SC652ULTRT [SEMTECH]

Backlight Driver for 5 LEDs with Charge Pump and PWM Control; 背光驱动器的5个LED电荷泵和PWM控制
SC652ULTRT
型号: SC652ULTRT
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Backlight Driver for 5 LEDs with Charge Pump and PWM Control
背光驱动器的5个LED电荷泵和PWM控制

驱动器 泵
文件: 总16页 (文件大小:282K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC652  
Backlight Driver for 5 LEDs with  
Charge Pump and PWM Control  
POWER MANAGEMENT  
Features  
Description  
„
„
„
Input supply voltage range — 2.9V to 5.5V  
Charge pump modes — 1x, 1.5x and 2x  
PWM dimming control with low pass filter provides  
DC backlight current (not pulsed)  
The SC652 is a high efficiency charge pump LED driver  
using Semtech’s proprietary charge pump technology.  
Performance is optimized for use in single-cell Li-ion  
battery applications.  
„
„
„
„
„
„
„
„
„
PWM frequency range — 200Hz to 50kHz  
Five adjustable current sinks — 500μA to 25mA  
Backlight current accuracy 1.5ꢀ typical  
Backlight current matching 0.5ꢀ typical  
LED float detection  
Charge pump frequency — 250kHz  
Low shutdown current — 0.1μA typical  
Ultra-thin package — 2 x 2 x 0.6(mm)  
Fully WEEE and RoHS compliant  
The device provides backlight current using up to five  
matched current sinks. The load and supply conditions  
determine whether the charge pump operates in 1x, 1.5x,  
or 2x mode.  
The maximum current per LED is set by a resistor (RISET  
)
connected from the ISET pin to the input voltage. The  
current can be set between 500μA and 25mA. This current  
can be varied by applying a pulse-width modulated (PWM)  
signal to the EN/PWM pin. A low-pass filter is used to  
develop a DC current level rather than a pulsed current  
output, resulting in a more efficient system. The resulting  
DC current in each LED (IBL) is equal to the maximum  
current setting multiplied by the duty cycle of the PWM  
control signal. Using this control system, IBL can gradually  
fade between levels.  
Applications  
„
„
„
„
„
„
Cellular phones, smart phones, and PDAs  
LCD display modules  
Portable media players  
Digital cameras  
Personal navigation devices  
Display/keypad backlighting and LED indicators  
With a 2 x 2 (mm) package and 4 small capacitors, the  
SC652 provides a complete LED driver solution with a  
minimal PCB footprint.  
Typical Application Circuit  
SC652  
VBAT = 2.9V to 5.5V  
IN  
OUT  
COUT  
2.2μF  
PWM  
Signal  
EN/PWM  
CIN  
2.2μF  
BL1  
BL2  
BL3  
BL4  
BL5  
RISET  
ISET  
GND  
C1+ C1- C2+ C2-  
C1  
2.2μF  
C2  
2.2μF  
US Patents: 6,504,422; 6,794,926  
1
March 13, 2009  
© 2009 Semtech Corporation  
SC652  
Pin Configuration  
Ordering Information  
Device  
Package  
SC652ULTRT(1)(2)  
MLPQ-UT-14 2×2  
Evaluation Board  
SC652EVB  
Notes:  
14  
13  
12  
11  
(1) Available in tape and reel only. A reel contains 3,000 devices.  
(2) Lead-free package only. Device is WEEE and RoHS compliant.  
TOP VIEW  
10  
9
OUT  
IN  
GND  
BL1  
BL2  
1
2
3
ISET  
8
7
4
5
6
MLPQ-UT-14; 2x2, 14 LEAD  
θJA = 127°C/W  
Marking Information  
AD  
yw  
AD = Marking code  
yw = Date Code  
2
SC652  
Absolute Maximum Ratings  
Recommended Operating Conditions  
IN, OUT (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +6.0  
