ISL32483EIBZ-T7A [RENESAS]

Fault Protected, Extended CMR, RS-485/RS-422 Transceivers with Cable Invert and ±16.5kV ESD; SOIC14; Temp Range: -40° to 85°C;
ISL32483EIBZ-T7A
型号: ISL32483EIBZ-T7A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Fault Protected, Extended CMR, RS-485/RS-422 Transceivers with Cable Invert and ±16.5kV ESD; SOIC14; Temp Range: -40° to 85°C

驱动 信息通信管理 光电二极管 驱动器
文件: 总18页 (文件大小:1005K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL32483E, ISL32485E  
Fault Protected, Extended CMR, RS-485/RS-422 Transceivers with Cable Invert  
and ±16.5kV ESD  
FN7785  
Rev.4.00  
Feb 15, 2019  
The ISL32483E and ISL32485E (ISL3248xE) are fault protected,  
Features  
5V powered differential transceivers that exceed the RS-485 and  
• Fault protected RS-485 bus pins . . . . . . . . . . . . . . up to ±60V  
RS-422 standards for balanced communication. The RS-485  
transceiver pins (driver outputs and receiver inputs) are fault  
protected up to ±60V and are protected against ±16.5kV ESD  
strikes without latch-up. Additionally, the extended common-  
mode range allows these transceivers to operate in environments  
with common-mode voltages up to ±25V (>2X the RS-485  
requirement), making this fault-protected RS-485 family one of  
the most robust on the market.  
• Extended common-mode range. . . . . . . . . . . . . . . . . . . . ±25V  
more than twice the range required for RS-485  
• ±16.5kV HBM ESD protection on RS-485 bus pins  
• Cable invert pins corrects for reversed cable connections  
while maintaining Rx full fail-safe functionality  
• Full fail-safe (open, short, terminated) RS-485 receivers  
• 1/4 Unit Load (UL) for up to 128 devices on the bus  
The transmitters (Tx) deliver an exceptional 2.5V (typical)  
differential output voltage into the RS-485 specified 54Ω load.  
This yields better noise immunity than standard RS-485 ICs or  
allows up to six 120Ω terminations in star network topologies.  
• High Rx I for opto-couplers in isolated designs  
OL  
• Hot plug circuitry: Tx and Rx outputs remain three-state  
during power-up/power-down  
The receiver (Rx) inputs feature a full fail-safe design that  
ensures a logic high Rx output if the Rx inputs are floating,  
shorted, or on a terminated but undriven (idle) bus.  
• Slew rate limited RS-485 data rate . . . . . . . . . . . . . . . 1Mbps  
• Low quiescent supply current. . . . . . . . . . . . . . . . . . . . 2.3mA  
• Ultra low shutdown supply current. . . . . . . . . . . . . . . . . . 10µA  
The ISL32483E and ISL32485E include cable invert functions  
that reverse the polarity of the Rx and/or Tx bus pins if the  
cable is misconnected. Unlike competing devices, the Rx full  
fail-safe operation is maintained even when the Rx input  
polarity is switched.  
Applications  
• Utility meters/automated meter reading systems  
• High node count RS-485 systems  
For fault protected RS-485 transceivers without the cable  
invert function, see the ISL32470E and ISL32490E  
datasheets.  
• PROFIBUS™ and RS-485 based field bus networks and  
factory automation  
• Security camera networks  
• Building lighting and environmental control systems  
• Industrial/process control networks  
Related Literature  
For a full list of related documents, visit our website:  
ISL32483E, ISL32485E device pages  
30  
25  
VID = ±1V  
B
25  
A
12  
0
20  
15  
10  
-7  
-12  
5
RO  
0
-20  
-25  
-5  
STANDARD RS-485  
TRANSCEIVER  
CLOSEST  
COMPETITOR  
ISL3248xE  
TIME (400ns/DIV)  
FIGURE 1. EXCEPTIONAL Rx OPERATES AT 1Mbps EVEN WITH  
±25V COMMON-MODE VOLTAGE  
FIGURE 2. TRANSCEIVERS DELIVER SUPERIOR COMMON-MODE  
RANGE vs STANDARD RS-485 DEVICES  
FN7785 Rev.4.00  
Feb 15, 2019  
Page 1 of 18  
ISL32483E, ISL32485E  
Typical Operating Circuits  
+5V  
+5V  
+
0.1µF  
+
0.1µF  
13, 14  
13, 14  
D
1
V
V
RINV  
RO  
CC  
CC  
R
B
A
11  
12  
Y
Z
T
9
DI  
2
5
R
10  
3
4
RE  
DE  
4
3
DE  
RE  
R
9
Y
Z
B
A
T
11  
12  
RO  
5
8
DI  
2
R
10  
D
1
8
RINV  
DINV  
DINV  
GND  
6, 7  
GND  
6, 7  
THE IC ON THE LEFT HAS THE CABLE CONNECTIONS  
SWAPPED, SO THE INV PINS (1, 8) ARE STRAPPED  
HIGH TO INVERT ITS Rx AND Tx POLARITY  
FIGURE 3. ISL32483E FULL DUPLEX EXAMPLE  
Ordering Information  
PART NUMBER  
PART  
TEMP. RANGE  
(°C)  
TAPE AND REEL  
(Units) (Note 1)  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
(Notes 2, 3)  
MARKING  
ISL32483EIBZ  
ISL32483 EIBZ  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-
14 Ld SOIC  
M14.15  
ISL32483EIBZ-T  
ISL32483EIBZ-T7A  
ISL32485EIBZ  
ISL32485EIBZ-T  
ISL32485EIBZ-T7A  
NOTES:  
