ISL32478EIBZ-T7A [RENESAS]

Fault Protected, Extended Common Mode Range, RS-485/RS-422 Transceivers with 16.5kV ESD; SOIC8; Temp Range: -40° to 85°C;
ISL32478EIBZ-T7A
型号: ISL32478EIBZ-T7A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Fault Protected, Extended Common Mode Range, RS-485/RS-422 Transceivers with 16.5kV ESD; SOIC8; Temp Range: -40° to 85°C

驱动 信息通信管理 光电二极管 驱动器
文件: 总21页 (文件大小:1369K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL32470E, ISL32472E, ISL32475E, ISL32478E  
Fault Protected, Extended Common-Mode Range, RS-485/RS-422 Transceivers  
with ±16.5kV ESD  
FN7784  
Rev 2.00  
Feb 14, 2019  
The ISL32470E, ISL32472E, ISL32475E, and ISL32478E are  
Features  
fault-protected, extended common-mode range differential  
• Fault protected RS-485 bus pins . . . . . . . . . . . . . . Up to ±60V  
transceivers that exceed the RS-485 and RS-422 standards for  
balanced communication. The RS-485 bus pins (driver outputs  
and receiver inputs) are fault protected against overvoltages  
up to ±60V and are protected against ±16.5kV ESD strikes  
without latch-up. Additionally, these transceivers operate in  
environments with common-mode voltages up to ±15V  
(exceeds the RS-485 requirement), making this fault-protected  
RS-485 family one of the most robust on the market.  
• Extended common-mode range. . . . . . . . . . . . . . . . . . . . ±15V  
larger than required for RS-485  
• 1/4 unit load for up to 128 devices on the bus  
• ±16.5kV HBM ESD protection on RS-485 bus pins  
• High transient over-voltage tolerance . . . . . . . . . . . . . . . ±80V  
• Full fail-safe (open, short, terminated) RS-485 receivers  
The transmitters (Tx) deliver an exceptional 2.5V (typical)  
differential output voltage into the RS-485 specified 54Ω load.  
This yields better noise immunity than standard RS-485 ICs or  
allows up to six 120Ω terminations in star topologies.  
• High Rx I for opto-couplers in isolated designs  
OL  
• Hot plug circuitry: Tx and Rx outputs remain three-state  
during power-up/power-down  
• RS-485 data rates. . . . . . . . . . . . . . . . . . . . . .250kbps to 15Mbps  
• Low quiescent supply current. . . . . . . . . . . . . . . . . . . . 2.3mA  
• Ultra low shutdown supply current. . . . . . . . . . . . . . . . . . 10µA  
The receiver (Rx) inputs feature a full fail-safe design that  
ensures a logic high Rx output if the Rx inputs are floating,  
shorted, or on a terminated but undriven (idle) bus. The Rx  
outputs feature high drive levels; typically, 15mA at V = 1V  
OL  
(to ease the design of opto-coupled isolated interfaces).  
Applications  
Half duplex (Rx inputs and Tx outputs multiplexed together)  
and full duplex pinouts are available. See Table 1 on page 2 for  
key features and configurations by device number.  
• Utility meters and automated meter reading systems  
• High node count RS-485 systems  
• PROFIBUS and RS-485 based field bus networks, factory  
automation  
For a fault-protected RS-485 transceiver with a ±25V extended  
common-mode range, see the ISL32490E and ISL32483E  
datasheets.  
• Security camera networks  
• Building lighting and environmental control systems  
• Industrial/process control networks  
Related Literature  
For a full list of related documents, visit our website:  
ISL32470E, ISL32472E, ISL32475E, and ISL32478E device  
pages  
20  
15  
12  
V
= ±1V  
ID  
B
A
15  
10  
5
0
-7  
RO  
0
-15  
-5  
STANDARD RS-485  
TRANSCEIVER  
ISL3247xE  
TIME (20ns/DIV)  
FIGURE 1. EXCEPTIONAL Rx OPERATES AT >15Mbps EVEN WITH  
±15V COMMON-MODE VOLTAGE  
FIGURE 2. TRANSCEIVERS DELIVER SUPERIOR COMMON-MODE  
RANGE vs STANDARD RS-485 DEVICES  
FN7784 Rev 2.00  
Feb 14, 2019  
Page 1 of 21  
ISL32470E, ISL32472E, ISL32475E, ISL32478E  
TABLE 1. SUMMARY OF FEATURES  
HALF/FULL  
DUPLEX  
DATA RATE  
(Mbps)  
SLEW-RATE  
LIMITED?  
HOT  
PLUG?  
QUIESCENT I  
(mA)  
LOW POWER  
SHUTDOWN?  
CC  
PART NUMBER  
ISL32470E  
EN PINS?  
Yes  
PIN COUNT  
Full  
Half  
Half  
Half  
0.25  
0.25  
1
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
2.3  
2.3  
2.3  
2.3  
Yes  
Yes  
Yes  
Yes  
14  
8
ISL32472E  
Yes  
ISL32475E  
Yes  
8
ISL32478E  
15  
Yes  
8
Typical Operating Circuits  
+5V  
+5V  
+
0.1µF  
+
0.1µF  
13, 14  
13, 14  
V
V
CC  
CC  
R
9
A
B
12  
11  
Y
Z
T
DI  
2
5
RO  
R
10  
D
3
4
RE  
DE  
4
3
DE  
RE  
R
10  
9
11  
12  
Z
Y
B
A
T
RO  
5
DI  
2
R
D
GND  
6, 7  
GND  
6, 7  
FIGURE 3. ISL32470E FULL DUPLEX EXAMPLE  
+5V  
+5V  
+
+
0.1µF  
0.1µF  
8
8
V
V
CC  
CC  
RO  
1
2
4
DI  
R
D
RE  
DE  
R
T
R
T
3
2
B/Z  
A/Y  
7
6
B/Z  
A/Y  
DE  
RE  
7
6
3
4
DI  
1
RO  
R
D
GND  
5
GND  
5
FIGURE 4. ISL32472E, ISL32475E, ISL32478E HALF DUPLEX EXAMPLE  
FN7784 Rev 2.00  
Feb 14, 2019  
Page 2 of 21  
ISL32470E, ISL32472E, ISL32475E, ISL32478E  
Ordering Information  
PART NUMBER  
(Notes 2, 3)  
PART  
MARKING  
TEMP. RANGE  
(°C)  
TAPE AND REEL  
(Units) (Note 1)  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
ISL32470EIBZ  
ISL32470 EIBZ  
ISL32470 EIBZ  
ISL32470 EIBZ  
32472 EIBZ  
32472 EIBZ  
32472 EIBZ  
32475 EIBZ  
32475 EIBZ  
32475 EIBZ  
32478 EIBZ  
32478 EIBZ  
32478 EIBZ  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-
14 Ld SOIC  
M14.15  
M14.15  
M14.15  
M8.15  
M8.15  
M8.15  
M8.15  
M8.15  
M8.15  
M8.15  
M8.15  
M8.15  
ISL32470EIBZ -T  
ISL32470EIBZ -T7A  
ISL32472EIBZ  
2.5k  
250  
-
14 Ld SOIC  
14 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
ISL32472EIBZ -T  
ISL32472EIBZ-T7A  
ISL32475EIBZ  
2.5k  
250  
-
ISL32475EIBZ-T  
ISL32475EIBZ-T7A  
ISL32478EIBZ  
2.5k  
250  
-
ISL32478EIBZ-T  
ISL32478EIBZ-T7A  
NOTES:  
2.5k  
250  
1. See TB347 for details about reel specifications.  
2. These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate  
plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations).Pb-free products are  
MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), see the ISL32470E, ISL32472E, ISL32475E, ISL32478E device pages. For more information about MSL, see TB363.  
Pin Configurations  
ISL32472E, ISL32475E, ISL32478E  
(8 LD SOIC)  
ISL32470E  
(14 LD SOIC)  
TOP VIEW  
TOP VIEW  
NC  
RO  
1
2
3
4
5
6
7
14 VCC  
13 NC  
12 A  
RO  
RE  
DE  
DI  
1
2
3
4
8
7
6
5
VCC  
B/Z  
R
D
R
D
RE  
A/Y  
DE  
11 B  
GND  
DI  
10 Z  
GND  
GND  
9
8
Y
NC  
FN7784 Rev 2.00  
Feb 14, 2019  
Page 3 of 21  
ISL32470E, ISL32472E, ISL32475E, ISL32478E  
Pin Descriptions  
PIN  
8 LD  
14 LD  
NAME  
PIN #  
PIN #  
FUNCTION  
RO  
1
2
Receiver output. If A-B 10mV, RO is high; if A-B 200mV, RO is low; RO = high if A and B are unconnected (floating),  
shorted together, or connected to an undriven, terminated bus.  
RE  
DE  
2
3
3
4
Receiver output enable. RO is enabled when RE is low; RO is high impedance when RE is high. Internally pulled low.  
Driver output enable. The driver outputs, Y and Z, are enabled by bringing DE high. They are high impedance when DE is  
low. Internally pulled high.  
DI  
4
5
6
5
6, 7  
-
Driver input. A low on DI forces output Y low and output Z high. A high on DI forces output Y high and output Z low.  
Ground connection.  
GND  
A/Y  
±60V fault and ±16.5kV HBM ESD protected, RS-485/RS-422 level, non-inverting receiver input and non-inverting driver  
output. Pin is an input if DE = 0; pin is an output if DE = 1.  
B/Z  
7
-
±60V fault and ±16.5kV HBM ESD protected, RS-485/RS-422 level, inverting receiver input and inverting driver output.  
Pin is an input if DE = 0; pin is an output if DE = 1.  
A
B
-
-
12  
11  
9
±60V fault and ±15kV HBM ESD protected, RS-485/RS-422 level, non-inverting receiver input.  
±60V fault and ±15kV HBM ESD protected, RS-485/RS-422 level, inverting receiver input.  
±60V fault and ±15kV HBM ESD protected, RS-485/RS-422 level, non-inverting driver output.  