C1+, C2+ (V) . . . . . . . . . . . . . . . . . . . . . . . -0.3 to (VOUT + 0.3)  
Pin Voltage — All Other Pins (V) . . . . . . . . . -0.3 to (VIN + 0.3)  
OUT Short Circuit Duration . . . . . . . . . . . . . . . . . Continuous  
ESD Protection Level(1) (kV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ambient Temperature Range (°C). . . . . . . . . . -40 TA ≤ +85  
Input Voltage (V) . . . . . . . . . . . . . . . . . . . . . . . . . . 2.9 to 5.5  
Output Voltage (V) . . . . . . . . . . . . . . . . . . . . . . . . 2.5 to 5.25  
VoltageDifferencebetweenanytwoLEDs(V)... ΔVF 1.0(2)  
Thermal Information  
Thermal Resistance, Junction to Ambient(3) (°C/W) . . .127  
Maximum Junction Temperature (°C) . . . . . . . . . . . . . . +150  
Storage Temperature Range (°C). . . . . . . . . . . . -65 to +150  
Peak IR Reflow Temperature (10s to 30s) (°C) . . . . . . +260  
Exceeding the above specifications may result in permanent damage to the device or device malfunction. Operation outside of the parameters  
specified in the Electrical Characteristics section is not recommended.  
NOTES:  
(1) Tested according to JEDEC standard JESD22-A114-B.  
(2) ΔVF(max) = 1.0V when VIN = 2.9V, higher VIN supports higher ΔVF(max)  
(3) Calculated from package in still air, mounted to 3 x 4.5(in), 4 layer FR4 PCB per JESD51 standards.  
Electrical Characteristics  
Unless otherwise noted, TA = +25°C for Typ, -40°C to +85°C for Min and Max, TJ(MAX) = 125°C, VIN = 3.7V, CIN= COUT = C1= C2= 2.2μF, (ESR = 0.03Ω),  
500μA < IFS_BL < 25mA, Duty Cycle of PWM = 100ꢀ, All 5 LEDs connected and enabled.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Shutdown Current  
IQ(OFF)  
TA = 25°C  
0.1  
2
μA  
Charge pump in 1x mode, 2.9V < VIN < 4.2V, 5 LEDs  
enabled  
1.5  
2
Charge pump in 1.5x mode, 2.9V < VIN < 4.2V, 5 LEDs  
enabled  
Quiescent Current  
IQ  
mA  
Charge pump in 2x mode, 2.9V < VIN < 4.2V, 5 LEDs  
enabled  
2.5  
VIN > 3.0V, sum of all active LED currents,  
Maximum Total Output Current  
IOUT(MAX)  
125  
0.5  
mA  
V
OUT(MAX) = 4.2V  
Backlight Current Setting (1)  
Current Gain  
IFS_BL  
IGAIN  
VIN - ISET  
IBL-BL  
IBL_ACC  
fEN/PWM  
PWM duty cycle = 100ꢀ, 200kΩ ≥ RISET ≥ 4kΩ  
Gain from IISET to IFS_BL  
25  
mA  
A/A  
V
100  
1
Current Set Voltage  
Voltage across RISET  
Backlight Current Matching (2)  
Backlight Current Accuracy  
PWM Input Frequency  
EN/PWM Minimum High Time  
IFS_BL = 12mA, Duty = 100ꢀ  
IFS_BL = 12mA, Duty = 100ꢀ  
Guaranteed by design  
-3.5  
0.2  
0.5  
1.5  
+3.5  
50  
kHz  
μs  
(3)  
tHIGH_MIN  
1
3
SC652  
Electrical Characteristics (continued)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Current Transition Settling Time  
ts  
Duty cycle change from 100ꢀ to 50ꢀ(1)(4)  
0.5  
s
Time that voltage on the EN/PWM pin can be low  
without disabling the device  
EN/PWM Low Time  
tLT  
5
ms  
V
1x Mode to 1.5x Mode  
Falling Transition Voltage  
VTRANS1x  
IOUT = 50mA, IBLn = 10mA, VOUT = 3.2V  
IOUT = 50mA, IBLn = 10mA, VOUT = 3.2V  
3.25  
300  
1.5x Mode to 1x Mode  
Hysteresis  
VHYST1x  
mV  
1.5x Mode to 2x Mode  
Falling Transition Voltage  
VTRANS1.5x  
VHYST1.5x  
IBLn(o)  