ISL32483 EIBZ  
ISL32483 EIBZ  
32485 EIBZ  
2.5k  
250  
-
14 Ld SOIC  
14 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
M14.15  
M14.15  
M8.15  
M8.15  
M8.15  
32485 EIBZ  
2.5k  
250  
32485 EIBZ  
1. See TB347 for details about reel specifications.  
2. These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate  
plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Pb-free products are  
MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), see the ISL32483E and ISL32485E device pages. For more information about MSL, see TB363.  
TABLE 1. SUMMARY OF FEATURES  
POLARITY  
HALF/FULL  
DUPLEX  
DATA RATE SLEW-RATE  
EN  
PINS?  
HOT  
PLUG  
REVERSAL  
PINS?  
QUIESCENT I  
(mA)  
LOW POWER  
SHUTDOWN? PIN COUNT  
CC  
PART NUMBER  
ISL32483E  
(Mbps)  
LIMITED?  
Full  
1
1
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
2.3  
2.3  
Yes  
No  
14  
8
ISL32485E  
Half  
Yes  
Tx Only  
FN7785 Rev.4.00  
Feb 15, 2019  
Page 2 of 18  
ISL32483E, ISL32485E  
Pin Configurations  
ISL32483E  
(14 LD SOIC)  
TOP VIEW  
ISL32485E  
(8 LD SOIC)  
TOP VIEW  
RINV  
RO  
1
2
3
4
5
6
7
14 VCC  
13 VCC  
12 A  
RO  
INV  
DE  
DI  
1
2
3
4
8
7
6
5
VCC  
B/Z  
R
R
D
A/Y  
RE  
D
GND  
DE  
11 B  
DI  
10 Z  
GND  
GND  
9
8
Y
DINV  
Pin Descriptions  
PIN  
ISL32483E  
ISL32485E  
NAME  
PIN #  
PIN #  
DESCRIPTION  
RO  
2
1
Receiver output.  
If INV or RINV is low, then: If A - B -10mV, RO is high; if A - B -200mV, RO is low.  
If INV or RINV is high, then: If B - A -10mV, RO is high; if B - A -200mV, RO is low.  
In all cases, RO = High if A and B are unconnected (floating) or shorted together or connected to an undriven,  
terminated bus (Rx is always fail safe open, shorted and idle even if polarity is inverted).  
RE  
DE  
DI  
3
4
5
-
Receiver output enable. RO is enabled when RE is low; RO is high impedance when RE is high. Internally  
pulled low.  
3
4
Driver output enable. The driver outputs, Y and Z, are enabled by bringing DE high and they are high  
impedance when DE is low. Internally pulled high to V  
.
CC  
Driver input. If INV or DINV is low, a low on DI forces output Y low and output Z high, while a high on DI forces  
output Y high and output Z low. The output states relative to DI invert if INV or DINV is high.  
GND  
A/Y  
6, 7  
-
5
6
Ground connection.  
±60V fault and ±16.5kV HBM ESD protected RS-485/RS-422 level I/O pin. If INV is low than, A/Y is the  
noninverting receiver input and noninverting driver output. If INV is high, than A/Y is the inverting receiver  
input and the inverting driver output. Pin is an input if DE = 0; pin is an output if DE = 1.  
B/Z  
-
7
±60V fault and ±16.5kV HBM ESD protected RS-485/RS-422 level I/O pin. If INV is low, than B/Z is the  
inverting receiver input and inverting driver output. If INV is high, than B/Z is the noninverting receiver input  
and the noninverting driver output. Pin is an input if DE = 0; pin is an output if DE = 1.  
A
B
Y
Z
12  
11  
9
-
-
-
-
±60V fault and ±15kV HBM ESD protected RS-485/RS-422 level input. If RINV is low, then A is the  
noninverting receiver input. If RINV is high, then A is the inverting receiver input.  
±60V fault and ±15kV HBM ESD protected RS-485/RS-422 level input. If RINV is low, then B is the inverting  
receiver input. If RINV is high, then B is the noninverting receiver input.  
