ISL55033IRTZ-T7 [RENESAS]

Video Amplifier;
ISL55033IRTZ-T7
型号: ISL55033IRTZ-T7
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Video Amplifier

放大器 商用集成电路
文件: 总13页 (文件大小:872K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
400MHz Slew Rate Enhanced, Rail-to-Rail Output Gain  
Block  
ISL55033  
Features  
The ISL55033 is a triple rail-to-rail output gain block with a  
-3dB bandwidth of 400MHz and slew rate of 2350V/µs into a  
150load. The ISL55033 has a fixed gain of +2. The inputs  
are capable of sensing ground. The outputs are capable of  
swinging to 0.45V to either rail through a 150Ω resistor  
connected to V+/2.  
• 400MHz -3dB bandwidth  
• 2350V/µs typ slew rate, R = 150Ωto V+/2  
L
• Single-supply operation from +3V to +5.5V  
• Rail-to-rail output  
• Input ground sensing  
The ISL55033 is designed for general purpose video  
applications. The part includes a fast-acting global  
disable/power-down function.  
• Fast 25ns disable time  
• Pb-free (RoHS compliant)  
Applications  
• Video amplifiers  
• Set-top boxes  
The ISL55033 is available in a 12 Ld TQFN package. Operation  
is specified over the -40°C to +85°C temperature range.  
• Video distribution  
Pin Configuration  
ISL55033  
(12 LD TQFN)  
TOP VIEW  
12  
11  
10  
IN+_1  
IN+_2  
IN+_3  
9
OUTPUT_1  
OUTPUT_2  
OUTPUT_3  
1
8
7
2
3
EP  
6
4
5
EACH CHANNEL  
= +2  
A
V
June 29, 2015  
FN6346.1  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas LLC 2008, 2015. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL55033  
Pin Descriptions  
EQUIVALENT  
CIRCUIT  
PIN NUMBER  
PIN NAME  
IN+_1  
DESCRIPTION  
1
2
3
4
5
Circuit 1  
Circuit 1  
Circuit 1  
Circuit 4  
Amplifier 1 noninverting input  
Amplifier 2 noninverting input  
Amplifier 3 noninverting input  
IN+_2  
IN+_3  
GND_IN-(1, 2, 3)  
GND_PWR  
Common input for amplifiers 1, 2, 3 inverting inputs  
Circuits 1, 2, 4, 5 Power supply ground. This is also the potential of the exposed metal pad on the package  
bottom.  
6
7
GND_OUTPUT  
OUTPUT_3  
OUTPUT_2  
OUTPUT_1  
V+_OUTPUT  
EN  
Circuit 3  
Circuit 3  
Circuit 3  
Circuit 3  
Circuit 3  
Circuit 2  
Output power supply ground  
Amplifier 3 output  
8
Amplifier 2 output  
9
Amplifier 1 output  
10  
11  
Output power supply  
Enable pin with internal pull-down: Logic “1” selects the disabled state; Logic “0” selects the  
enabled state  
12  
EP  
V+  
EP  
Circuits 1, 2, 4 Positive power supply  
Circuit 5 Package’s exposed thermal pad. Connect to GND_PWR.  
V+  
V+_OUTPUT  
V+  
IN+  
EN  
OUTPUT (1, 2, 3)  
GND_OUTPUT  
dV/dt  
CLAMP  
GND_PWR  
GND_PWR  
CIRCUIT 3  
CIRCUIT 1  
CIRCUIT 2  
V+  
DIE SUBSTRATE  
~1MΩ  
GND_IN-(1, 2, 3)  
GND_PWR  
500  
THERMAL HEAT SINK PAD (EP)  
CIRCUIT 5  
500k  
GND_PWR  
CIRCUIT 4  
Ordering Information  
PART NUMBER  
(Note 1, 2, 3)  
PART  
MARKING  
TEMP RANGE  
(°C)  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
ISL55033IRTZ  
NOTES:  
5033  
-40 to +85  
12 Ld TQFN  
L12.3x3A  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see product information page for ISL55033. For more information on MSL, please see tech brief TB363.  
FN6346.1  
June 29, 2015  
Submit Document Feedback  
2
ISL55033  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage from V+ to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.75V  
Supply Turn-on Voltage Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1V/µs  
EN Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4mA  
Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (V+) + 0.3V to GND - 0.3V  
