ISL55036 [INTERSIL]

400MHz Slew Rate Enhanced Rail-to-Rail Output Gain Block; 400MHz的压摆率增强的轨至轨输出增益模块
ISL55036
型号: ISL55036
厂家: Intersil    Intersil
描述:

400MHz Slew Rate Enhanced Rail-to-Rail Output Gain Block
400MHz的压摆率增强的轨至轨输出增益模块

文件: 总11页 (文件大小:682K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL55036  
®
Data Sheet  
September 11, 2008  
FN6640.1  
400MHz Slew Rate Enhanced Rail-to-Rail  
Output Gain Block  
Features  
• 400MHz -3dB Bandwidth  
The ISL55036 is a hex, rail-to-rail output, fixed gain amplifier  
(G = 4) with a -3dB bandwidth of 400MHz and slew rate of  
2500V/µs into a 150Ω load. The ISL55036 features single  
supply operation over a voltage range of 3VDC to 5.5VDC.  
The inputs are capable of sensing ground with an output  
swing of VCC - 0.3V into a 150Ω load tied to V+/2. The part  
includes a fast-acting global disable/power-down circuit.  
The ISL55036 is available in a 24 Ld TQFN package.  
Operation is specified over the -40°C to +85°C temperature  
range.  
• 2500V/µs Typical Slew Rate, R = 150Ω  
L
• Supplies from 3V to 5.5V  
• Rail-to-Rail Output (R = 1k)  
L
• Input Ground Sensing  
• Fast 25ns Disable  
• Low Cost  
• Pb-Free (RoHS Compliant)  
Applications  
Ordering Information  
• Video RGB Line Driver  
• LCD Based Projectors Pixel Control  
PART  
MARKING  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
PART NUMBER  
ISL55036IRTZ  
55036 IRTZ  
24 Ld TQFN  
24 Ld TQFN  
L24.4x5C  
L24.4x5C  
Pinout  
ISL55036IRTZ-T13* 55036 IRTZ  
ISL55036  
24 LD TQFN  
TOP VIEW  
*Please refer to TB347 for details on reel specifications.  
NOTE: These Intersil Pb-free plastic packaged products employ  
special Pb-free material sets, molding compounds/die attach  
materials, and 100% matte tin plate plus anneal (e3 termination  
finish, which is RoHS compliant and compatible with both SnPb and  
Pb-free soldering operations). Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed  
the Pb-free requirements of IPC/JEDEC J STD-020.  
24 23 22 21 20  
IN+_2  
IN+_3  
1
2
3
4
5
6
19  
18  
17  
OUT_2  
OUT_3  
0.80  
0.75  
0.70  
GND_OUT(1, 2, 3)  
GND_PWR(1, 2, 3)  
V+_OUT(4,5,6)  
OUT_4  
GND_IN(1, 2, 3)  
EN(4, 5, 6)  
V+(4, 5, 6)  
IN+_4  
DIE 1  
16  
15  
14  
13  
V
= 5V  
= +4  
= 150Ω  
= 3.0pF  
+
0.65  
0.60  
0.55  
0.50  
0.45  
A
V
R
C
V
L
L
= 250mV  
P-P  
OUT_5  
OUT  
DIE 2  
10 11 12  
IN+_5  
7
8
9
0
5
10 15 20 25 30 35 40 45 50  
TIME (ns)  
FIGURE 1. SMALL SIGNAL STEP RESPONSE  
A
EACH CHANNEL  
V
EQUALS +4  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2008. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
ISL55036  
Pin Descriptions  
EQUIVALENT  
CIRCUIT  
24 LD TQFN  
PIN NAME  
DESCRIPTION  
1
2
3
4
IN+_2  
Circuit 1  
Circuit 1  
Circuit 4  
Circuit 2  
Amplifier 2 non-inverting input  
Amplifier 3 non-inverting input  
IN+_3  
GND_IN(1, 2, 3)  
EN(4, 5, 6)  
Common reference input for Amplifiers 1, 2, 3  
Enable pin internal pull-down; Logic “1” selects the disabled state; Logic “0” selects  
the enabled state. Channels 4, 5, 6  
5
V+(4, 5, 6)  
Circuit 5  
Circuit 1  
Circuit 1  
Circuit 1  
Circuit 5  
Circuit 5  
Circuit 3  
Circuit 3  
Circuit 3  
Circuit 3  
Circuit 3  
