to meet this requirement and not  
exceed the max V  
inrush currents may reduce the reliability of the  
internal pass transistor. Customers that want to  
value because the higher  
cap  
• The non-volatile cells in an nvSRAM are pro-  
grammed on the test floor during final test and  
quality assurance. Incoming inspection routines  
at customer or contract manufacturer’s sites will  
sometimes reprogram these values. Final NV  
patterns are typically repeating patterns of AA,  
55, 00, FF, A5, or 5A. End product’s firmware  
should not assume an NV array is in a set pro-  
grammed state. Routines that check memory  
content values to determine first time system  
configuration, cold or warm boot status, etc.  
should always program a unique NV pattern  
(e.g., complex 4-byte pattern of 46 E6 49 53 hex  
or more random bytes) as part of the final sys-  
tem manufacturing test to ensure these system  
routines work consistently.  
use a larger V  
value to make sure there is  
cap  
extra store charge should discuss their V  
selection with Simtek.  
size  
cap  
• Power up boot firmware routines should rewrite  
the nvSRAM into the desired state. While the  
nvSRAM is shipped in a preset state, best prac-  
tice is to again rewrite the nvSRAM into the  
Rev 2.0  
Document Control #ML0004  
Feb, 2008  
11  
STK22C48  
ORDERING INFORMATION  
STK22C48 - N F 45 I TR  
Packing Option  
Blank = Tube  
TR = Tape and Reel  
Temperature Range  
Blank = Commercial (0 to 70°C)  
I = Industrial (-40 to 85°C)  
Access Time  
25 = 25ns  
45 = 45ns  
Lead Finish  
F = 100% Sn (Matte Tin)  
Package  
N = Plastic 28-pin 300 mil SOIC  
S = Plastic 28-pin 330 mil SIOC  
Rev 2.0  
Document Control #ML0004  
Feb, 2008  
12  
STK22C48  
Ordering Information  
Item Number  
Item Name  
Access Times  
Temperature  
STK22C48-NF25  
STK22C48-NF45  
STK22C48-SF25  
STK22C48-SF45  
STK22C48-NF25TR  
STK22C48-NF45TR  
STK22C48-SF25TR  
STK22C48-SF45TR  
STK22C48-NF25I  
STK22C48-NF45I  
STK22C48-SF25I  
STK22C48-SF45I  
STK22C48-NF25ITR  
STK22C48-NF45ITR  
STK22C48-SF25ITR  
STK22C48-SF45ITR  
5V 2Kx 8 AutoStore nvSRAM SOP28-300  
5V 2Kx 8 AutoStore nvSRAM SOP28-300  
5V 2Kx 8 AutoStore nvSRAM SOP28-330  
5V 2Kx 8 AutoStore nvSRAM SOP28-330  
5V 2Kx 8 AutoStore nvSRAM SOP28-300  
5V 2Kx 8 AutoStore nvSRAM SOP28-300  
5V 2Kx 8 AutoStore nvSRAM SOP28-330  
5V 2Kx 8 AutoStore nvSRAM SOP28-330  
5V 2Kx 8 AutoStore nvSRAM SOP28-300  
5V 2Kx 8 AutoStore nvSRAM SOP28-300  
5V 2Kx 8 AutoStore nvSRAM SOP28-330  
5V 2Kx 8 AutoStore nvSRAM SOP28-330  
5V 2Kx 8 AutoStore nvSRAM SOP28-300  
5V 2Kx 8 AutoStore nvSRAM SOP28-300  
5V 2Kx 8 AutoStore nvSRAM SOP28-330  
5V 2Kx 8 AutoStore nvSRAM SOP28-330  
25 ns access time  
45 ns access time  
25 ns access time  
45 ns access time  
25 ns access time  
45 ns access time  
25 ns access time  
45 ns access time  
25 ns access time  
45 ns access time  
25 ns access time  
45 ns access time  
25 ns access time  
45 ns access time  
25 ns access time  
45 ns access time  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Rev 2.0  
Document Control #ML0004  
Feb, 2008  
13  
STK22C48  
Package Diagrams  
28-Lead, 300 mil SOIC Gull Wing  
0.292 7.42  
0.300 7.59  
(
)
0.400 10.16  
( )  
0.410 10.41  
Pin 1  
Index  
.050 (1.27)  
BSC  
0.701 17.81  
0.711 18.06  
(
)
0.097 2.46  
( )  
0.104 2.64  
0.090 2.29  
0.094 2.39  
)
(
0.005 0.12  
0.012 0.29  
(
)
0.014 0.35  
0.019 0.48  
)
(
MIN  
MAX  
DIM = INCHES  
0°  
8°  
0.009 0.23  
( )  
0.013 0.32  
MIN  
(MAX)  
DIM = mm  
0.024 0.61  
(
)
Rev 2.0  
Document Control #ML0004  
Feb, 2008  
14  
STK22C48  
28-Lead, 330 mil SOIC Gull Wing  
0.713  
0.733  
18.11  
(
)
18.62  
0.112  
0.004  
(2.845)  
(0.102)  
0.020  
0.014  
0.508  
0.356  
0.050 (1.270)  
(
)
0.103  
2.616  
2.362  
(
)
0.093  
0.336  
0.326  
8.534  
8.280  
0.477  
12.116  
11.506  
(
)
(
)
0.453  
Pin 1  
10°  
0°  
0.014  
0.008  
0.356  
0.203  
(
)
0.044  
1.117  
(
)
0.028  
0.711  
MIN  
MAX  
DIM = INCHES  
MIN  
MAX  
)
(
DIM = mm  
Rev 2.0  
Document Control #ML0004  
Feb, 2008  
15  
STK22C48  
Document Revision History  
Revision  
0.0  
Date  
December 2002  
September 2003  
March 2006  
Summary  
Removed 20 nsec device.  
0.1  
Added lead-free lead finish  
0.2  
Obsolete: 35ns speed grade, Plastic DIP packages and Leaded Lead Finish  
Add Fast Power-Down Slew Rate Information  
0.3  
February 2007  
Add Tape Reel Ordering Options  
Add Product Ordering Code Listing  
Add Package Drawings  
Reformat Entire Document  
2.0  
January 2008  
In the block diagram and elsewhere in this data sheet, removed the “x” from Vccx.  
Page 4: in SRAM Read Cycles #1 & #2 table, revised description for tELQX and tEHQZ and  
changed Symbol #2 to tELEH for Read Cycle Time.  
Page 4: updated SRAM Read Cycle #2 timing diagram and changed title to add G  
controlled.  
Page 9: under HSB Operation, revised first paragraph to read “The HSB pin has a very  
resistive pullup...”  
Page 11: added best practices section.  
Page 13: added access times to Ordering Information table.  
SIMTEK STK22C48 Datasheet, January 2008  
Copyright 2008, Simtek Corporation. All rights reserved.  
This datasheet may only be printed for the expressed use of Simtek Customers. No part of the datasheet may be reproduced in any other  
form or means without the express written permission from Simtek Corporation. The information contained in this publication is believed to be  
accurate, but changes may be made without notice. Simtek does not assume responsibility for, or grant or imply any warranty, including MER-  
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE regarding this information, the product or its use. Nothing herein constitutes a  
license, grant or transfer of any rights to any Simtek patent, copyright, trademark, or other proprietary right.  
Rev 2.0  
Document Control #ML0004  
Feb, 2008  
16  