Continuous Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40mA  
ESD Rating:  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5kV  
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300V  
Charge Device Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5kV  
Thermal Resistance (Typical) . . . . . . . . . . . . .  
12 Ld TQFN Package (Notes 4, 5) . . . . . . . . .  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65°C to +125°C  
Pb-free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
(°C/W)  
57  
(°C/W)  
10  
JA  
JC  
Operating Conditions  
Ambient Operating Temperature Range (T ) . . . . . . . . . . -40°C to +85°C  
A
Maximum Operating Junction Temperature (T ). . . . . . . . . . . . . . . +125°C  
J
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
4. is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
5. For , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications V+ = V+_OUTPUT = 5V, T = +25°C, R = 1kΩ to V+/2, V = 0.1VDC, unless otherwise specified.  
A
L
IN  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
TEST CONDITIONS  
(Note 7)  
TYP  
(Note 7)  
UNIT  
INPUT CHARACTERISTICS  
V
Output Offset Voltage  
(Note 6)  
-9  
-1  
-3  
9
mV  
µV/°C  
µA  
OS  
TCV  
Offset Voltage Temperature Coefficient Measured from -40°C to +85°C  
OS  
IB  
Input Bias Current  
Input Resistance  
Input Capacitance  
V
= 0V  
-8.5  
-6  
IN  
R
7
MΩ  
IN  
C
0.5  
pF  
IN  
OUTPUT CHARACTERISTICS  
A
Closed Loop Gain  
V
= 0.5V to 4V, R = 150Ω  
1.97  
1.99  
30  
2.014  
V/V  
mΩ  
V
CL  
OUT  
L
R
Output Resistance  
A
= +2  
OUT  
OH  
V
V
Positive Output Voltage Swing  
R = 1kΩ to 2.5V  
4.7  
4.5  
4.75  
4.55  
27  
L
R = 150Ω to 2.5V  
V
L
V
Negative Output Voltage Swing  
R
R
R
R
= 1kΩ to 2.5V  
50  
mV  
mV  
mA  
mA  
OL  
L
L
L
L
= 150Ω to 2.5V  
130  
200  
I
I
(source)  
Output Short-circuit Current  
Output Short-circuit Current  
= 10Ωto GND, V = 1.5V  
IN  
50  
50  
SC  
(sink)  
= 10Ωto + 2.5V, V = 0V  
IN  
SC  
POWER SUPPLY  
PSRR  
Power Supply Rejection Ratio  
Supply Current - Enabled  
V+ = 3V to 5.5V, R = Open  
65  
83  
dB  
mA  
µA  
L
I
I
V
= 0.1V, R = Open  
18.5  
275  
21.3  
486  
24.5  
900  
S-ON  
IN  
L
Supply Current - All Amplifiers Disabled R = Open  
S-OFF  
L
ENABLE  
t
t
Enable Time  
R
R
= 150ΩV = 0.5V  
IN  
250  
25  
0.8  
2
ns  
ns  
V
EN  
DS  
L
L
Disable Time  
= 150ΩV = 0.5V  
IN  
V
V
EN Pin Low Voltage for Power-up  
EN Pin High Voltage for Shut-Down  
EN Pin Input Current High  
EN Pin Input Current Low  
IL-ENB  
IH-ENB  
IH-ENB  
IL-ENB  
V
I
I
V
V
= 5V  
= 0V  
1
7
15  
10  
µA  
µA  
EN  
EN  
-10  
2
FN6346.1  
June 29, 2015  
Submit Document Feedback  
3
ISL55033  
Electrical Specifications V+ = V+_OUTPUT = 5V, T = +25°C, R = 1kΩ to V+/2, V = 0.1VDC, unless otherwise specified. (Continued)  
A
L
IN  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
TEST CONDITIONS  
(Note 7)  
TYP  
400  
(Note 7)  
UNIT  
MHz  
AC PERFORMANCE  
BW  
-3dB Bandwidth  
V
V
= 100mV R = 150Ω, C = 2pF,  
P-P  
OUT  
L
L
= 1.0 VDC  
IN  
BW  
±0.1dB Bandwidth  
V
= 100mV R = 150Ω, C = 2pF  
60  
MHz  
dB  
OUT  
OUT  
P-P  
L
L
Peak  
Gain Peaking  
V
= 100mV R = 150Ω,  
1.5  
P-P  
L
C
= 3.2pF  
L
dG  
dP  
Differential Gain  
V
= 0.1V to 2.0V, V  
= 100mV ,  
P-P  
0.012  
0.11  
35  
%
°
IN  
OUT  
f = 3.58MHz, R = 150Ω  
L
Differential Phase  
e
Output Voltage Noise Density  
Input Current Noise Density  
Off-state Isolation  
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
dB  
N-OUT  
i
2.9  
N
ISO  
V
= 0.8VDC + 1V , C = 2pF,  