Circuit 4  
Circuit 3  
Circuit 3  
Circuit 3  
Circuit 3  
Circuit 3  
Circuit 2  
Positive power supply for Channels 4, 5, 6.  
Amplifier 4 non-inverting input  
Amplifier 5 non-inverting input  
Amplifier 6 non-inverting input  
Common reference input for Amplifiers 4, 5, 6  
Power supply ground for Channels 4, 5, 6.  
Output power supply ground for Channels 4, 5, 6.  
Amplifier 6 output  
6
IN+_4  
7
IN+_5  
8
IN+_6  
9
GND_IN(4, 5, 6)  
GND_PWR(4, 5, 6)  
GND_OUT(4, 5, 6)  
OUT_ 6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
OUT_ 5  
Amplifier 5 output  
OUT_4  
Amplifier 4 output  
V+_OUT(4, 5, 6)  
GND_PWR(1, 2, 3)  
GND_OUT(1, 2, 3)  
OUT_3  
Output power supply for Channels 4, 5, 6.  
Power supply ground Channels 1, 2, 3.  
Output power supply ground Channels 1, 2, 3.  
Amplifier 3 output  
OUT_2  
Amplifier 2 output  
OUT_1  
Amplifier 1 output  
V+_OUT(1, 2, 3)  
EN(1, 2, 3)  
Output power supply Channels 1, 2, 3.  
Enable pin internal pull-down; Logic “1” selects the disabled state; Logic “0” selects  
the enabled state. Channels 1, 2, 3  
23  
24  
V+(1, 2, 3)  
IN+_1  
Circuit 4  
Circuit 1  
Circuit 6  
Positive power supply for Channels 1, 2, 3.  
Amplifier 1 non-inverting input  
Thermal Pad  
Thermal heat sink pad makes electrical contact the IC substrate and must be  
connected to same ground potential as the ground pins.  
V+_OUT(1, 2, 3)  
V+  
V+  
V+_OUT(4, 5, 6)  
21k  
+
OUT(1, 2, 3)  
OUT(4, 5, 6)  
IN+  
EN  
dv/dt  
CLAMP  
1.2V  
GND_PWR  
-
GND_OUT(1, 2, 3)  
GND_OUT(4, 5, 6)  
GND_PWR  
CIRCUIT 1  
CIRCUIT 2  
CIRCUIT 3  
V+(1, 2, 3)  
V+(4,5,6)  
SUBSTRATE 1  
GND_PWR (1,2,3)  
SUBSTRATE 2  
GND_IN-(1,2,3)  
GND_IN-(4, 5, 6)  
GND(4, 5, 6)  
~1MΩ  
~1MΩ  
500  
500  
1.5k  
1.5k  
GND_PWR(1,2,3)  
GND_PWR(4, 5, 6)  
THERMAL HEAT SINK PAD  
CIRCUIT 6  
CIRCUIT 4  
CIRCUIT 5  
FN6640.1  
September 11, 2008  
2
ISL55036  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage from V+ to GND . . . . . . . . . . . . . . . . . . . . . . . 5.75V  
Supply Turn On Voltage Slew Rate . . . . . . . . . . . . . . . . . . . . . 1V/µs  
EN Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4mA  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . V+ + 0.3V to GND - 0.3V  
Continuous Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 40mA  
ESD Rating:  
Thermal Resistance (Typical, Note 1)  
θ
(°C/W)  
42  
JA  
24 Ld TQFN Package . . . . . . . . . . . . . . . . . . . . . . .  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +125°C  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,000V  
Machine Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300V  
Operating Conditions  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . .+125°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
1. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
Electrical Specifications V = 5V, T = +25°C, R = 1k to V /2, A = 4, V = 0.1VDC, Unless Otherwise Specified.  
+
A
L
+
V
IN  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 3)  
TYP  
(Note 3)  
UNIT  
INPUT CHARACTERISTICS  
TCV  
IB  
Offset Voltage Temperature Coefficient Measured from -40°C to +85°C  
-3  
-5.5  
7
µV/°C  
µA  
OS  
Input Bias Current  