±60V fault and ±15kV HBM ESD protected, RS-485/RS-422 level, inverting driver output.  
System power supply input (4.5V to 5.5V).  
Y
-
Z
-
10  
14  
VCC  
NC  
8
-
1, 8, 13 No internal connection.  
Truth Tables  
TRANSMITTING  
RECEIVING  
INPUTS  
INPUTS  
OUTPUTS  
OUTPUT  
RO  
RE  
X
DE  
1
DI  
1
Z
0
1
Y
1
RE  
DE  
DE  
Full Duplex  
A-B  
Half Duplex  
0
0
0
0
0
0
X
X
X
-0.01V  
-0.2V  
1
0
1
X
1
0
0
0
0
X
High-Z  
High-Z  
Inputs  
Open/Shorted  
1
0
X
High-Z  
(Note 4)  
High-Z  
(Note 4)  
1
0
1
0
1
X
X
High-Z  
(see Note 5)  
NOTE:  
4. Low Power Shutdown Mode (see Note 13 on page 9).  
1
High-Z  
NOTE:  
5. Low Power Shutdown Mode (see Note 13 on page 9).  
FN7784 Rev 2.00  
Feb 14, 2019  
Page 4 of 21  
ISL32470E, ISL32472E, ISL32475E, ISL32478E  
Absolute Maximum Ratings  
Thermal Information  
V
to Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7V  
Thermal Resistance (Typical)  
8 Ld SOIC Package (Notes 6, 7) . . . . . . . . . .  
14 Ld SOIC Package (Notes 6, 7) . . . . . . . . .  
θ
(°C/W)  
108  
88  
θ
JC  
(°C/W)  
47  
39  
CC  
JA  
Input Voltages  
DI, DE, RE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to (V + 0.3V)  
CC  
Input/Output Voltages  
A/Y, B/Z, A, B, Y, Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±60V  
A/Y, B/Z, A, B, Y, Z  
Maximum Junction Temperature (Plastic Package). . . . . . . . . . . . . . . . +150°C  
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
(Transient Pulse Through 100Ω, Note 17). . . . . . . . . . . . . . . . . . . ±80V  
RO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to (V +0.3V)  
CC  
Short-Circuit Duration  
Recommended Operating Conditions  
Y, Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indefinite  
ESD Rating . . . . . . . . . . . . . . . . . . . . see “ESD PERFORMANCE” on page 6  
Latch-Up (per JESD78, Level 2, Class A) . . . . . . . . . . . . . . . . . . . . . +125°C  
Supply Voltage (V ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V  
CC  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Bus Pin Common-Mode Voltage Range. . . . . . . . . . . . . . . . . . -15V to +15V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
6. θ is measured with the component mounted on a high-effective thermal conductivity test board in free air. See TB379 for details.  
JA  
7. For θ , the “case temp” location is taken at the package top center.  
JC  
Electrical Specifications Test Conditions: V = 4.5V to 5.5V; unless otherwise specified. Typical values are V = 5V, T = +25°C  
CC  
CC  
A
(Note 8). Boldface limits apply over the operating temperature range, -40°C to +85°C.  
TEMP  
(°C)  
MIN  
(Note 16)  
MAX  
(Note 16)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
TYP  
UNIT  
DC CHARACTERISTICS  
Driver Differential V  
(No load)  
(Loaded,  
V
V
Full  
Full  
Full  
Full  
Full  
-
-
V
V
V
V
V
V
OUT  
OD1  
CC  
-
Driver Differential V  
Figure 5A)  
R = 100Ω (RS-422)  
2.4  
1.5  
2.0  
0.8  
3.2  
2.5  
2.5  
1.3  
OUT  
OD2  
L
R = 54Ω (RS-485)  
V
L
CC  
-
R = 54Ω (PROFIBUS, V 5V)  
CC  
L
R = 21Ω (six 120Ω terminations for star  
-
L
configurations, V 4.75V)  
CC  
Change in Magnitude of Driver  
Differential V for  
ΔV  
R = 54Ω or 100Ω (Figure 5A)  
Full  
-
-
0.2  
V
OD  
L
OUT  
Complementary Output States  
Driver Differential V  
with  
V
R = 60Ω, -7V V 12V  
CM  
Full  
Full  
Full  
1.5  
1.7  
-1  
2.1  
2.3  
-
V
V
V
V
OUT  
Common-Mode Load (Figure 5B)  
OD3  
L
CC  
R = 60Ω, -15V V 15V (V 4.75V)  
CM CC  
-
L
Driver Common-Mode V  
(Figure 5A)  
V
R = 54Ω or 100Ω  
3
OUT  
OC  
L
Change in Magnitude of Driver  
Common-Mode V for  
ΔV  
R = 54Ω or 100Ω (Figure 5A)  
Full  
-
-
0.2  
V
OC  
L
OUT  
Complementary Output States  
Driver Short-Circuit Current  
I
DE = V , -15V V 15V (Note 10)  
CC  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
-250  
-83  
-13  
2.5  
-
-
-
250  
83  
13  
-
mA  
mA  
mA  
V
OSD  
O
I
I
At first foldback, 22V V -22V  
O
OSD1  
OSD2  
At second foldback, 35V V -35V  
-
O
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
V
DE, DI, RE  
DE, DI, RE  
DI  
-
IH  
V
-
0.8  
1
V
IL  
I
-1  
-
µA  
µA  
IN1  
DE, RE  
-15  
6
15  
FN7784 Rev 2.00  
Feb 14, 2019  
Page 5 of 21  
ISL32470E, ISL32472E, ISL32475E, ISL32478E  
Electrical Specifications Test Conditions: V = 4.5V to 5.5V; unless otherwise specified. Typical values are V = 5V, T = +25°C  
CC  
CC  
A
(Note 8). Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)  
TEMP  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(°C)  
Full  
Full  
Full  
Full  
(Note 16)  
TYP  
110  
-75  
(Note 16)  
UNIT  
µA  
Input/Output Current (A/Y, B/Z)  
I
DE = 0V, V = 0V or  
CC  
V
V
V
V
= 12V  
= -7V  
-
250  
-
IN2  
IN  
IN  
IN  
IN  
5.5V  
-200  
-800  
-6  
µA  
= ±15V  
±240  
±0.5  
800  
6
µA  
= ±60V  
mA  
(Note 18)  
Input Current (A, B)  
(Full Duplex Versions Only)  
I
V
= 0V or 5.5V  
V
V
V
V
= 12V  
= -7V  
Full  
Full  
Full  
Full  
-
90  
-70  
125  
-
µA  
µA  
µA  
mA  
IN3  
CC  
IN  
IN  
IN  
IN  
-100  
-500  
-3  
= ±15V  
±200  
±0.4  
500  
3
= ±60V  
(Note 18)  
Output Leakage Current (Y, Z)  
(Full Duplex Versions Only)  
I
RE = 0V, DE = 0V,  
= 0V or 5.5V  
V
V
V
V
= 12V  
= -7V  
Full  
Full  
Full  
Full  
-
20  
-5  
200  
-
µA  
µA  
µA  
mA  
OZD  
IN  
IN  
IN  
IN  
V
CC  
-100  
-500  
-3  
= ±15V  
±40  
±0.1  
500  
3
= ±60V  
(Note 18)  
Receiver Differential Threshold  
Voltage  
V
-15V V 15V  
CM  
Full  
-200  
-
-100  
-10  
mV  
TH  
Receiver Input Hysteresis  
ΔV  
-15V V 15V  
CM  
25  
25  
4.75  
4.2  
-
mV  
V
TH  
Receiver Output High Voltage  
V
I
I
I
= -2mA, V = -10mV  
ID  
Full  
Full  
Full  
Full  
Full  
V
- 0.5  
-
OH  
O
O
O
CC  
= -8mA, V = -10mV  
ID  
2.8  
-
0.4  
-
V
Receiver Output Low Voltage  
Receiver Output Low Current  
V
= 6mA, V = -200mV  
ID  
-
0.27  
22  
V
OL  
I
V
= 1V, V = -200mV  
ID  
15  
-1  
mA  
µA  
OL  
O
Three-State (High Impedance)  
Receiver Output Current  
I
0V V V  
0.01  
1
OZR  
O
CC  
Receiver Short-Circuit Current  
SUPPLY CURRENT  
I
0V V V  
Full  
±12  
-
±110  
mA  
OSR  
O
CC  
No-Load Supply Current (Note 9)  
I
DE = V , RE = 0V or V  
DI = 0V or V  
CC  
,
Full  
Full  
-
-
2.3  
10  
4.5  
50  
mA  
µA  
CC  
CC CC  
Shutdown Supply Current  
ESD PERFORMANCE  
I
DE = 0V, RE = V , DI = 0V or V  
CC CC  
SHDN  
RS-485 Pins (A, Y, B, Z, A/Y, B/Z)  
Human Body Model, 1/2 Duplex  
from Bus Pins to  
25  
25  
-
-
±16.5  
±15  
-
-
kV  
kV  
Full Duplex  
GND  
All Pins  
Human Body Model, per JEDEC  
Machine Model  
25  
25  
-
-
±8  
-
-
kV  
V
±700  
DRIVER SWITCHING CHARACTERISTICS (250kbps Versions; ISL32470E and ISL32472E)  
Driver Differential Output Delay  
Driver Differential Output Skew  
Driver Differential Rise or Fall Time  
t
, t  
R
R
R
= 54Ω, C = 50pF (Figure 6)  
Full  
Full  
Full  
-
-
320  
6
450  
30  
ns  
ns  
ns  
PLH PHL  
D
D
D
D
t
= 54Ω, C = 50pF (Figure 6)  
D
SKEW  
t , t  
= 54Ω, C = 50pF (Figure 6)  
400  
650  
1200  
R
F
D
FN7784 Rev 2.00  
Feb 14, 2019  
Page 6 of 21  
ISL32470E, ISL32472E, ISL32475E, ISL32478E  
Electrical Specifications Test Conditions: V = 4.5V to 5.5V; unless otherwise specified. Typical values are V = 5V, T = +25°C  
CC  
CC  
A
(Note 8). Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)  
TEMP  
MIN  
MAX  
PARAMETER  
Maximum Data Rate  
SYMBOL  
TEST CONDITIONS  
= 820pF (Figure 8)  
D
(°C)  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
(Note 16)  
TYP  
(Note 16)  
UNIT  
Mbps  
ns  
f
C
0.25  
1.5  
-
MAX  
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable from Output Low  
Driver Disable from Output High  
Time to Shutdown  
t
SW = GND (Figure 7), (Note 11)  
SW = V (Figure 7), (Note 11)  
-
-
1200  
1200  
120  
ZH  
t
t
-
-
ns  
ZL  
LZ  
HZ  
CC  
SW = V (Figure 7)  
CC  
-
-
ns  
t
SW = GND (Figure 7)  
(Note 13)  
-