P-P  
-80  
IN  
L
f
= 10MHz  
R
= 150Ω  
O
L
X-TALK  
PSRR  
Channel-to-channel Crosstalk,  
= 10MHz  
V
R
= 0.8VDC + 1V , C = 2pF,  
= 150Ω  
-65  
-55  
dB  
dB  
IN  
L
P-P  
L
f
O
Power Supply Rejection Ratio  
= 10MHz  
V
C
= 0.2VDC, V  
= 1V  
,
P-P  
IN  
SOURCE  
f
= 2pF, R = 150Ω  
O
L
L
TRANSIENT RESPONSE  
SR Slew Rate 25% to 75%  
t , t Large Rise Time, t 20% to 80%  
R
= 150Ω, V  
OUT  
= 0.5V to 3.5V  
2350  
0.8  
0.7  
0.6  
0.6  
0.55  
0.55  
13  
V/µs  
ns  
ns  
ns  
ns  
ns  
ns  
%
L
V
V
V
= 3V R = 150ΩC = 2pF  
P-P  
r
f
r
OUT  
L
L
Signal  
Fall Time, t 80% to 20%  
f
Rise Time, t 20% to 80%  
= 2V R = 150ΩC = 2pF  
P-P  
r
OUT  
OUT  
L
L
Fall Time, t 80% to 20%  
f
t , t , Small  
Rise Time, t 20% to 80%  
= 100mV R = 150ΩC = 2pF  
P-P  
r
f
r
L
L
Signal  
Fall Time, t 80% to 20%  
f
OS  
Overshoot  
100mV step  
t
t
Propagation Delay  
0.1% Settling Time  
100mV step; R = 150Ω  
1
ns  
ns  
PD  
S
L
2V step  
65  
NOTES:  
6. V is extrapolated from 2 output voltage measurements, with V = 62.5mV and V = 125mV, R = 1k.  
OS IN IN  
L
7. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
FN6346.1  
June 29, 2015  
Submit Document Feedback  
4
ISL55033  
Typical Performance Curves  
3
8
6
R
= 1k  
L
C = 9.2pF  
L
2
1
R
= 499  
L
C
= 7.8pF  
= 5.7pF  
L
4
C
L
0
2
C
= 4.3pF  
L
-1  
-2  
-3  
-4  
-5  
-6  
0
R
= 150  
= 100  
L
-2  
-4  
-6  
-8  
V+ = V+_OUT = 5V  
R
C
= 3.2pF  
L
L
A
C
= +2  
= 2pF  
= 100mV  
(DC) = 0.1V  
V+ = V+_OUT = 5V  
V
L
A
R
V
V
= +2  
= 150Ω  
= 100mV  
V
L
C
= 2.0pF  
L
V
V
OUT  
IN  
P-P  
OUT P-P  
(DC) = 0.1V  
1M  
IN  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 2. GAIN vs FREQUENCY FOR VARIOUS C  
FIGURE 1. GAIN vs FREQUENCY FOR VARIOUS R  
LOAD  
LOAD  
1
0
4
2
0
-1  
V
V
= 0.1V  
= 0.5V  
OUT  
P-P  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
V
V
V
V
= 2.3V  
= 2.2V  
= 2.0V  
= 1.0V  
= 0.1V  
IN(DC)  
IN(DC)  
IN(DC)  
IN(DC)  
OUT  
P-P  
-2  
-4  
V
= 1.0V  
OUT  
OUT  
P-P  
P-P  
V
IN(DC)  
V
= 1.5V  
V+ = V+_OUT = 5V  
AV = +2  
V+ = V+_OUT = 5V  
-6  
A
R
C
= +2  
= 150Ω  
= 2pF  
R
= 150Ω  
V
L
L
L
C
= 2pF  
-8  
L
V
(DC) = 0.1V  
IN  
V
= 100mV  
OUT  
P-P  
-10  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 4. GAIN vs FREQUENCY FOR VARIOUS DC INPUT VOLTAGES  
FIGURE 3. GAIN vs FREQUENCY FOR VARIOUS V  
OUT  
7
6
0.2  
0.1  
0
ALL CHANNELS  
5
-0.1  
-0.2  
-0.3  
4
3
-0.4  
V+ = V+_OUT = 5V  
V+ = V+_OUT = 5V  
A
= +2  
= 150Ω  
= 2pF  
= 100mV  
(DC) = 0.1V  
A
= +2  
V
L
L
-0.5  
-0.6  
-0.7  
-0.8  
V
2
1
0
R
C
V
R
C
V
= 150Ω  
= 2pF  
L
L
= 100mV  
OUT  
P-P  
OUT  
P-P  
V
V
(DC) = 0.1V  
IN  
IN  
1M  
FREQUENCY (Hz)  
100M  
1G  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
10k  
100k  
10M  
FIGURE 6. 0.1 dB GAIN FLATNESS  
FIGURE 5. GAIN vs FREQUENCY - ALL CHANNELS  
FN6346.1  
June 29, 2015  
Submit Document Feedback  
5
ISL55033  
Typical Performance Curves(Continued)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-20  
V+ = V+_OUT = 5V  
V+ = V+_OUT = 5V  
A
= +2  
V
A
R
C
= +2  
= 150Ω  
= 2pF  
V
L
L
R
C
V
= 150Ω  
= 2pF  
L
L
-40  
= 1V  
SOURCE  
P-P  
V
= 0.8VDC+1V  
IN  
P-P  
ALL INPUTS = +0.2V DC  
ALL INPUTS = +0.8VDC  
-60  
-80  
-100  
-120  
-140  
100k  
10M  
100M  
10k  
1M  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
1G  
FREQUENCY (Hz)  
FIGURE 8. OFF-ISOLATION vs FREQUENCY  
FIGURE 7. PSRR vs FREQUENCY  
10000  
1000  
100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V+ = V+_OUT = 5V  
A
R
C
= +2
= 150Ω  
= 2pF  
V
L
L
V
(DRIVEN CHANNEL)=2V