Input Resistance  
Input Capacitance  
V
= 0V  
-10  
-2.5  
IN  
R
C
MΩ  
pF  
IN  
0.5  
IN  
OUTPUT CHARACTERISTICS  
V
A
Output Offset Voltage  
Closed Loop Gain  
Note 2  
-14  
3.9  
-2  
4
10  
mV  
V/V  
mΩ  
V
OS  
CL  
R
= 1k, 150Ω, V  
= 0.5V to 4V  
OUT  
4.1  
L
R
Output Resistance  
A
= +4  
30  
OUT  
OP  
V
V
Positive Output Voltage Swing  
R = 1kΩ to 2.5V  
4.86  
4.65  
27  
L
R = 150Ω to 2.5V  
V
L
V
Negative Output Voltage Swing  
R
= 1kΩ to 2.5V  
L
mV  
mV  
mA  
mA  
ON  
R = 150Ω to 2.5V  
140  
95  
L
I
I
(source)  
Output Short Circuit Current  
Output Short Circuit Current  
R
R
= 10Ω to GND, V = 1.5V  
IN  
60  
70  
SC  
SC  
L
L
(sink)  
= 10Ω to + 2.5V, V = 0V  
IN  
105  
POWER SUPPLY  
PSRR Power Supply Rejection Ratio @ 1kHz V+ = 5V; V  
= 1V  
;
P-P  
78  
dB  
SOURCE  
f = 1kHz sine wave  
I
I
Supply Current - Enabled per Amplifier  
R
= Open  
L
6.0  
0.5  
7.2  
1.1  
8.5  
2
mA  
mA  
S-ON  
Supply Current - All Amplifiers Disabled R = Open  
S-OFF  
L
ENABLE  
t
t
Enable Time  
R
= 150Ω, V = 0.25V  
L IN  
250  
25  
0.8  
2
ns  
ns  
V
EN  
DS  
Disable Time  
R = 150Ω, V = 0.25V  
IN  
L
V
V
ENABLE Pin Voltage for Power-Up  
ENABLE Pin Voltage for Shut-Down  
IH-ENB  
IL-ENB  
V
FN6640.1  
September 11, 2008  
3
ISL55036  
Electrical Specifications V = 5V, T = +25°C, R = 1k to V /2, A = 4, V = 0.1VDC, Unless Otherwise Specified. (Continued)  
+
A
L
+
V
IN  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 3)  
TYP  
(Note 3)  
UNIT  
µA  
I
I
ENABLE Pin Input Current High  
ENABLE Pin Input for Current Low  
V
V
= 5V  
= 0V  
1
5.5  
20  
4
IH-ENB  
IL-ENB  
EN  
-4  
µA  
EN  
AC PERFORMANCE  
BW  
BW  
Peak  
dG  
-3dB Bandwidth  
R = 150Ω, C = 3pF  
400  
40  
MHz  
MHz  
dB  
L
L
±0.1dB Bandwidth  
Peaking  
R = 150Ω, C = 3pF  
L
L
R
= 150Ω, C = 3pF  
1
L
L
Differential Gain  
Differential Phase  
Output Noise Voltage  
Input Noise Current  
Off-State Isolation  
V
= 0.1V to 1.0V, V  
= 100mV ,  
P-P  
0.06  
0.01  
50  
%
IN  
OUT  
f = 3.58MHz, R = 150Ω  
L
dP  
°
e
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
dB  
N-OUT  
i
0.9  
-100  
N
ISO  
V
= 0.6VDC + 1V , C = 3pF,  
P-P  
IN  
R = 150Ω  
L
f
= 10MHz  
O
L
X-TALK  
Die to Die Crosstalk  
= 10MHz  
V
= 0.6VDC + 1V , C = 3pF,  
P-P  
-85  
-65  
-55  
dB  
dB  
dB  
IN  
R = 150Ω  
L
f
O
L
Same Die Channel-to-Channel  
Crosstalk, f = 10MHz  
O
PSRR  
Power Supply Rejection Ratio  
V
= 1V , C = 3pF, R = 150Ω  
P-P  
SOURCE  
L
L
f
= 10MHz  
O
TRANSIENT RESPONSE  
SR Slew Rate 25% to 75%  
t , t Large Rise Time, t 20% to 80%  
R
= 150Ω, V  
= 0.5V to 4.5V  
OUT  
2500  
1.4  
1
V/µs  
ns  
ns  
ns  
ns  
ns  
ns  
%
L
V
V
V
= 4V  
, R = 150Ω, C = 3pF  
L L  
r
f
r
OUT  
P-P  
Signal  
Fall Time, t 20% to 80%  
f
Rise Time, t 20% to 80%  
= 2V  
, R = 150Ω, C = 3pF  
0.8  
0.7  
0.75  
0.7  
5
r
OUT  
OUT  
P-P  
L
L
Fall Time, t 20% to 80%  
f
t , t , Small  
Rise Time, t 20% to 80%  
= 0.2V  
, R = 150Ω, C = 3pF  
P-P  
r
f
r
L
L
Signal  
Fall Time, t 20% to 80%  
f
OS  
Overshoot  
200mV step  
200mV step  
2V step  
t
t
t
Propagation Delay  
0.6  
12  
ns  
ns  
ns  
PD  
S
1% Settling Time  
ENABLE to Output Turn-on Delay Time;  
