UPD5740T6N-E2-A [RENESAS]

SPECIALTY ANALOG CIRCUIT, PDSO6, 1.50 X 1.50 MM, 0.37 MM HEIGHT, LEAD FREE, PLASTIC, TSON-6;
UPD5740T6N-E2-A
型号: UPD5740T6N-E2-A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

SPECIALTY ANALOG CIRCUIT, PDSO6, 1.50 X 1.50 MM, 0.37 MM HEIGHT, LEAD FREE, PLASTIC, TSON-6

信息通信管理 光电二极管
文件: 总22页 (文件大小:397K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To our customers,  
Old Company Name in Catalogs and Other Documents  
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology  
Corporation, and Renesas Electronics Corporation took over all the business of both  
companies. Therefore, although the old company name remains in this document, it is a valid  
Renesas Electronics document. We appreciate your understanding.  
Renesas Electronics website: http://www.renesas.com  
April 1010  
Rectronics Corporation  
Issued by: Renesas Electronics Corporation (m)  
Send any inquiries to http://www.renesas.c
Notice  
1.  
2.  
All information included in this document is current as of the date this document is issued. Such information, however, is  
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please  
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to  
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.  
Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights  
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights  
of Renesas Electronics or others.  
3.  
4.  
You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  
Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of  
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,  
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by  
you or third parties arising from the use of these circuits, software, or information.  
5.  
When exporting the products or technology described in this document, you should comply with the applicable export control  
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas  
Electronics products or the technology described in this document for any purpose relating to military applications or use by  
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and  
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited  
under any applicable domestic or foreign laws or regulations.  
6.  
7.  
Renesas Electronics has used reasonable care in preparing the information includs document, but Renesas Electronics  
does not warrant that such information is error free. Renesas Electronics assuy whatsoever for any damages  
incurred by you resulting from errors in or omissions from the information
Renesas Electronics products are classified according to the following tard”, “High Quality”, and  
“Specific”. The recommended applications for each Renesas Electroduct’s quality grade, as  
indicated below. You must check the quality grade of each Renesing it in a particular  
application. You may not use any Renesas Electronics product as “Specific” without the prior  
written consent of Renesas Electronics. Further, you may nroduct for any application for  
which it is not intended without the prior written consent s Electronics shall not be in any way  
liable for any damages or losses incurred by you or thif any Renesas Electronics product for an  
application categorized as “Specific” or for which te you have failed to obtain the prior written  
consent of Renesas Electronics. The quality gradroduct is “Standard” unless otherwise  
expressly specified in a Renesas Electronics d
“Standard”:  
Computers; office equipent; test and measurement equipment; audio and visual  
equipment; home elels; personal electronic equipment; and industrial robots.  
“High Quality”: Transportation eqhips, etc.); traffic control systems; anti-disaster systems; anti-  
crime systems; equipment not specifically designed for life support.  
“Specific”:  