60  
-
-
160  
-
120  
ns  
t
600  
ns  
SHDN  
Driver Enable from Shutdown to  
Output High  
t
SW = GND (Figure 7), (Notes 13, 14)  
2500  
ns  
ZH(SHDN)  
Driver Enable from Shutdown to  
Output Low  
t
SW = V (Figure 7), (Notes 13, 14)  
CC  
Full  
-
-
2500  
ns  
ZL(SHDN)  
DRIVER SWITCHING CHARACTERISTICS (1Mbps Versions; ISL32475E)  
Driver Differential Output Delay  
Driver Differential Output Skew  
Driver Differential Rise or Fall Time  
Maximum Data Rate  
t
, t  
R
R
R
= 54Ω, C = 50pF (Figure 6)  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
-
70  
125  
15  
ns  
ns  
PLH PHL  
D
D
D
D
D
t
= 54Ω, C = 50pF (Figure 6)  
-
4.5  
SKEW  
D
t , t  
= 54Ω, C = 50pF (Figure 6)  
70  
170  
300  
-
ns  
R
F
D
f
C
= 820pF (Figure 8)  
1
4
Mbps  
ns  
MAX  
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable from Output Low  
Driver Disable from Output High  
Time to Shutdown  
t
SW = GND (Figure 7), (Note 11)  
-
-
350  
300  
120  
120  
600  
2000  
ZH  
t
SW = V (Figure 7), (Note 11)  
CC  
-
-
ns  
ZL  
LZ  
HZ  
t
SW = V (Figure 7)  
CC  
-
-
ns  
t
SW = GND (Figure 7)  
(Note 13)  
-
60  
-
-
160  
-
ns  
t
ns  
SHDN  
Driver Enable from Shutdown to  
Output High  
t
SW = GND (Figure 7), (Notes 13, 14)  
ns  
ZH(SHDN)  
Driver Enable from Shutdown to  
Output Low  
t
SW = V (Figure 7), (Notes 13, 14)  
CC  
Full  
-
-
2000  
ns  
ZL(SHDN)  
DRIVER SWITCHING CHARACTERISTICS (15Mbps Versions; ISL32478E)  
Driver Differential Output Delay  
Driver Differential Output Skew  
Driver Differential Rise or Fall Time  
Maximum Data Rate  
t
, t  
R
R
R
= 54Ω, C = 50pF (Figure 6)  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
-
21  
45  
6
ns  
ns  
PLH PHL  
D
D
D
D
D
t
= 54Ω, C = 50pF (Figure 6)  
-
3
SKEW  
D
t , t  
= 54Ω, C = 50pF (Figure 6)  
5
17  
30  
ns  
R
F
D
f
C
= 470pF (Figure 8)  
15  
25  
-
Mbps  
ns  
MAX  
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable from Output Low  
Driver Disable from Output High  
Time to Shutdown  
t
SW = GND (Figure 7), (Note 11)  
SW = V (Figure 7), (Note 11)  
-
-
100  
100  
120  
120  
600  
2000  
ZH  
t
-
-
ns  
ZL  
LZ  
HZ  
CC  
t
SW = V (Figure 7)  
CC  
-
-
ns  
t
SW = GND (Figure 7)  
(Note 13)  
-
60  
-
-
160  
-
ns  
t
ns  
SHDN  
Driver Enable from Shutdown to  
Output High  
t
SW = GND (Figure 7), (Notes 13, 14)  
ns  
ZH(SHDN)  
Driver Enable from Shutdown to  
Output Low  
t
SW = V (Figure 7), (Notes 13, 14)  
CC  
Full  
-
-
2000  
ns  
ZL(SHDN)  
FN7784 Rev 2.00  
Feb 14, 2019  
Page 7 of 21  
ISL32470E, ISL32472E, ISL32475E, ISL32478E  
Electrical Specifications Test Conditions: V = 4.5V to 5.5V; unless otherwise specified. Typical values are V = 5V, T = +25°C  
CC  
CC  
A
(Note 8). Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)  
TEMP  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(°C)  
(Note 16)  
TYP  
(Note 16)  
UNIT  
RECEIVER SWITCHING CHARACTERISTICS (250kbps Versions; ISL32470E and ISL32472E)  
Maximum Data Rate  
f
(Figure 9)  
(Figure 9)  
(Figure 9)  
Full  
Full  
Full  
Full  
0.25  
5
200  
4
-
Mbps  
ns  
MAX  
Receiver Input to Output Delay  
Receiver Skew |tPLH - tPHL|  
Receiver Enable to Output Low  
t
PLH PHL  
, t  
-
-
-
280  
10  
50  
t
ns  
SKD  
t
R = 1kΩ, C = 15pF, SW = V (Figure 10),  
-
ns  
ZL  
L
L
CC  
(Note 12)  
Receiver Enable to Output High  
t
R = 1kΩ, C = 15pF, SW = GND (Figure 10),  
Full  
-
-
50  
ns  
ZH  
L
L
(Note 12)  
Receiver Disable from Output Low  
Receiver Disable from Output High  
Time to Shutdown  
t
R = 1kΩ, C = 15pF, SW = V (Figure 10)  
CC  
Full  
Full  
Full  
Full  
-
-
50  
50  
ns  
ns  
ns  
ns  
LZ  
L
L
t
R = 1kΩ, C = 15pF, SW = GND (Figure 10)  
-
60  
-
-
160  
-
HZ  
L
L
t
(Note 13)  
600  
2000  
SHDN  
Receiver Enable from Shutdown to  
Output High  
t
R = 1kΩ, C = 15pF, SW = GND (Figure 10),  
L L  
(Notes 13, 15)  
ZH(SHDN)  
Receiver Enable from Shutdown to  
Output Low  
t
R = 1kΩ, C = 15pF, SW = V (Figure 10),  
(Notes 13, 15)  
Full  
-
-
2000  
ns  
ZL(SHDN)  
L
L
CC  
RECEIVER SWITCHING CHARACTERISTICS (1Mbps Versions; ISL32475E)  
Maximum Data Rate  
f
(Figure 9)  
(Figure 9)  
(Figure 9)  
Full  
Full  
Full  
Full  
1
-
15  
90  
4
-
Mbps  
ns  
MAX  
Receiver Input to Output Delay  
t
PLH PHL  
, t  
150  
10  
50  
Receiver Skew |t  
- tPH|  
t
-
ns  
PLH  
SKD  
Receiver Enable to Output Low  
t
R = 1kΩ, C = 15pF, SW = V (Figure 10),  
-
-
ns  
ZL  
L
L
CC  
(Note 12)  
Receiver Enable to Output High  
t
R = 1kΩ, C = 15pF, SW = GND (Figure 10),  
Full  
-
-
50  
ns  
ZH  
L
L
(Note 12)  
Receiver Disable from Output Low  
Receiver Disable from Output High  
Time to Shutdown  
t
R = 1kΩ, C = 15pF, SW = V (Figure 10)  
CC  
Full  
Full  
Full  
Full  
-
-
50  
50  
ns  
ns  
ns  
ns  
LZ  
L
L
t
R = 1kΩ, C = 15pF, SW = GND (Figure 10)  
-
60  
-
-
160  
-
HZ  
L
L
t
(Note 13)  
600  
2000  
SHDN  
Receiver Enable from Shutdown to  
Output High  
t
R = 1kΩ, C = 15pF, SW = GND (Figure 10),  
L L  
(Notes 13, 15)  
ZH(SHDN)  
Receiver Enable from Shutdown to  
Output Low  
t
R = 1kΩ, C = 15pF, SW = V (Figure 10),  
(Notes 13, 15)  
Full  
-
-
2000  
ns  
ZL(SHDN)  
L
L
CC  
RECEIVER SWITCHING CHARACTERISTICS (15Mbps Versions; ISL32478E)  
Maximum Data Rate  
f
(Figure 9)  
(Figure 9)  
(Figure 9)  
Full  
Full  
Full  
Full  
15  
25  
35  
4
-
Mbps  
ns  
MAX  
Receiver Input to Output Delay  
t
, t  
-
-
-
70  
10  
50  
PLH PHL  
Receiver Skew |t  
- t  
PLH PHL  
|
t
ns  
SKD  
Receiver Enable to Output Low  
t
R = 1kΩ, C = 15pF, SW = V (Figure 10),  
-
ns  
ZL  
L
L
CC  
(Note 12)  
Receiver Enable to Output High  
t
R = 1kΩ, C = 15pF, SW = GND (Figure 10),  
Full  
-
-
50  
ns  
ZH  
L
L
(Note 12)  
Receiver Disable from Output Low  
Receiver Disable from Output High  
t
R = 1kΩ, C = 15pF, SW = V (Figure 10)  
CC  
Full  
Full  
-
-
-
-
50  
50  
ns  
ns  
LZ  
L
L
t
R = 1kΩ, C = 15pF, SW = GND (Figure 10)  
L L  
HZ  
FN7784 Rev 2.00  
Feb 14, 2019  
Page 8 of 21  
ISL32470E, ISL32472E, ISL32475E, ISL32478E  
Electrical Specifications Test Conditions: V = 4.5V to 5.5V; unless otherwise specified. Typical values are V = 5V, T = +25°C  
CC  
CC  
A
(Note 8). Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)  
TEMP  
MIN  
MAX  
PARAMETER  
Time to Shutdown  
SYMBOL  
TEST CONDITIONS  
(°C)  
Full  
Full  
(Note 16)  
TYP  
160  
-
(Note 16)  
UNIT  
ns  
t
(Note 13)  
R = 1kΩ, C = 15pF, SW = GND (Figure 10),  
60  
-
600  
SHDN  
Receiver Enable from Shutdown to  
Output High  
t
2000  
ns  
ZH(SHDN)  
L
L
(Notes 13, 15)  
Receiver Enable from Shutdown to  
Output Low  
t
R = 1kΩ, C = 15pF, SW = V (Figure 10),  
CC  
(Notes 13, 15)  
Full  
-
-
2000  
ns  
ZL(SHDN)  
L
L
NOTES:  
8. All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise  
specified.  
9. Supply current specification is valid for loaded drivers when DE = 0V.  
10. Applies to peak current. See “Typical Performance Curves” beginning on page 5 for more information.  
11. Keep RE = 0 to prevent the device from entering shutdown.  
12. The RE signal high time must be short enough (typically <100ns) to prevent the device from entering shutdown.  
13. Transceivers are put into shutdown by bringing RE high and DE low. If the inputs are in this state for less than 60ns, the parts are ensured not to enter  
shutdown. If the inputs are in this state for at least 600ns, the parts are ensured to enter shutdown. See “Low Power Shutdown Mode” on page 17.  
14. Keep RE = V and set the DE signal low time >600ns to ensure that the device enters shutdown.  
CC  
15. Set the RE signal high time >600ns to ensure that the device enters shutdown.  
16. Compliance to datasheet limits is assured by one or more methods: production test, characterization, and/or design.  
17. Tested according to TIA/EIA-485-A, Section 4.2.6 (±80V for 15µs at a 1% duty cycle).  