V
= 1VDC, R = 150Ω, C = 3pF  
250  
EN  
OUT  
L
L
10% EN - 10% V  
OUT  
ENABLE to Output Turn-off Delay Time;  
10% EN - 10% V  
V
= 1VDC, R = 150Ω, C = 3pF  
25  
ns  
OUT  
L
L
OUT  
NOTES:  
2. V  
is extrapolated from 2 output voltage measurements, with V = 62.5mV and V = 125mV, R = 1k.  
IN IN  
OS  
L
3. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
FN6640.1  
September 11, 2008  
4
ISL55036  
Typical Performance Curves  
6
5
4
5
4
R
= 1k  
L
C
= 11.2pF  
L
3
R
= 499  
L
2
3
C
= 7.7pF  
L
1
-2  
-1  
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
C
= 5.2pF  
L
-1  
-2  
-3  
-4  
-5  
V
= 5V  
= +4  
= 3pF  
+
C
= 3.0pF  
L
A
V
= 5V  
= +4  
V
+
R
= 150  
C
V
A
L
L
V
= 100mV  
R = 150Ω  
OUT  
P-P  
L
R
= 100  
L
V
= 100mV  
1M  
OUT  
P-P  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 2. GAIN vs FREQUENCY FOR VARIOUS R  
FIGURE 3. GAIN vs FREQUENCY FOR VARIOUS C  
LOAD  
LOAD  
1
0
15  
14  
13  
12  
V
= 4V  
P-P  
OUT  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
V
= 3V  
P-P  
OUT  
V
= 100mV  
P-P  
OUT  
ALL CHANNELS  
11  
V
= 1V  
OUT  
OUT  
P-P  
P-P  
10  
9
V
= 2V  
V
= 5V  
= +4  
= 150Ω  
= 3pF  
8
7
6
5
+
V
= 5V  
= +4  
= 150Ω  
= 3pF  
A
+
V
A
R
C
V
V
L
L
R
C
L
L
= 100mV  
100k  
OUT  
P-P  
1M  
FREQUENCY (Hz)  
100M  
1G  
10k  
10M  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 4. -3dB BANDWIDTH vs V  
FIGURE 5. GAIN vs FREQUENCY - ALL CHANNELS  
OUT  
0
0.2  
0.1  
V
= 5V  
= +4  
= 150Ω  
= 3pF  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
+
A
V
0
R
C
V
L
L
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
= 1V  
P- P  
SOURCE  
ALL INPUTS = +0.2V DC  
V
= 5V  
= +4  
= 150Ω  
= 3pF  
= 100mV  
100k  
+
A
V
R
C
L
L
V
OUT  
P-P  
100k  
FREQUENCY (Hz)  
10M  
100M  
1k  
10k  
1M  
1M  
FREQUENCY (Hz)  
100M  
10k  
10M  
FIGURE 6. 0.1 dB GAIN FLATNESS  
FIGURE 7. PSRR vs FREQUENCY  
FN6640.1  
September 11, 2008  
5
ISL55036  
Typical Performance Curves (Continued)  
0
-20  
0
V
= 5V  
= +4  
= 150Ω  
= 3pF  
+
V
= 5V  
= +4  
= 150Ω  
= 3pF  
A
+
V
A
R
C
V
-20  
-40  
V
L
L
R
C
V
L
L
(DRIVEN CHANNEL)=4V
P-P
OUT  
-40  
= 0.6VDC+1V  
P-P  
IN  
ALL INPUTS = +0.6V DC  
ALL INPUTS = +0.6VDC  
-60  
-60  
CHANNELS ON SAME DIE  
-80  
-80  
-100  
-120  
-100  
-120  
CHANNELS ON DIFFERENT DIE  
1M  
FREQUENCY (Hz)  
100M  
1G  
10k  
100k  
10M  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FIGURE 9. CHANNEL-TO-CHANNEL CROSSTALK vs  
FREQUENCY  
FIGURE 8. OFF ISOLATION vs FREQUENCY  
100.0  
10.0  
1.0  
10000  
1000  
100  
10  
0.1  
1
1M  
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 11. INPUT REFERRED NOISE CURRENT vs  
FREQUENCY  
FIGURE 10. OUTPUT NOISE VOLTAGE vs FREQUENCY  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
0.80  
0.75  
0.70  
DISABLE  
V
OUT  
V
= 5V  
= +4  
= 150Ω  
= 3.0pF  
+
0.65  
0.60  
0.55  
0.50  
0.45  
A
V
R
C
V
L
L
V
= 5V  
= +4  
= 150Ω  
= 3pF  
+
A
= 250mV  
P-P  
V
OUT  
R
C
V
L
L
= 0.25V  
IN  
ENABLE  
-0.5  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
TIME (µs)  
0
5
10 15 20 25 30 35 40 45 50  
TIME (ns)  
FIGURE 12. ENABLE/DISABLE TIMING  
FIGURE 13. SMALL SIGNAL STEP RESPONSE  
FN6640.1  