Aircraft; aee repeaters; nuclear reactor control systems; medical equipment or  
systems fe support devices or systems), surgical implantations, or healthcare  
interany other applications or purposes that pose a direct threat to human life.  
8.  
9.  
You should use the Rescribed in this document within the range specified by Renesas Electronics,  
especially with respect toperating supply voltage range, movement power voltage range, heat radiation  
characteristics, installation characteristics. Renesas Electronics shall have no liability for malfunctions or  
damages arising out of the use Electronics products beyond such specified ranges.  
Although Renesas Electronics endors to improve the quality and reliability of its products, semiconductor products have  
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,  
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to  
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a  
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire  
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because  
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system  
manufactured by you.  
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental  
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable  
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS  
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with  
applicable laws and regulations.  
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas  
Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this  
document or Renesas Electronics products, or if you have any other inquiries.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-  
owned subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
DATA SHEET  
SiGe BiCMOS INTEGRATED CIRCUIT  
μPD5740T6N  
LOW NOISE WIDEBAND AMPLIFIER IC WITH THROUGH FUNCTION  
DESCRIPTION  
The μPD5740T6N is a low noise wideband amplifier IC mainly designed for the portable digital TV application.  
This IC has achieved low noise figure and the wideband operation. The μPD5740T6N has an LNA pass-through  
function (bypass function) to prevent the degradation of the received signal quality at the strong electric field, and  
achieve the high reception sensitivity and low power consumption.  
The package is a 6-pin plastic TSON (Thin Small Out-line Non-leaded) (Te for surface mount.  
This IC is manufactured using our latest SiGe BiCMOS process that sh frequency characteristics.  
FEATURES  
Low voltage operation  
: VCC = 2.3 to 3.3 V (
Low mode control voltage  
Low current consumption  
: Vcont (H) = 1.0 V t
: ICC1 = 5.0 mmode)  
: ICC2 = 1 μass-mode)  
: NF1 = , f = 470 MHz  
: N8 V, f = 770 MHz  
= 2.8 V, f = 470 MHz  
VCC = 2.8 V, f = 770 MHz  
@ VCC = 2.8 V, f = 470 MHz  
P. @ VCC = 2.8 V, f = 770 MHz  
TSON (T6N) package (1.5 × 1.5 × 0.37 mm)  
Low noise (LNA-mode)  
High gain (LNA-mode)  
Low insertion loss (Bypass-mo
High-density surface mo
Included protection c
APPLICATION  
Low noise amplifier for the pod mobile digital TV system, etc.  
ORDERING INFORMATION  
Part Number  
Order Number  
Package  
Marking  
C3U  
Supplying Form  
μPD5740T6N-E2 μPD5740T6N-E2-A 6-pin plastic TSON  
8 mm wide embossed taping  
Pin 1, 6 face the perforation side of the tape  
Qty 3 kpcs/reel  
(T6N) (Pb-Free)  
Remark To order evaluation samples, please contact your nearby sales office.  
Part number for sample order: μPD5740T6N  
Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. PU10764EJ01V0DS (1st edition)  
Date Published June 2009 NS  
Printed in Japan  
2009  
μPD5740T6N  
PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM  
Pin No.  
Pin Name  
INPUT  
GND  
(Bottom View)  
(Top View)  
(Top View)  
1
2
3
4
5
6
1
2
3
6
5
4
1
2
3
6
5
4
6
5
4
1
2
3
Vcont  
VCC  
NC  
Bias  
Control  
OUTPUT  
Remark Exposed pad : GND  
TRUTH TABLE  