P-P
OUT  
ALL INPUTS = +0.8V DC  
10  
1M  
FREQUENCY (Hz)  
100M  
1G  
10k  
100k  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 10. OUTPUT VOLTAGE NOISE DENSITY vs FREQUENCY  
FIGURE 9. CHANNEL-TO-CHANNEL CROSSTALK vs FREQUENCY  
5.5  
1000  
1.8  
5.0  
DISABLE  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.5  
1.2  
0.9  
0.6  
0.3  
0
V
100  
10  
1
OUT  
V
= 5V  
= +2  
= 150Ω  
= 2pF  
+
A
V
R
C
V
L
L
= 0.5V  
IN  
ENABLE  
EN  
-0.5  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
TIME (µs)  
FREQUENCY (Hz)  
FIGURE 11. INPUT CURRENT NOISE DENSITY vs FREQUENCY  
FIGURE 12. ENABLE/DISABLE TIMING  
FN6346.1  
June 29, 2015  
Submit Document Feedback  
6
ISL55033  
Typical Performance Curves(Continued)  
0.62  
0.60  
0.58  
0.56  
0.54  
0.52  
0.50  
0.48  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V+ = V+_OUT = 5V  
V+ = V+_OUT = 5V  
A
= +2  
V
A
R
C
= +2  
= 150Ω  
= 2.0pF  
R
C
V
= 150Ω  
= 2.0pF  
V
L
L
L
L
= 100mV  
OUT  
P-P  
V
= 2V  
OUT  
P-P  
0
5
10 15 20 25 30 35 40 45 50  
TIME (ns)  
0
5
10 15 20 25 30 35 40 45 50  
TIME (ns)  
FIGURE 13. SMALL SIGNAL STEP RESPONSE  
FIGURE 14. LARGE SIGNAL (2V ) STEP RESPONSE  
P-P  
4.0  
0.014  
0.012  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V+ = V+_OUT = 5V  
0.010  
A
R
C
= +2  
= 150Ω  
= 2pF  
V
L
L
0.008  
0.006  
0.004  
0.002  
0
V+ = V+_OUT = 5V  
F = 3.58MHz  
= 100mV  
A
= +2  
V
V
OUT  
P-P  
R
C
= 150Ω  
= 2.0pF  
L
L
V
= 3V  
OUT  
P-P  
-0.002  
-0.004  
-0.006  
-0.008  
-0.01  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
INPUT DC OFFSET (V)  
0
5
10 15 20 25 30 35 40 45 50  
TIME (ns)  
FIGURE 15. LARGE SIGNAL (3V ) STEP RESPONSE  
P-P  
FIGURE 16. DIFFERENTIAL GAIN  
1000  
100  
10  
0.1  
0.05  
0
V+ = V+_OUT = 5V  
A
C
= +2  
= 2.0pF  
= 1.25V DC  
V
L
V
V
IN  
= 1V  
SOURCE  
P-P  
V+ = V+_OUT = 5V  
-0.05  
A
R
C
= +2  
= 150Ω  
= 2pF  
V
L
L
-0.10  
-0.15  
-0.20  
-0.25  
-0.3  
F = 3.58MHz  
= 100mV  
V
OUT  
P-P  
1
0.1  
100k  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
INPUT DC OFFSET (V)  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 18. Z  
(ENABLED) vs FREQUENCY  
FIGURE 17. DIFFERENTIAL PHASE  
OUT  
FN6346.1  
June 29, 2015  
Submit Document Feedback  
7
ISL55033  
Typical Performance Curves(Continued)  
10000  
1000  
100  
1M  
100k  
10k  
1k  
V+ = V+_OUT = 5V  
A
= +2  
= 2.0pF  
= 1.25V DC  
V+ = 5V  
V
L
C
V
A
R
C
= +2  
= 150Ω  
= 3.0pF  
V
L
L
IN  
V
= 1V  
SOURCE  
P-P  
100  
10  
V
V
= 1.25V DC  
IN  
= 1V  
SOURCE  
P-P  
10  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 19. Z  
(DISABLED) vs FREQUENCY  
OUT  
FIGURE 20. Z vs FREQUENCY  
IN  
24  
20  
16  
12  
8
4
R
= OPEN  
L
0
1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8  
SUPPLY VOLTAGE (V)  
FIGURE 21. SUPPLY CURRENT vs SUPPLY VOLTAGE  
720  
670  
7.25  
MAX  
MAX  
7.20  
7.15  
7.10  
7.05  
7.00  
6.95  
6.90  
6.85  
6.80  
SAMPLE SIZE = 100  
V+ = V+_OUT = 5V  
= 1kΩ  
SAMPLE SIZE = 100  
V+ = V+_OUT = 5V  
620  
570  
520  
470  
420  
370  
R
L
R
= 1kΩ  
L
MEDIAN  
MEDIAN  
MIN  
MIN  
20  
-40 -20  
0
20  
40  
60  
80  
100 120  
-40 -20  
0
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 23. DISABLED SUPPLY CURRENT vs TEMPERATURE  
FIGURE 22. ENABLED SUPPLY CURRENT vs TEMPERATURE  
FN6346.1  
June 29, 2015  
Submit Document Feedback  
8
ISL55033  
Typical Performance Curves(Continued)  
7
4
3
MAX  
MAX  
6
SAMPLE SIZE = 100  
V+ = V+_OUT = 5V  
SAMPLE SIZE = 100  
V+ = V+_OUT = 5V  
5
2
4
R
= 1kΩ  
R
= 150Ω  
L
L
1
3
MEDIAN  
2