18. See the Caution statement in “Absolute Maximum Ratings” on page 5.  
Test Circuits and Waveforms  
R /2  
L
R /2  
375Ω  
375Ω  
DE  
DI  
L
V
DE  
DI  
CC  
V
CC  
Z
Y
Z
Y
V
CM  
V
D
OD  
V
D
OD  
V
OC  
V
R /2  
L
OC  
R /2  
L
FIGURE 5A. V AND V  
OD OC  
FIGURE 5B. V AND V WITH COMMON-MODE LOAD  
OD OC  
FIGURE 5. DC DRIVER TEST CIRCUITS  
FN7784 Rev 2.00  
Feb 14, 2019  
Page 9 of 21  
ISL32470E, ISL32472E, ISL32475E, ISL32478E  
Test Circuits and Waveforms(Continued)  
3V  
0V  
DI  
1.5V  
1.5V  
DE  
V
t
t
PHL  
CC  
PLH  
Z
DI  
V
OH  
OUT (Z)  
OUT (Y)  
C
R
D
D
D
Y
V
OL  
SIGNAL  
GENERATOR  
+V  
-V  
OD  
90%  
10%  
90%  
10%  
DIFF OUT (Y - Z)  
OD  
t
t
R
F
SKEW = |t  
- t |  
PLH PHL  
FIGURE 6A. TEST CIRCUIT  
FIGURE 6B. MEASUREMENT POINTS  
FIGURE 6. DRIVER PROPAGATION DELAY AND DIFFERENTIAL TRANSITION TIMES  
DE  
DI  
Z
Y
110Ω  
V
CC  
3V  
D
GND  
DE  
1.5V  
1.5V  
SW  
SIGNAL  
GENERATOR  
(Note 13)  
C
0V  
L
t
, t  
ZH ZH(SHDN)  
(Note 13)  
t
HZ  
OUTPUT HIGH  
V
OH  
V
- 0.5V  
OH  
OUT (Y, Z)  
2.3V  
0V  
PARAMETER  
OUTPUT  
Y/Z  
RE  
DI  
SW  
GND  
C (pF)  
L
t
X
1/0  
0/1  
1/0  
0/1  
1/0  
0/1  
50  
t
, t  
t
ZL ZL(SHDN)  
HZ  
LZ  
(Note  
V
CC  
OL  
t
Y/Z  
X
V
50  
LZ  
CC  
OUT (Y, Z)  
2.3V  
OUTPUT LOW  
t
Y/Z  
0 (Note 11)  
0 (Note 11)  
1 (Note 14)  
1 (Note 14)  
GND  
100  
100  
100  
100  
ZH  
V
+ 0.5V  
OL  
V
t
Y/Z  
V
ZL  
CC  
t
Y/Z  
GND  
ZH(SHDN)  
t
Y/Z  
V
CC  
ZL(SHDN)  
FIGURE 7A. TEST CIRCUIT  
FIGURE 7B. MEASUREMENT POINTS  
FIGURE 7. DRIVER ENABLE AND DISABLE TIMES  
DE  
DI  
3V  
0V  
V
CC  
+
DI  
Z
54Ω  
D
C
V
D
OD  
Y
-
SIGNAL  
GENERATOR  
+V  
OD  
DIFF OUT (Y - Z)  
0V  
-V  
OD  
FIGURE 8A. TEST CIRCUIT  
FIGURE 8B. MEASUREMENT POINTS  
FIGURE 8. DRIVER DATA RATE  
FN7784 Rev 2.00  
Feb 14, 2019  
Page 10 of 21  
ISL32470E, ISL32472E, ISL32475E, ISL32478E  
Test Circuits and Waveforms(Continued)  
B
A
750mV  
RE  
15pF  
0V  
0V  
B
RO  
R
-750mV  
A
t
t
PHL  
PLH  
SIGNAL  
GENERATOR  
SIGNAL  
GENERATOR  
V
CC  
50%  
50%  
RO  
V
0V  
CM  
FIGURE 9A. TEST CIRCUIT  
FIGURE 9B. MEASUREMENT POINTS  
FIGURE 9. RECEIVER PROPAGATION DELAY AND DATA RATE  
RE  
RE  
B
A
1kΩ  
V
3V  
0V  
CC  
RO  
R
(Note  
GND  
1.5V  
1.5V  
SW  
SIGNAL  
GENERATOR  
15pF  
t
t
, t  
ZH ZH(SHDN)  
t
HZ  
OUTPUT HIGH  
(Note 13)  
V
OH  
V
- 0.5V  
OH  
PARAMETER  
DE  
0
A
SW  
GND  
1.5V  
RO  
t
t
t
t
t
t
+1.5V  
-1.5V  
+1.5V  
-1.5V  
+1.5V  
-1.5V  
HZ  
0V  
0
V
LZ  
ZH  
ZL  
CC  
, t  
ZL ZL(SHDN)  
t
LZ  
(Note  
(Note 12)  
(Note 12)  
0
GND  
V
CC  
RO  
1.5V  
OUTPUT LOW  
0
V
CC  
V
+ 0.5V  
V
OL  
OL  
(Note 15)  
(Note 15)  
0
GND  
ZH(SHDN)  
ZL(SHDN)  
0
V
CC  
FIGURE 10A. TEST CIRCUIT  
FIGURE 10B. MEASUREMENT POINTS  
FIGURE 10. RECEIVER ENABLE AND DISABLE TIMES  
Typical Performance Curves  
V
= 5V, T = +25°C; unless otherwise specified.  
A
CC  
3.6  
90  
R
= 20Ω  
D
R
= 30Ω  
D
80  
70  
60  
50  
40  
30  
20  
10  
0
3.4  
+25°C  
+85°C  
R
= 100Ω  
D
R
= 54Ω  
D
3.2  
3.0  
2.8  
2.6  
2.4  
R
= 100Ω  
D
R
= 54Ω  
D
2.2  
-40  
0
1
2
3
4
5
-25  
0
25  
50  
75 85  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
FIGURE 12. DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs  
TEMPERATURE  
FIGURE 11. DRIVER OUTPUT CURRENT vs DIFFERENTIAL OUTPUT  
VOLTAGE  
FN7784 Rev 2.00  
Feb 14, 2019  
Page 11 of 21  
ISL32470E, ISL32472E, ISL32475E, ISL32478E  
Typical Performance Curves  
V
= 5V, T = +25°C; unless otherwise specified. (Continued)  
CC  
A
70  
60  
2.45  
2.40  
V
, +25°C  
OL  
DE = V , RE = X  
CC  
V
, +85°C  
OL  
50  
40  
30  
20  
10  
0
2.35  
2.30  
2.25  
DE = GND, RE = GND  
2.20  
2.15  
2.10  
2.05  
2.00  
-10  
-20  
-30  
V
, +85°C  
1
OH  
V
, +25°C  
3
OH  
-40  
-25  
0
25  
50  
75 85  
0
2
4
5
TEMPERATURE (°C)  
RECEIVER OUTPUT VOLTAGE (V)  
FIGURE 13. SUPPLY CURRENT vs TEMPERATURE  
FIGURE 14. RECEIVER OUTPUT CURRENT vs RECEIVER OUTPUT  
VOLTAGE  
1000  
150  
100  
50  
+85°C  
V
= 0V to 5.5V  
CC  
800  
600  
400  
200  
0
Y OR Z = LOW  
+25°C  
0
Y or Z  
-50  
-100  
-150  
-200  
-400  
-600  
Y OR Z = HIGH  
+25°C  
A/Y or B/Z  
+85°C  
-60 -50 -40 -30 -20 -10  
0
10 20 30 40 50 60  
-70 -60 -50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70  
OUTPUT VOLTAGE (V)  
BUS PIN VOLTAGE (V)  
FIGURE 15. DRIVER OUTPUT CURRENT vs SHORT-CIRCUIT VOLTAGE  
FIGURE 16. BUS PIN CURRENT vs BUS PIN VOLTAGE  
8
7
6
5
4
3
2
1
0
340  
R
= 54Ω, C = 50pF  
D
R
= 54Ω, C = 50pF  
D
D
D
335  
330  
325  
320  
315  
310  
305  
300  
t
PLH  
t
PHL  
|t  
- t  
|
PLH PHL  
-40  
0
50  
85  
-25  
25  
TEMPERATURE (°C)  
75  
-40  
-25  
0
25  
50  
75 85  
TEMPERATURE (°C)  
FIGURE 18. DRIVER DIFFERENTIAL SKEW vs TEMPERATURE  
(ISL32470E, ISL32472E)  
FIGURE 17. DRIVER DIFFERENTIAL PROPAGATION DELAY vs  
TEMPERATURE (ISL32470E, ISL32472E)  
FN7784 Rev 2.00  
Feb 14, 2019  
Page 12 of 21  
ISL32470E, ISL32472E, ISL32475E, ISL32478E  
Typical Performance Curves  
V
= 5V, T = +25°C; unless otherwise specified. (Continued)  
CC  
A
4.0  
85  
R
= 54Ω, C = 50pF  
D
R
= 54Ω, C = 50pF  
D
D
D
80  
75  
70  
65  
60  
55  
50  
3.5  
3.0  
2.5  
2.0  
t
PLH  
t
PHL  
|t  
- t  
|
PLH PHL  
-40  
-25  
0
25  
50  
75 85  
-40  
-25  
0
25  
50  
75 85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 19. DRIVER DIFFERENTIAL PROPAGATION DELAY vs  
TEMPERATURE (ISL32475E)  
FIGURE 20. DRIVER DIFFERENTIAL SKEW vs TEMPERATURE  
(ISL32475E)  
27  
3.4  
R
= 54Ω, C = 50pF  
D
D
R
= 54Ω, C = 50pF  
D
D
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
25  
23  
21  
19  
17  
15  
t
PLH  
t
PHL  
|t  
- t  
|
PLH PHL  
-40  
-25  
0
25  
50  
75 85  
-40  
-25  
0
25  
50  
75 85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 21. DRIVER DIFFERENTIAL PROPAGATION DELAY vs  
TEMPERATURE (ISL32478E)  
FIGURE 22. DRIVER DIFFERENTIAL SKEW vs TEMPERATURE  
(ISL32478E)  
A
A
15  
15  
B
B
V
= ±1V  
V
= ±1V  
ID  
ID  
10  
5
10  
5
RO  
RO  
RO  
RO  
0
0
5
0
5
0
-5  
-5  
-10  
-15  
-10  
-15  
A
B
A
B
TIME (400ns/DIV)  
TIME (1µs/DIV)  
FIGURE 23. RECEIVER PERFORMANCE WITH ±15V CMV (ISL32470E,  
ISL32472E)  
FIGURE 24. RECEIVER PERFORMANCE WITH ±15V CMV  
(ISL32475E)  
FN7784 Rev 2.00  
Feb 14, 2019  
Page 13 of 21  
ISL32470E, ISL32472E, ISL32475E, ISL32478E  
Typical Performance Curves  
V
= 5V, T = +25°C; unless otherwise specified. (Continued)  
CC A  
R
= 54Ω, C = 50pF  
D
A
D
15  
5
0
B
DI  
V
= ±1V  
ID  
10  
5
5
0
RO  
RO  
RO  
0
3
2
5
0
1
A/Y - B/Z  
-5  
0
-10  
-15  
-1  
-2  
-3  
A
B
TIME (1µs/DIV)  
TIME (20ns/DIV)  
FIGURE 26. DRIVER AND RECEIVER WAVEFORMS (ISL32470E,  
ISL32472E)  
FIGURE 25. RECEIVER PERFORMANCE WITH ±15V CMV  
(ISL32478E)  
R
= 54Ω, C = 50pF  
D
R
= 54Ω, C = 50pF  
D
D
D
5
0
5
0
DI  
DI  
5
0
5
0
RO  
RO  
3
2
3
2
1
1
0
0
A/Y - B/Z  
-1  
-2  
-3  
-1  
-2  
-3  
A/Y - B/Z  
TIME (400ns/DIV)  
TIME (20ns/DIV)  
FIGURE 28. DRIVER AND RECEIVER WAVEFORMS (ISL32478E)  
FIGURE 27. DRIVER AND RECEIVER WAVEFORMS (ISL32475E)  
FN7784 Rev 2.00  
Feb 14, 2019  
Page 14 of 21  
ISL32470E, ISL32472E, ISL32475E, ISL32478E  
version typically rejects pulses narrower than 50ns (equivalent to  
20Mbps). The ISL32470E and ISL32472E reject pulses below  
150ns (6.7Mbps).  
Application Information  
RS-485 and RS-422 are differential (balanced) data  
transmission standards used for long haul or noisy environments.  
RS-422 is a subset of RS-485, so RS-485 transceivers are also  
RS-422 compliant. RS-422 is a point-to-multipoint (multidrop)  
standard that allows only one driver and up to 10 (assuming  
one-unit load devices) receivers on each bus. RS-485 is a true  
multipoint standard that allows up to 32 one-unit load devices  
(any combination of drivers and receivers) on each bus. To allow  
for multipoint operation, the RS-485 specification requires that  