Vcont  
H
Gain  
High  
Low  
Mode  
LNA-mode  
L
Bypass-mode  
Remark “H” = Vcont (H), “L” = Vcont (L)  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Supply Voltage  
Symbol  
Ratings  
3.6  
Unit  
V
VCC  
V
Mode Control Voltage  
Total Power Dissipation  
Operating Ambient Temperature  
Storage Temperature  
Input Power  
3.6  
V
150  
mW  
°C  
40 to +85  
55 to +150  
+33  
°C  
dBm  
RECOMMENDED OPERGE  
Parameter  
Supply Voltage  
ymbol  
VCC  
MIN.  
2.3  
1.0  
0
TYP.  
2.8  
MAX.  
3.3  
Unit  
V
Mode Control Voltage (H)  
Mode Control Voltage (L)  
Operating Frequency  
Vcont (H)  
Vcont (L)  
f
VCC  
V
0.5  
V
50  
40  
1 800  
+85  
+7  
MHz  
°C  
Operating Ambient Temperature  
Input Power (LNA-mode)  
Input Power (Bypass-mode)  
TA  
+25  
Pin  
dBm  
dBm  
Pin  
+15  
2
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
ELECTRICAL CHARACTERISTICS 1 (DC Characteristics)  
(TA = +25°C, VCC = 2.8 V, unless otherwise specified)  
Parameter  
Circuit Current 1  
Symbol  
ICC1  
Test Conditions  
MIN.  
3.8  
TYP.  
5.0  
MAX.  
6.5  
1
Unit  
mA  
μA  
Vcont = 2.8 V, No Signal (LNA-mode)  
Vcont = 0 V, No Signal (Bypass-mode)  
Vcont = 2.8 V, No Signal (LNA-mode)  
Vcont = 0 V, No Signal (Bypass-mode)  
Circuit Current 2  
ICC2  
Mode Control Current 1  
Mode Control Current 2  
Icont1  
Icont2  
40  
100  
1
μA  
μA  
ELECTRICAL CHARACTERISTICS 2 (LNA-mode)  
(TA = +25°C, VCC = Vcont = 2.8 V, unless otherwise specified)  
Parameter  
Symbol  
GP1  
Test Conditions  
f = 470 MHz, Pin = 30 dBm  
f = 770 MHz, Pin = 30 dBm  
MIN.  
3.0  
TYP.  
15.0  
13.5  
1.5  
MAX.  
17.0  
15.5  
2.0  
Unit  
dB  
Power Gain 1  
Power Gain 2  
GP2  
dB  
Noise Figure 1  
NF1  
f = 470 MHz, excluded PCB
connector losses  
dB  
Noise Figure 2  
NF2  
f = 770 MHz, exclu
connector losse
1.5  
2.0  
dB  
Input Return Loss 1  
RLin1  
RLin2  
RLout1  
RLout1  
I
f = 470 MH
f = 77
f
7
7
12  
10  
dB  
dB  
Input Return Loss 2  
Output Return Loss 1  
Output Return Loss 2  
Input 3rd Order Intercept Point 1  
7
14  
dB  
7
11  
dB  
MHz,  
4.0  
1.0  
dBm  
Input 3rd Order Intercept Point 2  
= 771 MHz,  
1.0  
+2.0  
dBm  
m  
Note Input PCB and (at 470 MHz), 0.08 dB (at 770 MHz)  
3
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
ELECTRICAL CHARACTERISTICS 3 (Bypass-mode)  
(TA = +25°C, VCC = 2.8 V, unless otherwise specified)  
Parameter  
Insertion Loss 1  
Symbol  
Test Conditions  
MIN.  
TYP.  
1.1  
MAX.  
2
Unit  
dB  
Lins1  
f = 470 MHz, Pin = 10 dBm, excluded  
PCB and connector losses  
Note  
Insertion Loss 2  
Lins2  
f = 770 MHz, Pin = 10 dBm, excluded  
1.3  
2
dB  
PCB and connector losses  
f = 470 MHz, Pin = 10 dBm  
f = 770 MHz, Pin = 10 dBm  
f = 470 MHz, Pin = 10 dBm  
f = 770 MHz, Pin = 10 dBm  
Note  
Input Return Loss 1  
RLin1  
RLin2  
RLout1  
RLout1  
IIP3  
10  
10  
20  
17  
dB  
dB  
Input Return Loss 2  
Output Return Loss 1  
Output Return Loss 2  
Input 3rd Order Intercept Point  
10  
20  
dB  
10  
17  
dB  
f1 = 770 MHz, f2 = 771 MHz,  
+20  
+30  
dBm  
Pin = 2.5 dBm  
Note Input-output PCB and connector losses: 0.10 dB (at 470 MHz), Hz)  
4
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
STANDARD CHARACTERISTICS FOR REFERENCE 1 (LNA-mode)  
(TA = +25°C, VCC = Vcont = 2.8 V, unless otherwise specified)  
Parameter  
Symbol  
ISL1  
Test Conditions  
f = 470 MHz, Pin = 30 dBm  
f = 770 MHz, Pin = 30 dBm  
Reference  
Unit  
dB  
Isolation 1  
Isolation 2  
20  
20  
ISL2  
dB  
Gain 1 dB Compression Output  
Power 1  
PO (1 dB) 1 f = 470 MHz  
5.5  
dBm  
Gain 1 dB Compression Output  
Power 2  
PO (1 dB) 2 f = 770 MHz  
5.0  
dBm  
STANDARD CHARACTERISTICS FOR REFERENCE 2 (Bypass-mode)  
(TA = +25°C, VCC = 2.8 V, Vcont = 0 V, unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
f = 770 MHz  
Reference  
+8  