0
MEDIAN  
1
-1  
-2  
-3  
-4  
0
MIN  
40  
-1  
-2  
-3  
MIN  
20  
-40 -20  
0
40  
60  
80  
100 120  
-40 -20  
0
20  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 24. OUTPUT OFFSET VOLTAGE V vs TEMPERATURE  
OS  
FIGURE 25. OUTPUT OFFSET VOLTAGE V vs TEMPERATURE  
OS  
-4.5  
SAMPLE SIZE = 100  
115  
V+ = V+_OUT = 5V  
SAMPLE SIZE = 100  
V = 3V to 5.5V  
MAX  
-5.0  
MAX  
S
105  
95  
-5.5  
MEDIAN  
-6.0  
85  
MIN  
MEDIAN  
-6.5  
-7.0  
75  
MIN  
0
65  
-40 -20  
20  
40  
60  
80  
100 120  
-40 -20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 27. PSRR vs TEMPERATURE  
FIGURE 26. I  
BIAS  
vs TEMPERATURE  
160  
4.61  
4.60  
4.59  
4.58  
4.57  
4.56  
4.55  
4.54  
4.53  
4.52  
4.51  
4.50  
SAMPLE SIZE = 100  
V+ = V+_OUT = 5V  
SAMPLE SIZE = 100  
V+ = V+_OUT = 5V  
= 150Ω  
155  
150  
145  
140  
135  
130  
125  
120  
115  
110  
R
= 150Ω  
R
L
L
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
-40 -20  
0
20  
40  
60  
80  
100 120  
-40 -20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 28. V  
OUT  
HIGH vs TEMPERATURE  
FIGURE 29. V  
OUT  
LOW vs TEMPERATURE  
FN6346.1  
June 29, 2015  
Submit Document Feedback  
9
ISL55033  
Typical Performance Curves(Continued)  
34  
32  
30  
28  
26  
24  
22  
4.78  
4.77  
4.76  
4.75  
4.74  
4.73  
4.72  
SAMPLE SIZE = 100  
V+ = V+_OUT = 5V  
SAMPLE SIZE = 100  
V+ = V+_OUT = 5V  
R
= 1kΩ  
L
MAX  
R
= 1kΩ  
L
MAX  
MEDIAN  
MIN  
MEDIAN  
MIN  
-40 -20  
0
20  
40  
60  
80  
100 120  
-40 -20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 31. V  
OUT  
LOW vs TEMPERATURE  
FIGURE 30. V  
OUT  
HIGH vs TEMPERATURE  
DECOUPLING CAPACITORS (0.1µF || 1nF FOR EACH PIN)  
V+  
EN  
V+_OUT  
GND_OUTPUT  
IN+_1  
IN+_2  
IN+_3  
OUT_1  
OUT_2  
R
1
2
OUT  
R
1
IN  
R
OUT  
R
2
3
IN  
OUT_3  
R
3
OUT  
R
IN  
GND_IN-(1, 2, 3)  
FIGURE 32. BASIC APPLICATION CIRCUIT  
FN6346.1  
June 29, 2015  
Submit Document Feedback  
10  
ISL55033  
amplifiers off. The output presents a relatively high impedance  
Application Information  
General  
The ISL55033 single supply, fixed gain, triple amplifier is  
intended for use in a variety of video and other high speed  
applications. The device features a ground-sensing PNP input  
stage and a bipolar rail-to-rail output stage. The three amplifiers  
have an internally fixed gain of 2 and share a single enable pin as  
shown in Figure 32.  
(~2kΩ) to the output pin. Multiplexing several outputs together is  
possible using the enable/disable function as long as the  
application can tolerate the limited power-down output  
impedance.  
Limiting the Output Current  
No output short-circuit current limit exists on these parts. All  
applications need to limit the output current to less than 40mA.  
Adequate thermal heat sinking of the parts is also required.  
Ground Connections  
PC Board Layout  
The AC performance of this circuit depends greatly on the care  
taken in designing the PC board. The following are  
recommendations to achieve optimum high frequency  
performance from your PC board.  
For the best isolation performance and crosstalk rejection, all  
GND pins must connect directly to the GND plane. In addition, the  
electrically conductive thermal pad (EP) must also connect  
directly to ground.  
Power Considerations  
• The use of low inductance components, such as chip resistors  
and chip capacitors, is strongly recommended.  
Separate V+ power supply and GND pins for the input and output  
stages are provided to maximize PSRR. Providing separate  