IOUT = 50mA, IBLn = 10mA, VOUT = 4.0V(5)  
IOUT = 50mA, IBLn = 10mA, VOUT = 4.0V(5)  
VIN = VBLn = 4.2V  
2.9  
500  
0.1  
V
2x Mode to 1.5x Mode Hysteresis  
mV  
μA  
Current Sink Off-State  
Leakage Current  
1
Charge Pump Frequency  
fPUMP  
VIN = 3.2V  
OUT pin shorted to GND  
VOUT > 2.5V  
250  
45  
kHz  
Output Short Circuit Current Limit  
IOUT(SC)  
mA  
400  
2.4  
500  
5.7  
165  
25  
Under Voltage Lockout Threshold  
UVLO Hysteresis  
VUVLO-OFF  
VUVLO-HYS  
VOVP  
TOT  
Increasing VIN — lockout released  
V
mV  
V
Over-Voltage Protection  
Over-Temperature  
OUT pin open circuit, VOUT = VOVP — rising threshold  
Rising Temperature  
6.0  
°C  
°C  
V
OT Hysteresis  
TOT-HYS  
VIH  
Input High Threshold (6)  
Input Low Threshold (6)  
Input High Current (6)  
Input Low Current (6)  
VIN = 5.5V  
VIN = 2.9V  
VIN = 5.5V  
VIN = 5.5V  
1.4  
VIL  
0.4  
1
V
IIH  
μA  
μA  
IIL  
1
Notes:  
(1) Guaranteed by design  
(2) Current matching equals ꢁIBL(MAX) - IBL(MIN] / ꢁIBL(MAX) + IBL(MIN)].  
(3) HIGH_MIN is the minimum time needed for accurate PWM sampling.  
(4) The settling time is affected by the magnitude of change in the PWM duty cycle.  
t
(5) Test voltage is VOUT = 4.0V — a relatively extreme LED voltage used to force a transition during test. Typically VOUT = 3.2V for white LEDs.  
(6) Applied to EN/PWM pin.  
4
SC652  
Typical Characteristics  
Backlight Accuracy (5 LEDs) — 25mA Each  
OUT = 3.64V, IOUT = 125mA, 25°C  
Backlight Matching (5 LEDs) — 25mA Each  
VOUT = 3.64V, IOUT = 125mA, 25°C  
V
8
6
8
6
4
4
2
2
MAX LED  
MIN LED  
0
0
-2  
-4  
-6  
-8  
-2  
-4  
-6  
-8  
4.2  
3.9  
3.6  
3.3  
3
2.7  
4.2  
3.6  
3.3  
3
2.7  
3.9  
VIN (V)  
VIN(V)  
Backlight Accuracy (5 LEDs) — 12mA Each  
VOUT = 3.50V, IOUT = 60mA, 25°C  
Backlight Matching (5 LEDs) — 12mA Each  
VOUT = 3.50V, IOUT = 60mA, 25°C  
8
6
8
6
4
4
2
2
MAX LED  
MIN LED  
0
0
-2  
-2  
-4  
-6  
-8  
-4  
-6  
-8  
4.2  
3.9  
3.3  
3
2.7  
4.2  
2.7  
3.6  
3.9  
3.6  
3.3  
3
V
IN (V)  
VIN (V)  
Backlight Accuracy (5 LEDs) — 0.5mA Each  
Backlight Matching (5 LEDs) — 0.5mA Each  
VOUT = 3.09V, IOUT = 2.5mA, 25°C  
VOUT = 3.09V, IOUT = 2.5mA, 25°C  
8
6
8
6
4
4
MAX LED  
MIN LED  
2
2
0
0
-2  
-4  
-6  
-8  
-2  
-4  
-6  
-8  
3
2.7  
4.2  
3.9  
3.6  
3.3  
3
2.7  
4.2  
3.9  
3.6  
3.3  
V
IN (V)  
VIN (V)  
5
SC652  
Typical Characteristics (continued)  
Battery Current (5 LEDs) — 25mA Each  
Backlight Efficiency (5 LEDs) — 25mA Each  
VOUT = 3.64V, IOUT = 125mA, 25°C  
100  
VOUT = 3.64V, IOUT = 125mA, 25°C  
200  
180  
160  
140  
90  
80  
70  
60  
50  
120  
100  
4.2  
2.7  
4.2  
3
3.9  
3.6  
3.3  
3.9  
3.6  
3.3  
3
2.7  
VIN (V)  
VIN (V)  
Battery Current (5 LEDs) — 12mA Each  
VOUT = 3.50V, IOUT = 60mA, 25°C  
Backlight Efficiency (5 LEDs) — 12mA Each  
VOUT = 3.50V, IOUT = 60mA, 25°C  
100  
90  
100  
90  
80  
70  
60  
50  
80  
70  
60  
50  
4.2  
2.7  
4.2  
3.9  
3.6  
3.3  
3
3.9  
3.6  
3.3  
3
2.7  
VIN (V)  
V
IN(V)  
Backlight Efficiency (5 LEDs) — 5.0mA Each  
Battery Current (5 LEDs) — 5.0mA Each  
VOUT = 3.35V, IOUT = 25mA, 25°C  
VOUT = 3.35V, IOUT = 25mA, 25°C  
100  
90  
60  
50  
40  
30  
20  
10  
80  
70  
60  
50  
4.2  
3.9  
3.6  