Unit  
Gain 1 dB Compression Output  
Power  
PO (1 dB)  
dBm  
TEST CIRCUIT  
4
OUTPUT  
INPUT  
1
10 000 pF  
0 000 pF  
C  
V
cont  
V
CC  
1 000 pF  
5
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
TYPICAL CHARACTERISTICS 1 (DC Characteristics) (TA = +25°C, unless otherwise specified)  
CIRCUIT CURRENT vs. OPERATING  
AMBIENT TEMPERATURE  
CIRCUIT CURRENT vs. SUPPLY VOLTAGE  
10  
10  
8
V
CC = 3.3 V  
8
6
6
TA  
= +85°C  
+25°C  
4
2
0
4
2.8 V  
–40°C  
2
V
CC = Vcont  
2.3 V  
0
V
CC = Vcont  
RF = off  
RF = off  
0
4
3
25  
50 75  
100  
0
1
2
3
–50  
Supply Voltage VCC (V)  
ient Temperature T (°C)  
A
URRENT vs.  
NT TEMPERATURE  
MODE CONTROL CURRENT vs.  
SUPPLY VOLTAGE  
80  
60  
40  
20  
0
μ
μ
20  
0
3.3 V  
T
A
= +85°C  
2.8 V  
2.3 V  
V
CC = Vcont  
RF = off  
0
1
–25  
0
25  
50  
75  
–50  
100  
Operating Ambient Temperature T (°C)  
A
Suppl
CIRCUIT CUR
MODE CONTROTAGE  
MODE CONTROL CURRENT vs.  
MODE CONTROL VOLTAGE  
80  
60  
40  
20  
0
10  
8
V
CC = 2.8 V  
RF = off  
μ
TA = +85°C  
+25°C  
6
TA = +85°C  
4
+25°C  
–40°C  
2
–40°C  
V
CC = 2.8 V  
RF = off  
0
0
1
2
0
1
2
3
Mode Control Voltage Vcont (V)  
Mode Control Voltage Vcont (V)  
Remark The graphs indicate nominal characteristics.  
6
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
TYPICAL CHARACTERISTICS 2 (LNA-mode) (TA = +25°C, unless otherwise specified)  
NOISE FIGURE vs. FREQUENCY  
NOISE FIGURE vs. FREQUENCY  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
TA  
= +85°C  
2.3 V  
+25°C  
2.8 V  
VCC = 3.3 V  
–40°C  
V
CC = Vcont = 2.8 V  
V
CC = Vcont  
0
600  
Frequency f (MHz)  
1 200  
0
600  
1 200  
200  
400  
800 1 000  
200  
400  
800 1 000  
equency f (MHz)  
vs. OPERATING  
RATURE  
NOISE FIGURE vs. SUPPLY VOLTAGE  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
.0  
0.8  
0.6  
0.4  
V
CC = Vcont  
470 MHz  
MHz  
f = 770 MHz  
f = 77
170 MHz  
170 MHz  
V
CC = Vcont = 2.8 V  
2
–50  
25  
75  
(°C)  
100  
–25  
0
50  
Supp
Operating Ambient Temperature T  
A
POWER GAIN vsNCY  
POWER GAIN vs. FREQUENCY  
20  
15  
20  
V
CC = Vcont = 2.8 V  
V
CC = Vcont  
2.8 V  
+25°C  
15  
10  
5
V
CC = 3.3 V  
–40°C  
TA  
= +85°C  
10  
5
2.3 V  
1 000  
0
0
0
500  
1 500  
2 000  
0
500  
1 000  
1 500  
2 000  
Frequency f (MHz)  
Frequency f (MHz)  
Remark The graphs indicate nominal characteristics.  
7
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
POWER GAIN vs. OPERATING  
POWER GAIN vs. SUPPLY VOLTAGE  
AMBIENT TEMPERATURE  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
V
CC = Vcont  
170 MHz  
170 MHz  
470 MHz  
470 MHz  
f = 770 MHz  
f = 770 MHz  
V
CC = Vcont = 2.8 V  
6
6
2
3
Supply Voltage VCC (V)  
4
–50  
25  
75  
100  
–25  
0
50  
Operatg Ambient Temperature T  
A
(°C)  
INPUT RETURN LOSS vs. FREQUENCY  
INOSS vs. FREQUENCY  
0
VCC = Vcont = 2.8 V  
VCC = Vcont  
2.3 V  
–5  
–10  
–15  
–20  
–25  
20  
–25  
V
CC = 3.3 V  
+25°C  
–40°C  
2.8 V  
0
500  
1 000  
0
500  
1 000  
1 500  
2 000  
Frequency f (MHz)  
Frequen
OUTPUT RETURN NCY  
OUTPUT RETURN LOSS vs. FREQUENCY  
0
0
VCC = Vcont = 2.8 V  
CC = Vcont  
–5  
–10  
–15  
–20  
–25  
–5  
–10  
–15  
–20  
–25  
V
CC = 3.3 V  
2.3 V  
–40°C  
+25°C  
2.8 V  
500  
TA  
= +85°C  
0
1 000  
1 500  
2 000  
0
500  
1 000  
1 500  
2 000  
Frequency f (MHz)  
Frequency f (MHz)  
Remark The graphs indicate nominal characteristics.  
8
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
ISOLATION vs. FREQUENCY  
ISOLATION vs. FREQUENCY  
0
–5  
0
–5  
VCC = Vcont = 2.8 V  
VCC = Vcont  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–20  
–25  
–30  
2.3 V  
TA  
= +85°C  
V
CC = 3.3 V  
–40°C  
2.8 V  
500  
+25°C  
0
1 000  
1 500  
2 000  
0
500  
1 000  
1 500  
2 000  
Frequency f (MHz)  
Frequency f (MHz)  
R vs. FREQUENCY  