drivers must handle bus contention without sustaining any  
damage.  
Driver (Tx) Features  
The RS-485/RS-422 driver is a differential output device that  
delivers at least 1.5V across a 54Ω load (RS-485) and at least  
2.4V across a 100Ω load (RS-422). The drivers feature low  
propagation delay skew to maximize bit width and to minimize  
EMI, and all drivers are three-statable using the active high DE  
input.  
The 250kbps and 1Mbps driver outputs are slew rate limited to  
minimize EMI and reflections in unterminated or improperly  
terminated networks. The ISL32478E driver outputs are not  
limited, so faster output transition times allow data rates of at  
least 15Mbps.  
An important advantage of RS-485 is the extended  
Common-Mode Range (CMR), which specifies that the driver  
outputs and receiver inputs withstand signals that range from  
+12V to -7V. RS-422 and RS-485 are intended for runs as long as  
4000ft; thus, the wide CMR is necessary to handle ground  
potential differences and voltages induced in the cable by  
external fields.  
High Overvoltage (Fault) Protection  
Increases Ruggedness  
The ±60V fault protection (referenced to the IC GND) on the  
RS-485 pins makes these transceivers some of the most rugged  
on the market. This level of protection makes the ISL3247xE  
perfect for applications where power (for example 24V and 48V  
supplies) must be routed in the conduit with the data lines, or for  
outdoor applications where large transients are likely to occur.  
When power is routed with the data lines, even a momentary  
short between the supply and data lines destroys an unprotected  
device. The ±60V fault levels of this family are at least five times  
higher than the levels specified for standard RS-485 ICs. The  
ISL3247xE protection is active whether the Tx is enabled or  
disabled, and even if the IC is powered down or if VCC and  
Ground are floating.  
The ISL3247xE devices are a family of ruggedized RS-485  
transceivers that improves on the RS-485 basic requirements  
and increases system reliability. The CMR increases to ±15V and  
the RS-485 bus pins (receiver inputs and driver outputs) include  
fault protection against voltages and transients up to ±60V.  
Additionally, larger-than-required differential output voltages  
(V ) increase noise immunity, and the ±16.5kV built-in ESD  
OD  
protection complements the fault protection.  
Receiver (Rx) Features  
These devices use a differential input receiver for maximum  
noise immunity and common-mode rejection. Input sensitivity is  
better than ±200mV, as required by the RS-422 and RS-485  
specifications.  
If transients or voltages (including overshoots and ringing)  
greater than ±60V are possible, additional external protection is  
required.  
The receiver input (load) current surpasses the RS-422  
specification of 3mA and is four times lower than the RS-485  
Unit Load (UL) requirement of 1mA maximum. Therefore, these  
products are known as one-quarter UL transceivers, and there  
can be up to 128 of these devices on a network while still  
complying with the RS-485 loading specification.  
Wide Common-Mode Voltage (CMV) Tolerance  
Improves Operating Range  
RS-485 networks operating in industrial complexes or over long  
distances are susceptible to large CMV variations. Either of these  
operating environments can suffer from large node-to-node  
ground potential differences or CMV pickup from external  
electromagnetic sources, and devices with only the minimum  
required +12V to -7V CMR can malfunction. The ISL3247xE’s  
extended ±15V CMR allows for operation in environments that  
would overwhelm lesser transceivers. Additionally, the Rx does  
not phase invert (erroneously change state), even with CMVs of  
±40V or differential voltages as large as 40V.  
The receivers function with common-mode voltages as great as  
±15V, making them ideal for industrial or long networks where  
induced voltages are a realistic concern.  
All the receivers include a full fail-safe function that ensures a  
high-level receiver output if the receiver inputs are unconnected  
(floating), shorted together, or connected to a terminated bus  
with all the transmitters disabled (an idle bus).  
The receiver outputs feature high drive levels (typically 22mA at  
High V Improves Noise Immunity and  
OD  
Flexibility  
V
= 1V) to ease the design of optically coupled isolated  
OL  
interfaces.  
The ISL3247xE driver design delivers larger differential output  
The receivers easily meet the data rates supported by the  
corresponding driver, and all receiver outputs are three-statable  
using the active low RE input.  
voltages (V ) than the RS-485 standard requires or than most  
OD  
RS-485 transmitters can deliver. The typical ±2.5V V provides  
OD  
more noise immunity than networks built using many other  
transceivers.  
The receivers in the 250kbps versions (ISL32470E and  
ISL32472E) and 1Mbps versions (ISL32475E) include noise  
filtering circuitry to reject high-frequency signals. The ISL32475E  
FN7784 Rev 2.00  
Feb 14, 2019  
Page 15 of 21  
ISL32470E, ISL32472E, ISL32475E, ISL32478E  
Another advantage of the large V is the ability to drive more  
OD  
than two bus terminations, which allows use of the ISL3247xE in  
star topologies and other multi-terminated, nonstandard network  
connecting a cable can cause an ESD event that destroys  
unprotected ICs. The new ESD structures protect the device  
whether or not it is powered up, and without interfering with the  
exceptional ±15V CMR. The built-in ESD protection minimizes  
the need for board-level protection structures (such as transient  
suppression diodes) and the associated undesirable capacitive  
load they present.  
topologies. Figure 11 on page 11 details the transmitter’s V vs  
OD  
I
characteristic and includes load lines for four (30Ω) and six  
OUT  
(20Ω) 120Ω terminations. Figure 11 shows that the driver  
typically delivers ±1.3V into six terminations, and the “Electrical  
Specifications” ensure a V of ±0.8V at 21Ω across the full  
temperature range. The RS-485 standard requires a minimum  
OD  
Data Rate, Cables, and Terminations  
RS-485/RS-422 are intended for network lengths up to 4000ft,  
but the maximum system data rate decreases as the  
1.5V V into two terminations, but the ISL3247xE delivers  
OD  
RS-485 voltage levels with two to three times the number of  
terminations.  
transmission length increases. The ISL32478E operating at  
15Mbps can be used at lengths up to 150ft (46m), but the  
distance can be increased to 328ft (100m) by operating at  
10Mbps. The ISL32475E can operate at full data rates (1Mbps)  
with lengths up to 800ft (244m). Jitter is the limiting parameter  
at these faster data rates, so using encoded data streams (for  
example, Manchester coded or Return-to-Zero) can allow  
increased transmission distances. The ISL32470E and  
ISL32472E can operate at 115kbps or less at the full 4000ft  
(1220m) distance, or at the full data rate of 250kbps for lengths  
up to 3000ft (915m). DC cable attenuation is the limiting  
parameter, so using better-quality cables such as 22 AWG can  
allow increased transmission distance.  
Hot Plug Function  
When a piece of equipment powers up, there is a period of time  
when the processor or ASIC driving the RS-485 control lines (DE,  
RE) is unable to ensure that the RS-485 Tx and Rx outputs are  
kept disabled. If the equipment is connected to the bus, a driver  
activating prematurely during power-up can crash the bus. To  
avoid crashes, the ISL3247xE devices incorporate a hot plug  
function. Circuitry monitoring V ensures that, the Tx and Rx  
outputs remain disabled during power-up and power-down if V  