3.3  
3
2.7  
4.2  
3.6  
3.9  
3.3  
3
2.7  
VIN (V)  
VIN (V)  
6
SC652  
Typical Characteristics (continued)  
Ripple — 1X Mode  
Ripple — 1X Mode  
VIN=4.2V, RISET = 5.56kΩ, 5 Backlights — 18 mA each, 25°C (see note 2)  
VIN=4.2V, RISET = 4kΩ, 5 Backlights — 25 mA each, 25°C (see note 1)  
VIN (100mV/div)  
VIN (100mV/div)  
VOUT (100mV/div)  
VOUT (100mV/div)  
Time (10μs/div)  
Time (10μs/div)  
Ripple — 1.5X Mode  
Ripple — 1.5X Mode  
VIN=3.2V, RISET = 4kΩ, 5 Backlights — 25 mA each, 25°C (see note 1)  
VIN=3.2V, RISET = 5.56kΩ, 5 Backlights — 18 mA each, 25°C (see note 2)  
VIN (100mV/div)  
VIN (100mV/div)  
VOUT (100mV/div)  
V
OUT (100mV/div)  
Time (10μs/div)  
Time (10μs/div)  
Ripple — 2X Mode  
Ripple — 2X Mode  
VIN=2.9V, RISET = 4kΩ, 5 Backlights — 25 mA each, 25°C (see note 1)  
VIN=2.9V, RISET = 5.56kΩ, 5 Backlights — 18 mA each, 25°C (see note 2)  
VIN (100mV/div)  
VIN (100mV/div)  
V
OUT (100mV/div)  
VOUT (100mV/div)  
Time (10μs/div)  
Time (10μs/div)  
NOTE 1: CIN = COUT = 4.7μF — 0603 size (1608 metric); C1 = C2 = 2.2μF — 0402 size (1005 metric)  
NOTE 2: CIN = COUT= C1 = C2 = 2.2μF — 0603 size (1608 metric)  
7
SC652  
Typical Characteristics (continued)  
PWM Accuracy — 4.2V  
VIN = 4.2V, RISET = 4.99kΩ, Calculated IBL = (100/RISET) x Duty Cycle  
Percentage of Maximum IBL — 4.2V  
VIN = 4.2V, RISET = 4.99kΩ  
100  
80  
60  
40  
20  
0
20  
16  
12  
200Hz  
32kHz  
50kHz  
8
4
0
50kHz  
200Hz  
32kHz  
0
4
8
12  
16  
20  
0
20  
40  
60  
80  
100  
Measured IBL (mA)  
PWM Duty Cycle (%)  
Percentage of Maximum IBL — 3.7V  
PWM Accuracy — 3.7V  
V
IN = 3.7V, RISET = 4.99kΩ, Calculated IBL = (100/RISET) x Duty Cycle  
20  
16  
12  
8
VIN = 3.7V, RISET = 4.99kΩ  
100  
80  
60  
40  
200Hz  
50kHz  
200Hz  
32kHz  
32kHz  
50kHz  
4
20  
0
0
0
20  
40  
60  
80  
100  
0
4
8
12  
16  
20  
Measured IBL (mA)  
PWM Duty Cycle (%)  
Percentage of Maximum IBL — 2.9V  
VIN = 2.9V, RISET = 4.99kΩ  
PWM Accuracy — 2.9V  
VIN = 2.9V, RISET = 4.99kΩ, Calculated IBL = (100/RISET) x Duty Cycle  
100  
80  
60  
40  
20  
0
20  
16  
12  
8
200Hz  
32kHz  
50kHz  
200Hz  
50kHz  
32kHz  
4
0
0
20  
40  
60  
80  
100  
0
4
8
12  
16  
20  
Measured IBL (mA)  
PWM Duty Cycle (%)  
8
SC652  
Typical Characteristics (continued)  
Start-up — 0% to 50%  
Start-up — 0% to 100%  
VIN = 3.7V, 0 to 50ꢀ duty cycle, RISET = 4.99kΩ, fPWM = 32kHz  
VIN = 3.7V, 0 to 100ꢀ duty cycle, RISET = 4.99kΩ, no PWM  
20mA  
10mA  
IBL (10.0mA/div)  
IBL (10.0mA/div)  
0mA—  
0mA—  
V
PWM (2V/div)  
V
PWM (2V/div)  
0V—  
0V—  
100ꢀ  
50ꢀ  
Time (200ms/div)  
Time (200ms/div)  
IBL Settling Time — 100% to 50%  
IBL Settling Time — 50% to 100%  
VIN = 3.7V, RISET = 4.99kΩ, fPWM = 32kHz  
VIN = 3.7V, RISET = 4.99kΩ, fPWM = 32kHz  
20mA  
20mA  
10mA  
10mA  
IBL (10.0mA/div)  
0mA—  
IBL (10.0mA/div)  
0mA—  
V
PWM (2V/div)  
0V—  
V
PWM (2V/div)  
0V—  
50ꢀ  
100ꢀ  
50ꢀ  
100ꢀ  
Time (200ms/div)  
Time (200ms/div)  
DC Backlight Current — 32kHz PWM  
DC Backlight Current — 200Hz PWM  
VIN = 3.7V, 50ꢀ duty cycle, RISET = 4.99kΩ, IBL = 10mA  
VIN = 3.7V, 50ꢀ duty cycle, RISET = 4.99kΩ, IBL = 10mA  
IBL (10.0mA/div)  
0mA—  
IBL (10.0mA/div)  
0mA—  
V
PWM (2V/div)  