September 11, 2008  
6
ISL55036  
Typical Performance Curves (Continued)  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
V
= 5V  
= +4  
= 150Ω  
= 3.0pF  
+
V
= 5V  
= +4  
= 150Ω  
= 3.0pF  
+
A
V
A
V
R
C
V
L
L
1.5  
1.0  
0.5  
0
R
C
V
L
L
= 4V  
P-P  
OUT  
= 2V  
P-P  
OUT  
0
5
10 15 20 25 30 35 40 45 50  
TIME (ns)  
0
5
10 15 20 25 30 35 40 45 50  
TIME (ns)  
FIGURE 15. LARGE SIGNAL (4V ) STEP RESPONSE  
P-P  
FIGURE 14. SMALL SIGNAL (2V  
) STEP RESPONSE  
P-P  
0.04  
0.02  
0
0.004  
0.002  
0
-0.02  
-0.002  
V
= 5V  
= +4  
= 150Ω  
= 3pF  
V
= 5V  
= +4  
= 150Ω  
= 3pF  
+
+
A
-0.04  
-0.06  
-0.08  
-0.10  
A
V
-0.004  
-0.006  
-0.008  
-0.010  
V
R
C
R
C
L
L
L
L
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1  
INPUT DC OFFSET (V)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1  
INPUT DC OFFSET (V)  
FIGURE 17. DIFFERENTIAL PHASE  
FIGURE 16. DIFFERENTIAL GAIN  
100k  
10k  
1k  
V
= 5V  
= +4  
= 150Ω  
= 3.0pF  
+
A
V
R
C
V
L
L
= 100mV  
P-P  
SOURCE  
100  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 18. Z vs FREQUENCY  
IN  
FN6640.1  
September 11, 2008  
7
ISL55036  
Typical Performance Curves (Continued)  
100.00  
10k  
1k  
V
= 5V  
= +4  
= 150Ω  
= 3.0pF  
+
A
V
R
C
L
L
10.00  
1.00  
0.10  
0.01  
V
= 100mV  
P-P  
SOURCE  
100  
10  
V
= 5V  
= +4  
= 150Ω  
= 3.0pF  
+
A
V
R
C
V
L
L
= 100mV  
P-P  
SOURCE  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 19. Z  
(ENABLED) vs FREQUENCY  
OUT  
FIGURE 20. Z  
(DISABLED) vs FREQUENCY  
OUT  
7.8  
1.21  
n = 100  
7.7  
n = 100  
MAX  
MAX  
1.16  
1.11  
1.06  
1.01  
0.96  
7.6  
7.5  
7.4  
7.3  
7.2  
7.1  
7.0  
MEDIAN  
MIN  
MEDIAN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 21. ENABLED SUPPLY CURRENT vs  
FIGURE 22. DISABLED SUPPLY CURRENT vs  
TEMPERATURE, V = ±2.5V  
S
TEMPERATURE, V = ±2.5V  
S
6
-4.7  
n = 100  
n = 100  
MAX  
-4.9  
MAX  
4
2
-5.1  
-5.3  
-5.5  
-5.7  
-5.9  
-6.1  
-6.3  
-6.5  
-6.7  
MEDIAN  
MIN  
0
MEDIAN  
-2  
-4  
MIN  
-6  
-8  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 23. OUTPUT OFFSET VOLTAGE V  
vs  
TEMPERATURE, V = ±2.5V, R = 1k  
FIGURE 24. I  
vs TEMPERATURE, V = ±2.5V  
BIAS S  
OS  
S
L
FN6640.1  
September 11, 2008  
8
ISL55036  
Typical Performance Curves (Continued)  
120  
MAX  
115  
n = 100  
110  
105  
100  
95  
MEDIAN  
MIN  
90  
85  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
FIGURE 25. PSRR vs TEMPERATURE 4.5V TO 5.5V  
clamp imposes a maximum supply turn-on slew rate of 1V/µs.  
Application Information  
Damaging currents can flow for power supply rates-of-rise in  
excess of 1V/µs, such as during hot plugging. Under these  
conditions, additional methods should be employed to ensure  
the maximum rate of rise is not exceeded.  
General  
The ISL55036 single supply, fixed gain hex amplifier is well  
suited for a variety of video applications. The device features  
a PNP ground-sensing input stage and a bipolar rail-to-rail  
output stage.  
EN and Power-Down States  
The EN pin is active low. An internal pull-down resistor  
ensures the device will be active with no connection to the  
EN pin. The power-down state is established within  