is less than 3.5V, regardless of the state of DE and RE. The  
disabled Tx and Rx outputs allow the processor/ASIC to stabilize  
and drive the RS-485 control lines to the proper states. Figure 29  
illustrates the power-up and power-down performance of the  
ISL3247xE compared to an RS-485 IC without the hot plug  
feature.  
CC  
CC  
Use twisted pair cables for RS-485/RS-422 networks. Twisted-  
pair cables tend to pick up noise and other electromagnetically  
induced voltages as common-mode signals that are effectively  
rejected by the differential receivers in these ICs.  
DE, DI = V  
CC  
Note: Proper termination is imperative to minimize reflections  
when using the ISL32478E. Short networks using the ISL32470E  
and ISL32472E do not need to be terminated; however,  
terminations are recommended unless power dissipation is an  
overriding concern.  
5.0  
RE = GND  
3.5V  
2.8V  
2.5  
0
V
CC  
5.0  
2.5  
0
In point-to-point or point-to-multipoint networks (single driver on  
the bus like RS-422), terminate the main cable in its  
characteristic impedance (typically 120Ω) at the end farthest  
from the driver. In multi-receiver applications, keep stubs  
connecting receivers to the main cable as short as possible.  
Multipoint (multi-driver) systems require the main cable to  
terminate in its characteristic impedance at both ends. Stubs  
connecting a transceiver to the main cable should be as short as  
possible.  
R
R
= 1kΩ  
= 1kΩ  
L
L
A/Y  
ISL83088E  
ISL3247xE  
5.0  
2.5  
RO  
ISL3247xE  
0
TIME  
(40µs/DIV)  
Built-In Driver Overload Protection  
The RS-485 specification requires that drivers survive worst-case  
bus contentions undamaged. These transceivers meet this  
requirement through driver output short-circuit current limits and  
on-chip thermal shutdown circuitry.  
FIGURE 29. HOT PLUG PERFORMANCE (ISL3247xE) vs ISL83088E  
WITHOUT HOT PLUG CIRCUITRY  
ESD Protection  
The driver output stages incorporate a double foldback  
short-circuit current limiting scheme that ensures that the output  
current never exceeds the RS-485 specification, even at the  
common-mode and fault condition voltage range extremes. The  
first foldback current level (70mA) is set to ensure that the  
driver never folds back when driving loads with common-mode  
voltages up to ±15V. The very low second foldback current  
setting (9mA) minimizes power dissipation if the Tx is enabled  
when a fault occurs.  
All pins on these devices include Class 3 (>8kV) Human Body  
Model (HBM) ESD protection structures that can survive ESD  
events commonly seen during manufacturing. Even so, the  
RS-485 pins (driver outputs and receiver inputs) incorporate  
more advanced structures that allow them to survive ESD  
events in excess of ±16.5kV HBM (±15kV for the full-duplex  
versions). The RS-485 pins are particularly vulnerable to ESD  
strikes because they typically connect to an exposed port on the  
exterior of the finished product. Touching the port pins or  
FN7784 Rev 2.00  
Feb 14, 2019  
Page 16 of 21  
ISL32470E, ISL32472E, ISL32475E, ISL32478E  
In the event of a major short-circuit condition, the ISL3247xE  
thermal shutdown feature disables the drivers whenever the die  
temperature becomes excessive. Thermal shutdown eliminates  
the power dissipation, allowing the die to cool. The drivers  
automatically re-enable after the die temperature drops by about  
15°C. If the contention persists, the thermal shutdown/re-enable  
cycle repeats until the fault is cleared. The receivers stay  
operational during thermal shutdown.  
shutdown feature that reduces the already low quiescent I to a  
CC  
10µA trickle. These devices enter shutdown whenever the  
receiver and driver are simultaneously disabled (RE = V and  
CC  
DE = GND) for a period of at least 600ns. Disabling both the  
driver and the receiver for less than 60ns ensures that the  
transceiver does not enter shutdown.  
Note: The receiver and driver enable times increase when the  
transceiver enables from shutdown. See Notes 11 through 15 for  
more information.  
Low Power Shutdown Mode  
These BiCMOS transceivers all use a fraction of the power  
required by competitive devices, but they also include a  
Die Characteristics  
SUBSTRATE POTENTIAL (POWERED UP):  
GND  
PROCESS:  
Si Gate BiCMOS  
FN7784 Rev 2.00  
Feb 14, 2019  
Page 17 of 21  
ISL32470E, ISL32472E, ISL32475E, ISL32478E  
Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted.  
Visit out website to make sure you have the latest revision.  
DATE  
REVISION  
FN7784.2  
CHANGE  
Feb 14, 2019  
Added Related Literature section to page 1.  
Added tape and reel information and updated notes in ordering information table on page 3.  
Updated “High Overvoltage (Fault) Protection Increases Ruggedness” section on page 15.  
Removed Products section.  
Updated disclaimer.  
Mar 9, 2012  
Jan 21, 2011  
FN7784.1  
FN7784.0  
Page 5 - Thermal Information, Thermal Resistance:  
8 Ld SOIC Package Theta JA changed from 116 to 108  
Page 14 - Updated Figure 15 to show Pos breakdown between 60V and 70V.  
Page 19 - Updated Package Outline Drawing M8.15 to newest revision.  
Initial Release  
FN7784 Rev 2.00  
Feb 14, 2019  
Page 18 of 21  
ISL32470E, ISL32472E, ISL32475E, ISL32478E  
For the most recent package outline drawing, see M14.15.  
Package Outline Drawings  
M14.15  
14 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 1, 10/09  
4
0.10 C A-B 2X  
8.65  
A
3
6
DETAIL"A"  
0.22±0.03  
D
14  
8
6.0  
3.9  
4
0.10 C D 2X  
0.20 C 2X  
7
PIN NO.1  
ID MARK  
(0.35) x 45°  
4° ± 4°  
5
0.31-0.51  
0.25M C A-B D  
B
3
6
TOP VIEW  
0.10 C  
H
1.75 MAX  
1.25 MIN  
0.25  
GAUGE PLANE  
SEATING PLANE  
C
0.10-0.25  
1.27  
0.10 C  
SIDE VIEW  
DETAIL "A"  
(1.27)  
(0.6)  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSEY14.5m-1994.  
3. Datums A and B to be determined at Datum H.  
(5.40)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
5. The pin #1 indentifier may be either a mold or mark feature.  
6. Does not include dambar protrusion. Allowable dambar protrusion  
shall be 0.10mm total in excess of lead width at maximum condition.  
(1.50)  
7. Reference to JEDEC MS-012-AB.  
TYPICAL RECOMMENDED LAND PATTERN  
FN7784 Rev 2.00  
Feb 14, 2019  
Page 19 of 21  
ISL32470E, ISL32472E, ISL32475E, ISL32478E  
For the most recent package outline drawing, see M8.15.  
M8.15  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 4, 1/12  
DETAIL "A"  
1.27 (0.050)  
0.40 (0.016)  
INDEX  
AREA  
6.20 (0.244)  
5.80 (0.228)  
0.50 (0.20)  
x 45°  
0.25 (0.01)  
4.00 (0.157)  
3.80 (0.150)  
8°  
0°  
1
2
3
0.25 (0.010)  
0.19 (0.008)  
SIDE VIEW “B”  
TOP VIEW  
2.20 (0.087)  
1
8
SEATING PLANE  
0.60 (0.023)  
1.27 (0.050)  
1.75 (0.069)  
5.00 (0.197)  
4.80 (0.189)  
2
3
7
6
1.35 (0.053)  
-C-  
4
5
0.25(0.010)  
0.10(0.004)  
1.27 (0.050)  
0.51(0.020)  
0.33(0.013)  
5.20(0.205)  
SIDE VIEW “A  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
2. Package length does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
3. Package width does not include interlead flash or protrusions. Interlead  
flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.  
4. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
5. Terminal numbers are shown for reference only.  
6. The lead width as measured 0.36mm (0.014 inch) or greater above the  
seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).  
7. Controlling dimension: MILLIMETER. Converted inch dimensions are not  
necessarily exact.  
8. This outline conforms to JEDEC publication MS-012-AA ISSUE C.  
FN7784 Rev 2.00  
Feb 14, 2019  
Page 20 of 21  
1RWLFH  
ꢃꢅ 'HVFULSWLRQVꢀRIꢀFLUFXLWVꢆꢀVRIWZDUHꢀDQGꢀRWKHUꢀUHODWHGꢀLQIRUPDWLRQꢀLQꢀWKLVꢀGRFXPHQWꢀDUHꢀSURYLGHGꢀRQO\ꢀWRꢀLOOXVWUDWHꢀWKHꢀRSHUDWLRQꢀRIꢀVHPLFRQGXFWRUꢀSURGXFWVꢀ  