0V—  
V
PWM (2V/div)  
0V—  
Time (1ms/div)  
Time (20s/div)  
9
SC652  
Pin Descriptions  
Pin #  
Pin Name  
OUT  
IN  
Pin Function  
1
2
Charge pump output — all LED anode pins should be connected to this pin  
Battery voltage input  
3
ISET  
Current setting pin — connect a resistor between this pin and the IN pin to set the LED current  
Enable pin — also used as the PWM input for dimming control  
Current sink output for main backlight LED 5 — leave this pin open if unused  
Current sink output for main backlight LED 4 — leave this pin open if unused  
Current sink output for main backlight LED 3 — leave this pin open if unused  
Current sink output for main backlight LED 2 — leave this pin open if unused  
Current sink output for main backlight LED 1 — leave this pin open if unused  
Ground pin  
4
EN/PWM  
BL5  
5
6
BL4  
7
BL3  
8
BL2  
9
BL1  
10  
11  
12  
13  
14  
GND  
C2-  
Negative connection to bucket capacitor 2  
C1-  
Negative connection to bucket capacitor 1  
C1+  
Positive connection to bucket capacitor 1  
C2+  
Positive connection to bucket capacitor 2  
10  
SC652  
Block Diagram  
C1+ C1- C2+ C2-  
13 12 14 11  
VIN  
VOUT  
Fractional Charge Pump  
(1x, 1.5x, 2x)  
IN 2  
1
OUT  
EN/  
4
Oscillator  
Control  
Interface  
and Level  
Converter  
9
8
7
6
5
BL1  
PWM  
BL2  
BL3  
BL4  
BL5  
Current  
Setting  
Block  
3
ISET  
GND 10  
11  
SC652  
Applications Information  
mize noise and support the output drive requirements of  
General Description  
IOUT up to 90mA. For output currents higher than 90mA, a  
This design is optimized for handheld applications sup-  
plied from a single Li-Ion cell and includes the following  
key features:  
nominal value of 4.7μF is recommended for COUT and CIN.  
Capacitors with X7R or X5R ceramic dielectric are  
strongly recommended for their low ESR and superior  
temperature and voltage characteristics. Y5V capacitors  
should not be used as their temperature coefficients  
make them unsuitable for this application.  
A high efficiency fractional charge pump that  
supplies power to all LEDs  
Five matched current sinks that control LED  
backlighting current, providing 500μA to 25mA  
per LED  
It is important that the minimum value of the capacitors  
used is no lower than 1μF. This may require the use of  
2.2μF capacitors to be sure that the degradation of  
capacitance due to DC voltage does not cause the  
capacitance to go below 1μF.  
EN/PWM pin functions as an enable and pro-  
vides PWM control of the LED brightness  
High Current Fractional Charge Pump  
The backlight outputs are supported by a high efficiency,  
high current fractional charge pump output. The charge  
pump multiplies the input voltage by 1, 1.5, or 2 times.  
The charge pump switches at a fixed frequency of 250kHz  
in 1.5x and 2x modes and is disabled in 1x mode to save  
power and improve efficiency.  
LED Backlight Current Sinks  
The full scale backlight current (IFS_BL) is set via the  
current through the ISET pin (IISET). IFS_BL is regulated to  
the value of IISET multiplied by an internal gain of 100A/A.  
R
ISET is used to control the current through the ISET pin.  
The relationship between RISET and the full scale back-  