approximately 25ns, if a logic high (>2V) is placed on the EN  
pin. In the power-down state, supply current is reduced  
significantly by shutting the three amplifiers off. The output  
presents a relatively high impedance (~2kΩ) to the output  
pin. Multiplexing several outputs together is possible using  
the enable/disable function as long as the application can  
tolerate the limited power-down output impedance.  
The ISL55036 is designed for general purpose video,  
communication, instrumentation, and industrial applications.  
The 6 fixed gain amplifiers operate independently, however,  
they are organized into 2 triple amplifier groups as shown in  
Figure 26. Each group has its own set of power supply pins,  
ground pins, enable-disable logic and input ground  
reference pins.  
Ground Connections  
For the best isolation performance and crosstalk rejection,  
all GND pins must connect directly to the GND plane. In  
addition, the electrically conductive thermal pad should also  
connect directly to ground.  
Limiting the Output Current  
No output short circuit current limit exists on these parts. All  
applications need to limit the output current to less than 40mA.  
Adequate thermal heat sinking of the parts is also required.  
Power Considerations  
Each triple amplifier group has its own power supply and  
PC Board Layout  
ground pins. There are dedicated V OUT and GND V  
+
OUT  
The AC performance of this circuit depends greatly on the  
care taken in designing the PC board. The following are  
recommendations to achieve optimum high frequency  
performance from your PC board.  
pins to power only the output stage. A separate set of power  
and ground pins power the rest of each of the triple op amps  
(V and PWR GND). Providing separate power pins  
+
provides a way to prevent high speed transient currents in  
the output stage from bleeding into the sensitive amplifier  
input and gain stages. To maximize crosstalk isolation, each  
power supply pin should have its own de-coupling capacitors  
connected as close to the pin as possible (0.1µF in parallel  
with 1nF recommended).  
• The use of low inductance components, such as chip  
resistors and chip capacitors, is strongly recommended.  
• Minimize signal trace lengths. Trace inductance and  
capacitance can easily limit circuit performance. Avoid  
sharp corners. Use rounded corners when possible. Vias  
in the signal lines add inductance at high frequency and  
should be avoided. PCB traces greater than 1" begin to  
exhibit transmission line characteristics with signal rise/fall  
times of 1ns or less. High frequency performance may be  
The ESD protection circuits use internal diodes from all pins to  
the V and ground pins. In addition, a dv/dt-triggered clamp is  
+
connected between the V and V pins, as shown in the  
+
-
Equivalent Circuits 1 through 4 on page 2. The dv/dt triggered  
FN6640.1  
September 11, 2008  
9
ISL55036  
DECOUPLING  
CAPACITORS  
V+(1,2,3)  
EN(1,2,3)  
V+_OUT(1,2,3)  
GND_OUT(4,5,6)  
IN+_1  
IN+_2  
IN+_3  
OUT_1  
OUT_2  
R
1
2
3
OUT  
R
4
5
6
IN  
R
OUT  
R
IN  
OUT_3  
R
OUT  
R
IN  
DIE 1  
GND_PWR(1,2,3)  
V+ (4,5,6)  