K FACTOR vs. FREQUENCY  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.5  
0
V
CC = Vcont = 2.8 V  
V
CC = Vcont  
V
CC = 3.3 V  
85°C  
–40°C  
+25°C  
2.8 V  
2.3 V  
0
500  
1 00
0
500  
1 000  
1 500  
2 000  
Frequency f (MHz)  
Freque
POWER GAIN, CIRCUIT CURRENT  
vs. INPUT POWER  
OUTPUT POER  
10  
0
20  
10  
0
G
P
–10  
20  
–30  
ICC  
VCC = Vcont = 2.8 V  
V
CC = Vcont = 2.8 V  
f = 170 MHz  
f = 170 MHz  
–30  
20  
10  
0
–30  
20  
10  
0
–40  
–40  
Input Power Pin (dBm)  
Input Power Pin (dBm)  
Remark The graphs indicate nominal characteristics.  
9
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
POWER GAIN, CIRCUIT CURRENT  
vs. INPUT POWER  
OUTPUT POWER vs. INPUT POWER  
10  
0
20  
10  
0
G
P
–10  
20  
–30  
ICC  
V
CC = Vcont = 2.8 V  
V
CC = Vcont = 2.8 V  
f = 470 MHz  
f = 470 MHz  
–30  
20  
10  
0
–30  
20  
10  
0
–40  
–40  
Input Power Pin (dBm)  
Input Power Pin (dBm)  
PN, CIRCUIT CURRENT  
ER  
OUTPUT POWER vs. INPUT POWER  
10  
0
0
G
P
–10  
20  
–30  
ICC  
V
CC = Vcont = 2.8 V  
V
f = 770 MHz  
–30  
20  
–30  
20  
10  
0
–40  
–40  
Input Power Pin (dBm)  
Input P
GAIN 1 dB COMPRESSION OUTPUT POWER  
vs. OPERATING AMBIENT TEMPERATURE  
GAIN 1 dB T  
POWER vs. S
0
5  
0
f = 770 MHz  
f = 770 MHz  
5  
470 MHz  
470 MHz  
10  
10  
V
CC = Vcont  
V
CC = Vcont = 2.8 V  
–15  
–15  
–50  
100  
2
3
4
–25  
0
25  
50  
75  
Supply Voltage VCC (V)  
Operating Ambient Temperature T  
A
(°C)  
Remark The graphs indicate nominal characteristics.  
10  
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
OUTPUT POWER, IM  
3
vs. INPUT POWER  
OUTPUT POWER, IM  
3
vs. INPUT POWER  
40  
40  
V
CC = Vcont = 2.8 V  
V
CC = Vcont = 2.8 V  
f1 = 470 MHz  
f2 = 471 MHz  
f1 = 170 MHz  
f2 = 171 MHz  
20  
0
20  
0
Pout  
P
out  
–20  
–40  
–60  
–80  
–100  
–20  
–40  
–60  
–80  
–100  
IM  
3
IM  
3
IIP3  
= –0.1 dBm  
IIP3 = –0.9 dBm  
–35 –30 –25 –20 –15 –10 –5  
0
5
10  
–35  
0
5
10  
–30 –25 –20 –15 –10 –5  
Input Power Pin (dBm)  
Input Power Pin (dBm)  
OUTPUT POWER, IM  
3
vs. INPUT POWER  
vs. SUPPLY VOLTAGE  
40  
V
CC = Vcont = 2.8 V  
f1 = 770 MHz  
f2 = 771 MHz  
20  
0
OIP  
3
Pout  
470 MHz  
–20  
–40  
–60  
–80  
–100  
f = 770 MHz  
0
IM  
3
IIP  
3
–5  
V
CC = Vcont = 2.8 V  
IIP = 
3
470 MHz  
3
–10  
–35 –30 –25 –20 –15
2
4
Input P
Supply Voltage VCC (V)  
IIP  
3
, OIP vT  
3
TEMPERA
25  
20  
15  
10  
5
ont = 2.8 V  
f = MHz  
OIP  
3
470 MHz  
f = 770 MHz  
IIP3  
0
470 MHz  
50  
Operating Ambient Temperature T  
–5  
–50  
–25  
0
25  
75  
(°C)  
100  
A
Remark The graphs indicate nominal characteristics.  
11  
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
S-PARAMETERS 1 (LNA-mode) (TA = +25°C, VCC = Vcont = 2.8 V, monitored at connector on board)  
S11FREQUENCY  
1 : 170 MHz 50.10 Ω –17.65 Ω  
2 : 470 MHz 32.00 Ω  
3 : 770 MHz 26.70 Ω  
–9.15 Ω  
5.50 Ω  
3
2
1
START: 100 MHz  
S22FREQUENCY  
1 : 170 MHz 41.80 Ω –6.80 Ω  
2 : 470 MHz 34.55 Ω –0.95 Ω  
3 : 770 MHz 31.65 Ω 8.75 Ω  
2
1
START: 100 MHz  
STOP  
: 2 000 MHz  
Remark The graphs indicate nominal characteristics.  
12  
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
TYPICAL CHARACTERISTICS 3 (Bypass-mode) (TA = +25°C, unless otherwise specified)  
INSERTION LOSS vs. FREQUENCY INSERTION LOSS vs. FREQUENCY  
0
–1  
–2  
–3  
–4  
–5  
0
–1  
–2  
–3  
–4  
–5  
V
CC = 3.3 V  
40°C  
2.8 V  
+25°C  
2.3 V  
T
V
A
= +85°C  
V
cont = 0 V  
CC = 2.8 V, Vcont = 0 V  
0
500  
1 000  
1 500  
2 000  
0
0  
1 000  
1 500  
2 000  
Frequency f (MHz)  
equency f (MHz)  
INPUT RETURN LOSS vs. FREQUENCY  
S vs. FREQUENCY  
0
Vcont = 0 V  
VCC = 2.8 V, Vcont = 0 V  
–5  
–10  
–15  
–20  
–25  
–30  
0  
–25  
–30  
A
= +85°C  
2.3 V  
–40°C  
2.8 V  
+25°C  
V
CC = 3.3 V  
500  
0
1
0
500  
1 000  
1 500  
2 000  
Fre
Frequency f (MHz)  
OUTPUT RETURN LOQUENCY  