light current is:  
The mode selection circuit automatically selects the  
mode as 1x, 1.5x, or 2x based on circuit conditions such  
as LED voltage, input voltage, and load current. The 1x  
mode is the most efficient of the three modes, followed  
by 1.5x and 2x modes. Circuit conditions such as low  
input voltage, high output current, or high LED voltage  
place a higher demand on the charge pump output. A  
higher numerical mode (1.5x or 2x) may be needed  
momentarily to maintain regulation at the OUT pin  
during intervals of high demand. The charge pump  
responds to momentary high demands, setting the  
charge pump to the optimum mode to deliver the output  
voltage and load current while optimizing efficiency.  
Hysteresis is provided to prevent mode toggling.  
RISET = 100/IFS_BL  
All backlight current sinks have matched currents, even  
when there is a variation in the forward voltages (ΔVF )  
of the LEDs. A ΔVF of 1.0V is supported when the input  
voltage is at 2.9V. Higher ΔVF LED mis-match is sup-  
ported when VIN is higher than 2.9V. All current sink  
outputs are compared and the lowest output is used for  
setting the voltage regulation at the OUT pin. This is  
done to ensure that sufficient bias exists for all LEDs.  
Any unused outputs must be left open and unused LED  
drivers will remain disabled.  
The charge pump requires two bucket capacitors for  
proper operation. One capacitor must be connected  
between the C1+ and C1- pins and the other must be con-  
nected between the C2+ and C2- pins as shown in the  
Typical Application Circuit diagram. These capacitors  
should be equal in value, with a minimum capacitance of  
1μF to support the charge pump current requirements.  
The device also requires at least 1μF capacitance on the IN  
pin and at least 1μF capacitance on the OUT pin to mini-  
PWM Operation  
A PWM signal can be used to adjust the DC current  
through the LEDs. When the duty cycle is 100ꢀ, the  
backlight current through each LED (IBL) equals the full  
scale current set by RISET. As the duty cycle decreases, the  
EN/PWM input samples the control signal and converts  
the duty cycle to a DC current level. In conventional  
PWM controlled systems, the output current pulses on  
and off with the PWM input to achieve an effective  
12  
SC652  
Applications Information (continued)  
average current. Providing a DC current through the  
LEDs instead of a pulsed current provides an efficiency  
advantage over other PWM controlled systems by allow-  
ing the charge pump to remain in 1x mode longer  
because the maximum current is equal to the average  
current.  
Charge Pump Output Current Limit  
LED Float Detection  
Output Open Circuit Protection  
Over-Voltage Protection (OVP) at the OUT pin prevents  
the charge pump from producing an excessively high  
output voltage. In the event of an open circuit between  
the OUT pin and all current sinks (no loads connected),  
the charge pump runs in open loop and the voltage rises  
up to the OVP limit. OVP operation is hysteretic, meaning  
the charge pump will momentarily turn off until VOUT is  
sufficiently reduced. The maximum OVP threshold is 6.0V,  