power pins provides a way to prevent high speed transient  
currents in the output stage from bleeding into the sensitive  
amplifier input and gain stages. To maximize crosstalk isolation,  
each power supply pin should have its own decoupling capacitors  
connected as close to the pin as possible as shown in Figure 32  
(0.1µF in parallel with 1nF recommended).  
• Minimize signal trace lengths. Trace inductance and  
capacitance can easily limit circuit performance. Avoid sharp  
corners. Use rounded corners when possible. Vias in the signal  
lines add inductance at high frequency and should be avoided.  
PCB traces greater than 1" begin to exhibit transmission line  
characteristics with signal rise/fall times of 1ns or less. High  
frequency performance may be degraded for traces greater  
than one inch, unless controlled impedance (50Ωor75Ωstrip  
lines or microstrips are used.  
The ESD protection circuits use internal diodes from all pins to the  
V+ and ground pins. In addition, a dV/dt-triggered clamp is  
connected between the V+ and V- pins, as shown in Equivalent  
Circuit 1 on page 2. The dV/dt triggered clamp imposes a  
maximum supply turn-on slew rate of 1V/µs. Damaging currents  
can flow for power supply slew rates in excess of 1V/µs, such as  
during hot plugging. Under these conditions, additional methods  
should be employed to ensure the maximum supply slew rate is  
not exceeded.  
• Match channel-to-channel analog I/O trace lengths and layout  
symmetry. This will minimize propagation delay mismatches.  
• Maximize use of AC decoupled PCB layers. All signal I/O lines  
should be routed over continuous ground planes (i.e. no split  
planes or PCB gaps under these lines). Avoid vias in the signal I/O  
lines.  
• Use proper value and location of termination resistors. Input  
termination resistors should be as close to the input terminal as  
possible and output termination resistors as close to the receiving  
device as possible.  
Single Supply Input/Output Considerations  
For best performance, the input signal voltage range should be  
maintained between 0.1V to 2.1V. These input limits correspond  
to an output voltage range of 0.2V to 4.2V and define the limits  
of linear operation. Figure 4 shows the frequency response  
versus the input DC voltage level. Figures 16 and 17 show the  
differential gain-phase performance over the input range of 0V to  
2.4V operating into a 150Ω load. The 0.1V to 2.1V input levels  
corresponds to a 0.2V to 4.2V output levels, which define the  
minimum and maximum range of output linear operation.  
• When testing, use good quality connectors and cables, matching  
cable types and keeping cable lengths to a minimum.  
• A minimum of two, high frequency, power supply decoupling  
capacitors (1000pF, 0.1µF), on each V+ pin, are recommended as  
close to the devices as possible. Avoid vias between the capacitor  
and the device because vias add unwanted inductance. Larger  
capacitors (e.g., electrolytics) can be farther away. When vias are  
required in a layout, they should be routed as far away from the  
device as possible.  
Composite video with sync requires care to ensure that the  
negative sync tip voltage (typically -300mV) is properly  
level-shifted up into the ISL55033 input linear operating region  
of +0.1V to 2.1V. The high input impedance enables AC coupling  
using low values of coupling capacitance with relatively high  
input voltage divider resistances.  
EN and Power-down States  
The EN pin is active low. An internal pull-down resistor ensures  