OUTPUT RETURN LOSS vs. FREQUENCY  
0
0
VCC = 2.8 V, Vcont = 0 V  
Vcont = 0 V  
–5  
–10  
–15  
–20  
–25  
–30  
–5  
–10  
–15  
–20  
–25  
–30  
T = +85°C  
A
2.3 V  
+25°C  
–40°C  
500  
2.8 V  
V
CC = 3.3 V  
500  
0
1 000  
1 500  
2 000  
0
1 000  
1 500  
2 000  
Frequency f (MHz)  
Frequency f (MHz)  
Remark The graphs indicate nominal characteristics.  
13  
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
K FACTOR vs. FREQUENCY  
K FACTOR vs. FREQUENCY  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
CC = 2.8 V, Vcont = 0 V  
V
cont = 0 V  
V
CC = 2.3, 2.8, 3.3 V  
T = +85°C  
A
–40°C  
+25°C  
0
500  
1 000  
1 500  
2 000  
0
500  
1 000  
1 500  
2 000  
Frequency f (MHz)  
Frequency f (MHz)  
INSERTIOOSS, CIRCUIT CURRENT  
vs. INPUR  
OUTPUT POWER vs. INPUT POWER  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
20  
10  
s  
μ
0
–10  
–20  
–30  
= 2.8 V,  
cont = 0 V  
V
CC = 2.8 V, Vco
f = 170 MHz  
f = 170 MHz  
I
CC  
8  
–20  
–10  
0
–20  
–10  
0
10  
20  
Input Power Pin (dBm)  
Input Power Pin
INSERTION LOSS, CIRCUIT CURRENT  
vs. INPUT POWER  
OUTPUT POW
0
–2  
–4  
–6  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
20  
10  
L
ins  
μ
0
–10  
–20  
–30  
V
V
CC = 2.8 V,  
cont = 0 V  
V
CC = 2.8 V, Vcont = 0 V  
f = 470 MHz  
I
CC  
f = 470 MHz  
–8  
–20  
–10  
0
10  
20  
–20  
–10  
0
10  
20  
Input Power Pin (dBm)  
Input Power Pin (dBm)  
Remark The graphs indicate nominal characteristics.  
14  
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
INSERTION LOSS, CIRCUIT CURRENT  
vs. INPUT POWER  
OUTPUT POWER vs. INPUT POWER  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
20  
10  
Lins  
–2  
–4  
–6  
μ
0
–10  
–20  
–30  
V
V
CC = 2.8 V,  
cont = 0 V  
V
CC = 2.8 V, Vcont = 0 V  
f = 770 MHz  
I
CC  
f = 770 MHz  
–8  
–20  
–10  
0
10  
20  
–20  
–10  
0
10  
20  
Input Power Pin (dBm)  
Input Power Pin (dBm)  
GAIN 1 PRESSION OUTPUT POWER  
vs. OMBIENT TEMPERATURE  
GAIN 1 dB COMPRESSION OUTPUT  
POWER vs. SUPPLY VOLTAGE  
15  
10  
5
Hz  
470 MHz  
f = 770 MHz  
f = 770 MHz  
V
25  
CC = 2.8 V, Vcont = 0 V  
0
0
–50  
–25  
0
50  
75  
100  
2
3
Supply V
Operating Ambient Temperature T  
A
(°C)  
OUTPUT PO
WER  
OUTPUT POWER, IM vs. INPUT POWER  
3
40  
40  
V
CC = 2.8 V, Vcont
V
CC = 2.8 V, Vcont = 0 V  
f1 = 170 MHz  
f2 = 171 MHz  
f1 = 470 MHz  
f2 = 471 MHz  
20  
0
20  
0
Pout  
Pout  
–20  
–40  
–60  
–80  
–20  
–40  
–60  
–80  
IM  
3
IM  
3
IIP  
3
= 28.9 dBm  
IIP  
3
= 32.9 dBm  
–10 –5  
0
5
10 15 20 25 30 35  
–10 –5  
0
5
10 15 20 25 30 35  
Input Power Pin (dBm)  
Input Power Pin (dBm)  
Remark The graphs indicate nominal characteristics.  
15  
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
OUTPUT POWER, IM vs. INPUT POWER  
3
IIP vs. SUPPLY VOLTAGE  
3
40  
40  
35  
30  
25  
20  
15  
V
CC = 2.8 V, Vcont = 0 V  
f1 = 770 MHz  
f2 = 771 MHz  
20  
0
470 MHz  
Pout  
–20  
–40  
–60  
–80  
f = 770 MHz  
IM3  
IIP  
10 15 20 25 30 35  
Input Power Pin (dBm)  
3
= 30.7 dBm  
Vcont = 0 V  
2
3
4
–10 –5  
0
5
Supply Voltage VCC (V)  
IIP  
3
vs. OPERATING AMBIENT  
TEMPERATURE  
40  
35  
30  
25  
20  
V
CC = 2.8 V, Vcont = 0 V  
470 MHz  
f = 770 MHz  
15  
–50  
–25  
0
Operating Am
Remark The graphs tics.  
16  
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
S-PARAMETERS 2 (Bypass-mode)  
(TA = +25°C, VCC = 2.8 V, Vcont = 0 V, monitored at connector on board)  
S11FREQUENCY  
1 : 170 MHz 53.50 Ω –5.20 Ω  
2 : 470 MHz 45.80 Ω –7.65 Ω  
3 : 770 MHz 26.70 Ω –3.75 Ω  
3
1
2
START: 100 MHz  
S22FREQUENCY  
1 : 170 MHz 53.25 Ω –5.50 Ω  
2 : 470 MHz 34.55 Ω –7.40 Ω  
3 : 770 MHz 31.65 Ω –2.70 Ω  
3
1
2
START: 100 MHz  
STOP  
: 2 000 MHz  
Remark The graphs indicate nominal characteristics.  
17  
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