DQGꢀDSSOLFDWLRQꢀH[DPSOHVꢅꢀ<RXꢀDUHꢀIXOO\ꢀUHVSRQVLEOHꢀIRUꢀWKHꢀLQFRUSRUDWLRQꢀRUꢀDQ\ꢀRWKHUꢀXVHꢀRIꢀWKHꢀFLUFXLWVꢆꢀVRIWZDUHꢆꢀDQGꢀLQIRUPDWLRQꢀLQꢀWKHꢀGHVLJQꢀRIꢀ\RXUꢀ  
SURGXFWꢀRUꢀV\VWHPꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀDQGꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ  
WKHVHꢀFLUFXLWVꢆꢀVRIWZDUHꢆꢀRUꢀLQIRUPDWLRQꢅ  
ꢁꢅ 5HQHVDVꢀ(OHFWURQLFVꢀKHUHE\ꢀH[SUHVVO\ꢀGLVFODLPVꢀDQ\ꢀZDUUDQWLHVꢀDJDLQVWꢀDQGꢀOLDELOLW\ꢀIRUꢀLQIULQJHPHQWꢀRUꢀDQ\ꢀRWKHUꢀFODLPVꢀLQYROYLQJꢀSDWHQWVꢆꢀFRS\ULJKWVꢆꢀRUꢀ  
RWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀWKLUGꢀSDUWLHVꢆꢀE\ꢀRUꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRUꢀWHFKQLFDOꢀLQIRUPDWLRQꢀGHVFULEHGꢀLQꢀWKLVꢀ  
GRFXPHQWꢆꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢆꢀWKHꢀSURGXFWꢀGDWDꢆꢀGUDZLQJVꢆꢀFKDUWVꢆꢀSURJUDPVꢆꢀDOJRULWKPVꢆꢀDQGꢀDSSOLFDWLRQꢀH[DPSOHVꢅꢀ  
ꢇꢅ 1RꢀOLFHQVHꢆꢀH[SUHVVꢆꢀLPSOLHGꢀRUꢀRWKHUZLVHꢆꢀLVꢀJUDQWHGꢀKHUHE\ꢀXQGHUꢀDQ\ꢀSDWHQWVꢆꢀFRS\ULJKWVꢀRUꢀRWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀRUꢀ  
RWKHUVꢅ  
ꢈꢅ <RXꢀVKDOOꢀQRWꢀDOWHUꢆꢀPRGLI\ꢆꢀFRS\ꢆꢀRUꢀUHYHUVHꢀHQJLQHHUꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢆꢀZKHWKHUꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀ  
DQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀRUꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀVXFKꢀDOWHUDWLRQꢆꢀPRGLILFDWLRQꢆꢀFRS\LQJꢀRUꢀUHYHUVHꢀHQJLQHHULQJꢅ  
ꢉꢅ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀFODVVLILHGꢀDFFRUGLQJꢀWRꢀWKHꢀIROORZLQJꢀWZRꢀTXDOLW\ꢀJUDGHVꢊꢀꢋ6WDQGDUGꢋꢀDQGꢀꢋ+LJKꢀ4XDOLW\ꢋꢅꢀ7KHꢀLQWHQGHGꢀDSSOLFDWLRQVꢀIRUꢀ  
HDFKꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀGHSHQGVꢀRQꢀWKHꢀSURGXFWꢌVꢀTXDOLW\ꢀJUDGHꢆꢀDVꢀLQGLFDWHGꢀEHORZꢅ  
ꢋ6WDQGDUGꢋꢊ  
&RPSXWHUVꢍꢀRIILFHꢀHTXLSPHQWꢍꢀFRPPXQLFDWLRQVꢀHTXLSPHQWꢍꢀWHVWꢀDQGꢀPHDVXUHPHQWꢀHTXLSPHQWꢍꢀDXGLRꢀDQGꢀYLVXDOꢀHTXLSPHQWꢍꢀKRPHꢀ  
HOHFWURQLFꢀDSSOLDQFHVꢍꢀPDFKLQHꢀWRROVꢍꢀSHUVRQDOꢀHOHFWURQLFꢀHTXLSPHQWꢍꢀLQGXVWULDOꢀURERWVꢍꢀHWFꢅ  
ꢋ+LJKꢀ4XDOLW\ꢋꢊ 7UDQVSRUWDWLRQꢀHTXLSPHQWꢀꢎDXWRPRELOHVꢆꢀWUDLQVꢆꢀVKLSVꢆꢀHWFꢅꢏꢍꢀWUDIILFꢀFRQWUROꢀꢎWUDIILFꢀOLJKWVꢏꢍꢀODUJHꢐVFDOHꢀFRPPXQLFDWLRQꢀHTXLSPHQWꢍꢀNH\ꢀ  
ILQDQFLDOꢀWHUPLQDOꢀV\VWHPVꢍꢀVDIHW\ꢀFRQWUROꢀHTXLSPHQWꢍꢀHWFꢅ  
8QOHVVꢀH[SUHVVO\ꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀSURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGRFXPHQWꢆꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀQRWꢀLQWHQGHGꢀRUꢀDXWKRUL]HGꢀIRUꢀXVHꢀLQꢀSURGXFWVꢀRUꢀV\VWHPVꢀWKDWꢀPD\ꢀSRVHꢀDꢀGLUHFWꢀWKUHDWꢀWRꢀ  
KXPDQꢀOLIHꢀRUꢀERGLO\ꢀLQMXU\ꢀꢎDUWLILFLDOꢀOLIHꢀVXSSRUWꢀGHYLFHVꢀRUꢀV\VWHPVꢍꢀVXUJLFDOꢀLPSODQWDWLRQVꢍꢀHWFꢅꢏꢆꢀRUꢀPD\ꢀFDXVHꢀVHULRXVꢀSURSHUW\ꢀGDPDJHꢀꢎVSDFHꢀV\VWHPꢍꢀ  
XQGHUVHDꢀUHSHDWHUVꢍꢀQXFOHDUꢀSRZHUꢀFRQWUROꢀV\VWHPVꢍꢀDLUFUDIWꢀFRQWUROꢀV\VWHPVꢍꢀNH\ꢀSODQWꢀV\VWHPVꢍꢀPLOLWDU\ꢀHTXLSPHQWꢍꢀHWFꢅꢏꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀ  
DQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀGDPDJHVꢀRUꢀORVVHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀDQ\ꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀWKDWꢀLVꢀ  
LQFRQVLVWHQWꢀZLWKꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢆꢀXVHUꢌVꢀPDQXDOꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢅ  
ꢑꢅ :KHQꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀUHIHUꢀWRꢀWKHꢀODWHVWꢀSURGXFWꢀLQIRUPDWLRQꢀꢎGDWDꢀVKHHWVꢆꢀXVHUꢌVꢀPDQXDOVꢆꢀDSSOLFDWLRQꢀQRWHVꢆꢀꢋ*HQHUDOꢀ1RWHVꢀIRUꢀ  
+DQGOLQJꢀDQGꢀ8VLQJꢀ6HPLFRQGXFWRUꢀ'HYLFHVꢋꢀLQꢀWKHꢀUHOLDELOLW\ꢀKDQGERRNꢆꢀHWFꢅꢏꢆꢀDQGꢀHQVXUHꢀWKDWꢀXVDJHꢀFRQGLWLRQVꢀDUHꢀZLWKLQꢀWKHꢀUDQJHVꢀVSHFLILHGꢀE\ꢀ  
5HQHVDVꢀ(OHFWURQLFVꢀZLWKꢀUHVSHFWꢀWRꢀPD[LPXPꢀUDWLQJVꢆꢀRSHUDWLQJꢀSRZHUꢀVXSSO\ꢀYROWDJHꢀUDQJHꢆꢀKHDWꢀGLVVLSDWLRQꢀFKDUDFWHULVWLFVꢆꢀLQVWDOODWLRQꢆꢀHWFꢅꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀPDOIXQFWLRQVꢆꢀIDLOXUHꢀRUꢀDFFLGHQWꢀDULVLQJꢀRXWꢀRIꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRXWVLGHꢀRIꢀVXFKꢀ  
VSHFLILHGꢀUDQJHVꢅ  
ꢒꢅ $OWKRXJKꢀ5HQHVDVꢀ(OHFWURQLFVꢀHQGHDYRUVꢀWRꢀLPSURYHꢀWKHꢀTXDOLW\ꢀDQGꢀUHOLDELOLW\ꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀVHPLFRQGXFWRUꢀSURGXFWVꢀKDYHꢀVSHFLILFꢀ  
FKDUDFWHULVWLFVꢆꢀVXFKꢀDVꢀWKHꢀRFFXUUHQFHꢀRIꢀIDLOXUHꢀDWꢀDꢀFHUWDLQꢀUDWHꢀDQGꢀPDOIXQFWLRQVꢀXQGHUꢀFHUWDLQꢀXVHꢀFRQGLWLRQVꢅꢀ8QOHVVꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀ  
SURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢆꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀ  
DUHꢀQRWꢀVXEMHFWꢀWRꢀUDGLDWLRQꢀUHVLVWDQFHꢀGHVLJQꢅꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀLPSOHPHQWLQJꢀVDIHW\ꢀPHDVXUHVꢀWRꢀJXDUGꢀDJDLQVWꢀWKHꢀSRVVLELOLW\ꢀRIꢀERGLO\ꢀLQMXU\ꢆꢀ  
LQMXU\ꢀRUꢀGDPDJHꢀFDXVHGꢀE\ꢀILUHꢆꢀDQGꢓRUꢀGDQJHUꢀWRꢀWKHꢀSXEOLFꢀLQꢀWKHꢀHYHQWꢀRIꢀDꢀIDLOXUHꢀRUꢀPDOIXQFWLRQꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀVXFKꢀDVꢀVDIHW\ꢀ  
GHVLJQꢀIRUꢀKDUGZDUHꢀDQGꢀVRIWZDUHꢆꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢀUHGXQGDQF\ꢆꢀILUHꢀFRQWUROꢀDQGꢀPDOIXQFWLRQꢀSUHYHQWLRQꢆꢀDSSURSULDWHꢀWUHDWPHQWꢀIRUꢀDJLQJꢀ  
GHJUDGDWLRQꢀRUꢀDQ\ꢀRWKHUꢀDSSURSULDWHꢀPHDVXUHVꢅꢀ%HFDXVHꢀWKHꢀHYDOXDWLRQꢀRIꢀPLFURFRPSXWHUꢀVRIWZDUHꢀDORQHꢀLVꢀYHU\ꢀGLIILFXOWꢀDQGꢀLPSUDFWLFDOꢆꢀ\RXꢀDUHꢀ  
UHVSRQVLEOHꢀIRUꢀHYDOXDWLQJꢀWKHꢀVDIHW\ꢀRIꢀWKHꢀILQDOꢀSURGXFWVꢀRUꢀV\VWHPVꢀPDQXIDFWXUHGꢀE\ꢀ\RXꢅ  
ꢔꢅ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀIRUꢀGHWDLOVꢀDVꢀWRꢀHQYLURQPHQWDOꢀPDWWHUVꢀVXFKꢀDVꢀWKHꢀHQYLURQPHQWDOꢀFRPSDWLELOLW\ꢀRIꢀHDFKꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWꢅꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀFDUHIXOO\ꢀDQGꢀVXIILFLHQWO\ꢀLQYHVWLJDWLQJꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢀWKDWꢀUHJXODWHꢀWKHꢀLQFOXVLRQꢀRUꢀXVHꢀRIꢀ  
FRQWUROOHGꢀVXEVWDQFHVꢆꢀLQFOXGLQJꢀZLWKRXWꢀOLPLWDWLRQꢆꢀWKHꢀ(8ꢀ5R+6ꢀ'LUHFWLYHꢆꢀDQGꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀLQꢀFRPSOLDQFHꢀZLWKꢀDOOꢀWKHVHꢀ  
DSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀGDPDJHVꢀRUꢀORVVHVꢀRFFXUULQJꢀDVꢀDꢀUHVXOWꢀRIꢀ\RXUꢀQRQFRPSOLDQFHꢀ  
ZLWKꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢅ  
ꢄꢅ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDQGꢀWHFKQRORJLHVꢀVKDOOꢀQRWꢀEHꢀXVHGꢀIRUꢀRUꢀLQFRUSRUDWHGꢀLQWRꢀDQ\ꢀSURGXFWVꢀRUꢀV\VWHPVꢀZKRVHꢀPDQXIDFWXUHꢆꢀXVHꢆꢀRUꢀVDOHꢀLVꢀ  
SURKLELWHGꢀXQGHUꢀDQ\ꢀDSSOLFDEOHꢀGRPHVWLFꢀRUꢀIRUHLJQꢀODZVꢀRUꢀUHJXODWLRQVꢅꢀ<RXꢀVKDOOꢀFRPSO\ꢀZLWKꢀDQ\ꢀDSSOLFDEOHꢀH[SRUWꢀFRQWUROꢀODZVꢀDQGꢀUHJXODWLRQVꢀ  
SURPXOJDWHGꢀDQGꢀDGPLQLVWHUHGꢀE\ꢀWKHꢀJRYHUQPHQWVꢀRIꢀDQ\ꢀFRXQWULHVꢀDVVHUWLQJꢀMXULVGLFWLRQꢀRYHUꢀWKHꢀSDUWLHVꢀRUꢀWUDQVDFWLRQVꢅ  
ꢃꢂꢅ ,WꢀLVꢀWKHꢀUHVSRQVLELOLW\ꢀRIꢀWKHꢀEX\HUꢀRUꢀGLVWULEXWRUꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀRUꢀDQ\ꢀRWKHUꢀSDUW\ꢀZKRꢀGLVWULEXWHVꢆꢀGLVSRVHVꢀRIꢆꢀRUꢀRWKHUZLVHꢀVHOOVꢀRUꢀ  
WUDQVIHUVꢀWKHꢀSURGXFWꢀWRꢀDꢀWKLUGꢀSDUW\ꢆꢀWRꢀQRWLI\ꢀVXFKꢀWKLUGꢀSDUW\ꢀLQꢀDGYDQFHꢀRIꢀWKHꢀFRQWHQWVꢀDQGꢀFRQGLWLRQVꢀVHWꢀIRUWKꢀLQꢀWKLVꢀGRFXPHQWꢅ  
ꢃꢃꢅ 7KLVꢀGRFXPHQWꢀVKDOOꢀQRWꢀEHꢀUHSULQWHGꢆꢀUHSURGXFHGꢀRUꢀGXSOLFDWHGꢀLQꢀDQ\ꢀIRUPꢆꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢆꢀZLWKRXWꢀSULRUꢀZULWWHQꢀFRQVHQWꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢅ  
ꢃꢁꢅ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀLIꢀ\RXꢀKDYHꢀDQ\ꢀTXHVWLRQVꢀUHJDUGLQJꢀWKHꢀLQIRUPDWLRQꢀFRQWDLQHGꢀLQꢀWKLVꢀGRFXPHQWꢀRUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWVꢅ  
ꢎ1RWHꢃꢏ ꢋ5HQHVDVꢀ(OHFWURQLFVꢋꢀDVꢀXVHGꢀLQꢀWKLVꢀGRFXPHQWꢀPHDQVꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢀDQGꢀDOVRꢀLQFOXGHVꢀLWVꢀGLUHFWO\ꢀRUꢀLQGLUHFWO\ꢀFRQWUROOHGꢀ  
VXEVLGLDULHVꢅ  
ꢎ1RWHꢁꢏ ꢋ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢎVꢏꢋꢀPHDQVꢀDQ\ꢀSURGXFWꢀGHYHORSHGꢀRUꢀPDQXIDFWXUHGꢀE\ꢀRUꢀIRUꢀ5HQHVDVꢀ(OHFWURQLFVꢅ  
ꢎ5HYꢅꢈꢅꢂꢐꢃꢀꢀ1RYHPEHUꢀꢁꢂꢃꢒꢏ  
Corporate Headquarters  
ContactInformation
Forfurtherinformation on a product,  
technology, the most up-to-date version of a  
document, or your nearest sales office,  
please visit:  
TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku,Tokyo 135-0061, Japan  
www.renesas.com  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are  
trademarks of Renesas Electronics  
Corporation. All trademarks and registered  
trademarks are the property of their  
respective owners.  
‹ꢀꢁꢂꢃꢄꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢅꢀ$OOꢀULJKWVꢀUHVHUYHGꢅ  