the device will be active with no connection to the EN pin. The  
power-down state is established within approximately 25ns, if a  
logic high (>2V) is placed on the EN pin. In the power-down state,  
supply current is reduced significantly by shutting the three  
FN6346.1  
June 29, 2015  
Submit Document Feedback  
11  
ISL55033  
pad. Maximum AC performance is achieved if the thermal pad  
The QFN Package Requires Additional PCB  
Layout Rules for the Thermal Pad  
The thermal pad (EP) is electrically connected to power supply  
ground (GND_PWR) through the high resistance IC substrate. Its  
primary function is to provide heat sinking for the IC. However,  
because of the connection to the power ground pins through the  
substrate, the thermal pad must be tied to the power supply  
ground to prevent unwanted current flow through the thermal  
has good contact to the IC ground pins. Heat sinking  
requirements can be satisfied using thermal vias directly  
beneath the thermal pad to a heat dissipating layer of a square  
at least 1” on a side. Fill the PCB pad under the EP with vias and  
connect those vias to a substantial ground plane. Reference  
TB379, section 3) on page 2 and Appendix A, or JEDEC JESD51-5,  
for more information.  
l
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest revision.  
DATE  
REVISION  
FN6346.1  
CHANGE  
June 29, 2015  
-Pin Descriptions table on page 2, updated equivalent circuit as follows:  
Pin number 4: from Circuit 1 to Circuit 4.  
Pin number 5: from Circuit 4 to Circuits 1, 2, 4, 5 and added sentence to the description.  
Pin number 6: from Circuit 4 to Circuit 3.  
Pin number 10: from Circuit 4 to Circuit 3.  
Pin number 12: from Circuit 4 to Circuits 1, 2, 4.  
Added EP details to the table.  
Updated Circuits 3 and 4 figure.  
-Ordering information table on page 2: Removed ISL55033EVAL1Z.  
- Ordering information table on page 2: Added MSL note.  
-Thermal Information table on page 3, added “Theta jc” and reference “Note 5”.  
-“Electrical Specification” table on page 3, test condition from V+ = 5V to V+_VOUT = 5V.  
-Electrical Specification” table on page 3, under enable section changed “Parameter” name “VIH-ENB” to  
“VIL-ENB” for the 0.8V typical value and changed “Parameter” name “VIL-ENB” to “VIH-ENB” for the 2V  
typical value.  
-“PC Board Layout” on page 11, changed reference from “0.01µF” cap to “0.1µF”, removed paragraph  
referencing “NIC” pins.  
-updated “The QFN Package Requires Additional PCB Layout Rules for the Thermal Pad” on page 12  
paragraph.  
- Added revision history and about Intersil verbiage.  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6346.1  
June 29, 2015  
Submit Document Feedback  
12  
ISL55033  
Package Outline Drawing  
L12.3x3A  
12 LEAD THIN QUAD FLAT NO LEAD PLASTIC PACKAGE  
Rev 0, 09/07  
3.00  
0 . 5  
BSC  
A
6
B
12  
10  
PIN #1 INDEX AREA  
6
PIN 1  
INDEX AREA  
9
7
1
3
0.10  
M C A B  
0.15  
(4X)  
4
0.25 +0.05 / -0.07  
6
4
12X 0 . 4 ± 0 . 1  
TOP VIEW  
BOTTOM VIEW  
SEE DETAIL "X"  
C
0.10  
C
0 . 75  
BASE PLANE  
SEATING PLANE  
0.08  
( 2 . 8 TYP )  
C
SIDE VIEW  
5
0 . 6  
C
0 . 2 REF  
0 . 00 MIN.  
0 . 05 MAX.  
0 . 50  
0 . 25  
NOTES:  
DETAIL "X"  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
TYPICAL RECOMMENDED LAND PATTERN  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.18mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 indentifier may be  
either a mold or mark feature.  
FN6346.1  
June 29, 2015  
Submit Document Feedback  
13  