allowing the use of a ceramic output capacitor rated  
at 6.3V.  
PWM Sampling  
The sampling system that translates the PWM signal to  
a DC current requires the EN/PWM pin to have a  
minimum high time tHIGH_MIN to set the DC level. High  
time less than tHIGH_MIN impacts the accuracy of the target  
IBL. The minimum duty cycle needed to support the  
minimum high time specification varies with the applied  
PWM frequency (see figure 1). Note that use of a lower  
PWM frequency, from 200Hz to 10kHz, will support  
lower minimum duty cycle and an extended backlight  
dimming range.  
Over-Temperature Protection  
The Over-Temperature (OT) protection circuit prevents  
the device from overheating and experiencing a cata-  
strophic failure. When the junction temperature exceeds  
165°C, the device goes into thermal shutdown with all  
outputs disabled until the junction temperature is  
reduced. All register information is retained during  
thermal shutdown. Hysteresis of 20°C is provided to  
ensure that the device cools sufficiently before  
re-enabling.  
tHIGH_MIN = 1μs  
5
4
3
2
1
0
Charge Pump Output Current Limit  
The device limits the charge pump current at the OUT  
pin. If the OUT pin is shorted to ground, or VOUT is lower  
than 2.5V, the typical output current limit is 45mA. The  
typical output current is limited to 400mA when over  
loaded resistively with VOUT greater than 2.5V.  
0
10  
20  
PWM Frequency (kHz)  
40  
50  
30  
LED Float Detection  
Figure 1 — Minimum Duty Cycle  
Shutdown Mode  
The device is disabled when the EN/PWM pin is held low  
for 7ms or longer.  
Float detect is a fault detection feature of the LED back-  
light outputs. If an output is programmed to be enabled  
and an open circuit fault occurs at any backlight output,  
that output will be disabled to prevent a sustained  
output OVP condition from occurring due to the result-  
ing open loop. Float detect ensures device protection  
but does not ensure optimum performance.  
Protection Features  
The SC652 provides several protection features to safe-  
guard the device from catastrophic failures. These features  
include:  
Output Open Circuit Protection  
Over-Temperature Protection  
13  
SC652  
Applications Information (continued)  
PCB Layout Considerations  
The layout diagram in Figure 2 illustrates a proper two  
layer PCB layout for the SC652 and supporting compo-  
nents. Following fundamental layout rules is critical for  
achieving the performance specified in the Electrical  
Characteristics table. The following guidelines are rec-  
ommended when developing a PCB layout:  
Figure 4 shows layer 2, and has only two net  
connections, GND and OUT. Note that OUT is  
routed around the GND pin, and does not  
interfere with the ground connections between  
CIN, COUT and the GND pin. Also, layer 2 has a  
blank void in the copper beneath the ISET  
trace. The blank space reduces the capacitance  
coupled to the ISET pin.  
Place all bucket and decoupling capacitors —  
C1, C2, CIN, and COUT — as close to the device as  
possible.  
All charge pump current passes through pins  
IN, OUT, C1+, C2+, C1-, and C2-. Therefore,  