PACKAGE DIMENSIONS  
6-PIN PLASTIC TSON (T6N) (UNIT: mm)  
(Top View)  
(Side View)  
(Bottom View)  
0.3 0.07  
1.5 0.1  
(0.24)  
+0.
0.37  
0.7 0.1  
>0  
( ) : Reference value  
18  
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
NOTES ON CORRECT USE  
(1) Observe precautions for handling because of electro-static sensitive devices.  
(2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).  
All the ground terminals must be connected together with wide ground pattern to decrease impedance  
difference.  
(3) The bypass capacitor should be attached to VCC line.  
(4) Do not supply DC voltage to INPUT pin.  
(5) Pin 5 (NC) should be connected to the ground pattern.  
RECOMMENDED SOLDERING CONDITIONS  
This product should be soldered and mounted under the following recommended conditions. For soldering  
methods and conditions other than those recommended below, contact your nearby sales office.  
Soldering Method  
Infrared Reflow  
Soldering Conditions  
Condition Symbol  
IR260  
Peak temperature (package surface temperature)  
Time at peak temperature  
: 2r below  
or less  
less  
Time at temperature of 220°C or higher  
Preheating time at 120 to 180°C  
Maximum number of reflow processes  
Maximum chlorine content of rosin flux (%
w  
Partial Heating  
Peak temperature (terminal temperatu
Soldering time (per side of device)  
low  
s or less  
(Wt.) or below  
HS350  
Maximum chlorine content of ro
Caution Do not use different soldering mr partial heating).  
19  
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
The information in this document is current as of June, 2009. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets,  
etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or  
types are available in every country. Please check with an NEC Electronics sales representative for  
availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patenghts or other intellectual  
property rights of third parties by or arising from the use of NEC Electrsted in this document  
or any other liability arising from the use of such products. No lied or otherwise, is  
granted under any patents, copyrights or other intellectual property rr others.  
Descriptions of circuits, software and other related information ed for illustrative  
purposes in semiconductor product operation and applrporation of these  
circuits, software and information in the design of a ce done under the full  
responsibility of the customer. NEC Electronics assany losses incurred by  
customers or third parties arising from the use of thrmation.  
While NEC Electronics endeavors to enhance thlectronics products, customers  
agree and acknowledge that the possibility of inated entirely. In addition, NEC  
Electronics products are not taken measures the product design. When customers  
use NEC Electronics products with theion their own responsibility, incorporate  
sufficient safety measures such as red anti-failure features to their products in  
order to avoid risks of the damages r social property) or injury (including death) to  
persons, as the result of defects
NEC Electronics products arg three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality Electronics products developed based on a customer-  
designated "quality aific application. The recommended applications of an NEC  
Electronics product as indicated below. Customers must check the quality grade of  
each NEC Electronics in a particular application.  
"Standard": Computers, communications equipment, test and measurement equipment, audio  
and visual equme electronic appliances, machine tools, personal electronic equipment  
and industrial rob
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1)  
"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2)  
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E0904E  