相关型号:

ISL55036

400MHz Slew Rate Enhanced Rail-to-Rail Output Gain Block
INTERSIL

ISL55036IRTZ

400MHz Slew Rate Enhanced Rail-to-Rail Output Gain Block
INTERSIL

ISL55036IRTZ-T13

400MHz Slew Rate Enhanced Rail-to-Rail Output Gain Block
INTERSIL

ISL55100A

Quad 18V Pin Electronics Driver/Window Comparator
INTERSIL

ISL55100AEVAL3Z

Quad 18V Pin Electronics Driver/Window Comparator Evaluation Boards
RENESAS

ISL55100AIRZ

Quad 18V Pin Electronics Driver/Window Comparator
INTERSIL

ISL55100AIRZ

Quad 18V Pin Electronics Driver/Window Comparator; QFN72; Temp Range: -40° to 85°C
RENESAS

ISL55100AIRZ-T

Quad 18V Pin Electronics Driver/Window Comparator; QFN72; Temp Range: -40° to 85°C
RENESAS

ISL55100AIRZ-T7A

Quad 18V Pin Electronics Driver/Window Comparator
RENESAS

ISL55100B

Quad 18V Pin Electronics Driver/Window Comparator
INTERSIL

ISL55100BIRZ

Quad 18V Pin Electronics Driver/Window Comparator
INTERSIL

ISL55110

Dual, High Speed MOSFET Driver
INTERSIL