相关型号:

STK22C48_11

16-Kbit (2 K × 8) AutoStore? nvSRAM
CYPRESS

STK22N05

N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTOR
STMICROELECTR

STK22N05(SOT-194)

Power Field-Effect Transistor, 22A I(D), 50V, 0.065ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
STMICROELECTR

STK22N05{SOT-194}

22A, 50V, 0.065ohm, N-CHANNEL, Si, POWER, MOSFET
STMICROELECTR

STK22N06

N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTOR
STMICROELECTR

STK22N6F3

N-channel 60 V, 0.0055 OHM, 22 A, PolarPAK STripFET Power MOSFET
STMICROELECTR

STK23N05L

TRANSISTOR | MOSFET | N-CHANNEL | 50V V(BR)DSS | 23A I(D) | SOT-82
ETC

STK23N06L

TRANSISTOR | MOSFET | N-CHANNEL | 60V V(BR)DSS | 23A I(D) | SOT-82
ETC

STK24N4LLH5

N-channel 40 V, 0.0046 Ω, 24 A, PolarPAK® STripFET™V Power MOSFET
STMICROELECTR

STK25C48

2K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
SIMTEK

STK25C48-W

2K X 8 AUTOSTORE NVSRAM
ETC

STK25C48-W20

Non-Volatile SRAM, 2KX8, 22ns, CMOS, PDIP24, 0.600 INCH, PLASTIC, DIP-24
SIMTEK