相关型号:

UPD5741T6J-E4-A

UPD5741T6J-E4-A
RENESAS

UPD5741T6J-E4-A

Narrow Band Medium Power Amplifier, 1.20 X 1 MM, 0.33 MM HEIGHT, LEAD FREE, LEADLESS, MINIMOLD, 3 PIN
NEC

UPD5742T6J-E4-A

UPD5742T6J-E4-A
RENESAS

UPD5742T6J-E4-A

Narrow Band Medium Power Amplifier, 1.20 X 1 MM, 0.33 MM HEIGHT, LEAD FREE, LEADLESS, MINIMOLD, 3 PIN
NEC

UPD5747T6J

LOW NOISE AND HIGH GAIN AMPLIFIER FOR IMPEDANCE CONVERTER OF MICROPHONE
NEC

UPD5747T6J-E4

LOW NOISE AND HIGH GAIN AMPLIFIER FOR IMPEDANCE CONVERTER OF MICROPHONE
NEC

UPD5747T6J-E4-A

LOW NOISE AND HIGH GAIN AMPLIFIER FOR IMPEDANCE CONVERTER OF MICROPHONE
NEC

UPD5750T7D

SiGe BiCMOS Integrated Circuit Wide Band LNA IC with Through Function
RENESAS

UPD5750T7D-E4A

SiGe BiCMOS Integrated Circuit Wide Band LNA IC with Through Function
RENESAS

UPD5750T7D-E4A-A

SiGe BiCMOS Integrated Circuit Wide Band LNA IC with Through Function
RENESAS

UPD5753T7G

SiGe/CMOS Integrated Circuit
RENESAS

UPD5753T7G-E1

SiGe/CMOS Integrated Circuit
RENESAS