相关型号:

ISL3247X

Providing high-performance solutions for every link in the signal chain
INTERSIL

ISL32483E

Fault Protected, Extended CMR, RS-485/RS-422 Transceivers
INTERSIL

ISL32483EIBZ

Fault Protected, Extended CMR, RS-485/RS-422 Transceivers
INTERSIL

ISL32483EIBZ

Fault Protected, Extended CMR, RS-485/RS-422 Transceivers with Cable Invert and ±16.5kV ESD; SOIC14; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL32483EIBZ-T

Fault Protected, Extended CMR, RS-485/RS-422 Transceivers with Cable Invert and ±16.5kV ESD; SOIC14; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL32483EIBZ-T7A

Fault Protected, Extended CMR, RS-485/RS-422 Transceivers with Cable Invert and ±16.5kV ESD; SOIC14; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL32485E

Fault Protected, Extended CMR, RS-485/RS-422 Transceivers
INTERSIL

ISL32485EIBZ

Fault Protected, Extended CMR, RS-485/RS-422 Transceivers
INTERSIL

ISL32485EIBZ

Fault Protected, Extended CMR, RS-485/RS-422 Transceivers with Cable Invert and ±16.5kV ESD; SOIC8; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL32485EIBZ-T13

LINE TRANSCEIVER
RENESAS

ISL3248X

Providing high-performance solutions for every link in the signal chain
INTERSIL

ISL32490E

±60V Fault Protected, 5V, RS-485/RS-422 Transceivers with ±25V CMR
INTERSIL