ensure that all connections to these pins make  
use of wide traces so that the voltage drop on  
each connection is minimized.  
The GND pin should be connected to a ground  
plane using multiple vias to ensure proper  
thermal connection for optimal heat transfer.  
Make solid ground connections between the  
grounds of the COUT, CIN, and the GND pin on the  
device.  
Resistor RSET should be connected as shown in  
Figure 2, close to pins IN and ISET. The place-  
ment and routing shown minimizes parasitic  
capacitance at the ISET pin.  
Figure 3 — Layer 1  
Ground Plane  
C2  
C1  
GND  
GND  
COUT  
OUT  
IN  
GND  
BL1  
BL2  
SC652  
CIN  
ISET  
RSET  
IN  
OUT  
Figure 4 — Layer 2  
Figure 2 — Recommended PCB Layout  
Figure 3 shows the pads on layer 1 that should  
be connected with vias to layer 2. CIN, COUT and  
the GND pin all use vias to connect to the  
ground plane. The OUT pin also uses vias and  
routes on layer 2.  
14  
SC652  
Outline Drawing — MLPQ-UT-14 2x2  
B
A
D
DIMENSIONS  
INCHES  
MIN NOM MAX MIN NOM MAX  
MILLIMETERS  
DIM  
-
-
A
A1  
A2  
b
.020  
.000  
0.50  
0.00  
0.60  
0.05  
.024  
.002  
-
-
PIN 1  
INDICATOR  
(LASER MARK)  
(.006)  
.008  
(0.152)  
0.20  
E
.006  
.010  
.081  
.081  
0.15  
1.95  
1.95  
0.25  
2.05  
2.05  
D
.079  
2.00  
.077  
.077  
E
.079  
2.00  
e
.016 BSC  
.012  
0.40 BSC  
0.30  
L
L1  
N
.010  
.014  
.014  
.018  
0.25  
0.35  
0.35  
0.45  
.016  
0.40  
14  
14  
aaa  
.003  
.004  
0.08  
bbb  
0.10  
A2  
C
A
SEATING  
PLANE  
aaa  
C
A1  
LxN  
e/2  
bxN  
bbb  
C
A
B
E/2  
e
0.15  
1
0.20  
N
L1  
D/2  
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
15  
SC652  
Land Pattern — MLPQ-UT-14 2x2  
R
X
DIMENSIONS  
INCHES  
DIM  
MILLIMETERS  
(.079)  
.055  
.016  
.004  
.008  
.024  
.102  
(2.00)  
1.40  
0.40  
0.10  
0.20  
0.60  
2.60  
C
G
P
R
X
Y
Z
Z
(C)  
G
P
Y
NOTES:  
1.  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY'S MANUFACTURING GUIDELINES ARE MET.  
3. SQUARE PACKAGE - DIMENSIONS APPLY IN BOTH " X " AND " Y " DIRECTIONS.  
4. PIN 1 PAD CAN BE SHORTER THAN THE ACTUAL PACKAGE LEAD TO AVOID  
SOLDER BRIDGING BETWEEN PINS 1 & 14.  
Contact Information  
Semtech Corporation  
Power Management Products Division  
200 Flynn Road, Camarillo, CA 93012  
Phone: (805) 498-2111 Fax: (805) 498-3804  
www.semtech.com  
16  

相关型号:

SC653

Light Management Unit with 2 LDOs and SemPulse®Interface
SEMTECH

SC653EVB

Light Management Unit with 2 LDOs and SemPulse®Interface
SEMTECH

SC653ULTRT

Light Management Unit with 2 LDOs and SemPulse®Interface
SEMTECH

SC654

Light Management Unit for 6 LEDs with SemPulseTM Interface
SEMTECH

SC654EVB

Light Management Unit for 6 LEDs with SemPulseTM Interface
SEMTECH

SC654ULTRT

Light Management Unit for 6 LEDs with SemPulseTM Interface
SEMTECH

SC656

Backlight Driver for 7 LEDs with Charge Pump and PWM Control
SEMTECH

SC656EVB

Backlight Driver for 7 LEDs with Charge Pump and PWM Control
SEMTECH

SC656ULTRT

Backlight Driver for 7 LEDs with Charge Pump and PWM Control
SEMTECH

SC657

Backlight Driver for 5 LEDs with SemPulseTM Interface
SEMTECH

SC6579

RADIO DATA SYSTEM (RDS) DEMODULATOR
SILAN

SC6579S

RADIO DATA SYSTEM (RDS) DEMODULATOR
SILAN