GND_IN(1,2,3)  
DECOUPLING  
CAPACITORS  
V+_OUT(4,5,6)  
GND_OUT(4,5,6)  
IN+_4  
IN+_5  
OUT_4  
OUT_5  
OUT_6  
R
4
5
6
OUT  
R
4
5
6
IN  
R
OUT  
R
IN  
IN+_6  
R
OUT  
R
IN  
DIE 2  
GND_PWR(4,5,6)  
GND_IN(4,5,6)  
EN(4,5,6)  
FIGURE 26. BASIC APPLICATION CIRCUIT  
degraded for traces greater than one inch, unless  
controlled impedance (50Ω or 75Ω) strip lines or  
microstrips are used.  
can be farther away. When vias are required in a layout, they  
should be routed as far away from the device as possible.  
• The NIC pins are placed on both sides of the input pins.  
These pins are not internally connected to the die. It is  
recommended these pins be tied to ground to minimize  
crosstalk.  
• Match channel-to-channel analog I/O trace lengths and  
layout symmetry. This will minimize propagation delay  
mismatches.  
The QFN Package Requires Additional PCB Layout  
Rules for the Thermal Pad  
• Maximize use of AC de-coupled PCB layers. All signal I/O  
lines should be routed over continuous ground planes (i.e. no  
split planes or PCB gaps under these lines). Avoid vias in the  
signal I/O lines.  
The thermal pad is electrically connected to power supply  
ground through the high resistance IC substrate. Its primary  
function is to provide heat sinking for the IC. However,  
because of the connection to the power ground pins through  
the substrate, the thermal pad must be tied to the power  
supply ground to prevent unwanted current flow through the  
thermal pad. Maximum AC performance is achieved if the  
thermal pad has good contact to the IC ground pins. Heat  
sinking requirements can be satisfied using thermal vias  
directly beneath the thermal pad to a heat dissipating layer  
of a square at least 1” on a side.  
• Use proper value and location of termination resistors.  
Termination resistors should be as close to the device as  
possible.  
• When testing, use good quality connectors and cables,  
matching cable types and keeping cable lengths to a  
minimum.  
• A minimum of 2 power supply decoupling capacitors are  
recommended (1000pF, 0.01µF) as close to the devices as  
possible. Avoid vias between the capacitor and the device  
because vias add unwanted inductance. Larger capacitors  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6640.1  
September 11, 2008  
10  
ISL55036  
Package Outline Drawing  
L24.4x5C  
24 LEAD THIN QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 1, 10/07  
4.00  
2.65  
A
PIN 1  
PIN #1 INDEX AREA  
24X0.40  
INDEX AREA  
CHAMFER 0.40×0 X 45°  
B
20  
24  
6
6
1
19  
3.65  
0.5x6=3.00 REF  
7
13  
12  
8
0.10  
0.23±0.05  
0.10  
4X  
0.50  
M
C A B  
TOP VIEW  
0.5x4=2.00 REF  
BOTTOM VIEW  
SEE DETAIL X''  
0.10  
C
C
0.75  
SEATING PLANE  
0.08  
C
(24x0.25)  
(20x0.50)  
SIDE VIEW  
(3.65)  
(4.80 TYP)  
5
0 . 20 REF  
C
(24x0.60)  
(2.65)  
(3.80 TYP)  
0 . 00 MIN.  
0 . 05 MAX.  
TYPICAL RECOMMENDED LAND PATTERN  
DETAIL "X"  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.18mm and 0.28mm from the terminal tip.  
5. Tiebar shown (if present) is a non-functional feature.  
6. The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
FN6640.1  
September 11, 2008  
11  

相关型号:

ISL55036IRTZ

400MHz Slew Rate Enhanced Rail-to-Rail Output Gain Block
INTERSIL

ISL55036IRTZ-T13

400MHz Slew Rate Enhanced Rail-to-Rail Output Gain Block
INTERSIL

ISL55100A

Quad 18V Pin Electronics Driver/Window Comparator
INTERSIL

ISL55100AEVAL3Z

Quad 18V Pin Electronics Driver/Window Comparator Evaluation Boards
RENESAS

ISL55100AIRZ

Quad 18V Pin Electronics Driver/Window Comparator
INTERSIL

ISL55100AIRZ

Quad 18V Pin Electronics Driver/Window Comparator; QFN72; Temp Range: -40° to 85°C
RENESAS

ISL55100AIRZ-T

Quad 18V Pin Electronics Driver/Window Comparator; QFN72; Temp Range: -40° to 85°C
RENESAS

ISL55100AIRZ-T7A

Quad 18V Pin Electronics Driver/Window Comparator
RENESAS

ISL55100B

Quad 18V Pin Electronics Driver/Window Comparator
INTERSIL

ISL55100BIRZ

Quad 18V Pin Electronics Driver/Window Comparator
INTERSIL

ISL55110

Dual, High Speed MOSFET Driver
INTERSIL

ISL55110

Dual, High Speed MOSFET Driver
RENESAS