±60V fault and ±15kV HBM ESD protected RS-485/RS-422 level output. If DINV is low, then Y is the  
noninverting driver output. If DINV is high, then Y is the inverting driver output  
10  
±60V fault and ±15kV HBM ESD protected RS-485/RS-422 level. If DINV is low, then Z is the inverting driver  
output. If DINV is high, then Z is the noninverting driver output.  
VCC  
INV  
13, 14  
-
8
2
System power supply input (4.5V to 5.5V).  
Receiver and driver polarity selection input. When driven high, this pin swaps the polarity of the driver output  
and receiver input pins. If unconnected (floating) or connected low, normal RS-485 polarity conventions  
apply. Internally pulled low.  
RINV  
DINV  
1
8
-
-
Receiver polarity selection input. When driven high, this pin swaps the polarity of the receiver input pins. If  
unconnected (floating) or connected low, normal RS-485 polarity conventions apply. Internally pulled low.  
Driver polarity selection input. When driven high, this pin swaps the polarity of the driver output pins. If  
unconnected (floating) or connected low, normal RS-485 polarity conventions apply. Internally pulled low.  
FN7785 Rev.4.00  
Feb 15, 2019  
Page 3 of 18  
ISL32483E, ISL32485E  
Truth Tables  
TRANSMITTING  
RECEIVING  
INPUTS  
DE  
INPUTS  
DI  
OUTPUTS  
OUTPUT  
RO  
RE  
DE  
INV or DINV  
Y
Z
RE  
DE  
(Half Duplex) (Full Duplex)  
A-B  
INV or  
RINV  
X
X
X
X
0
1
1
1
1
0
1
0
1
0
X
0
0
1
1
X
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
X
X
X
X
X
-0.01V  
-0.2V  
0.01V  
0.2V  
0
0
1
1
X
1
0
1
0
1
1
1
0
High-Z  
High-Z  
Inputs  
Open or  
Shorted  
1
0
X
X
High-Z  
(see Note) (see Note)  
High-Z  
1
1
0
1
0
1
X
X
X
High-Z  
(see Note)  
NOTE: Low Power Shutdown Mode (see Note 11 on page 7), except for  
ISL32485E.  
X
High-Z  
NOTE: Low Power Shutdown Mode (see Note 11 on page 7), except for  
ISL32485E.  
FN7785 Rev.4.00  
Feb 15, 2019  
Page 4 of 18  
ISL32483E, ISL32485E  
Absolute Maximum Ratings  
Thermal Information  
V
to Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7V  
Thermal Resistance (Typical)  
8 Ld SOIC Package (Notes 4, 5). . . . . . . . . .  
14 Ld SOIC Package (Notes 4, 5) . . . . . . . .  
(°C/W)  
104  
78  
JC  
(°C/W)  
47  
42  
CC  
JA  
Input Voltages  
DI, INV, RINV, DINV, DE, RE. . . . . . . . . . . . . . . . . . . . -0.3V to (V + 0.3V)  
CC  
Input/Output Voltages  
A/Y, B/Z, A, B, Y, Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±60V  
A/Y, B/Z, A, B, Y, Z (Transient Pulse Through 100Ω, see Note 15) ±80V  
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . . +150°C  
Maximum Storage Temperature Range . . . . . . . . . . . . . . -65°C to +150°C  
Pb-Free Reflow Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see TB493  
RO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to (V +0.3V)  
CC  
Short-circuit Duration  
Recommended Operating Conditions  
Y, Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indefinite  
ESD Rating . . . . . . . . . . . . . . . . . . . . see “ESD PERFORMANCE” on page 6  
Latch-Up (Tested per JESD78, Level 2, Class A) . . . . . . . . . . . . . . . +125°C  
Supply Voltage (V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V  
CC  
Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C  
Bus Pin Common-Mode Voltage Range . . . . . . . . . . . . . . . . . -25V to +25V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. is measured with the component mounted on a high-effective thermal conductivity test board in free air. See TB379 for details.  
JA  
5. For , the “case temp” location is taken at the package top center.  
JC  
Electrical Specifications Test conditions: V = 4.5V to 5.5V; unless otherwise specified. Typical values are at V = 5V, T = +25°C  
CC  
CC  
A
(Note 6). Boldface limits apply across the operating temperature range, -40°C to +85°C.  
TEMP  
(°C)  
MIN  
(Note 14)  
MAX  
(Note 14)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
TYP  
-
UNIT  
V
DC CHARACTERISTICS  
Driver Differential V  
(No load)  
V
V
Full  
-
V
OUT  
OD1  
CC  
Driver Differential V  
(Loaded, Figure 4A)  
R
R
R
R
= 100Ω (RS-422)  
Full  
Full  
Full  
Full  
2.4  
1.5  
2.0  
0.8  
3.2  
2.5  
2.5  
1.3  
-
V
V
V
V
OUT  
OD2  
L
L
L
L
= 54Ω (RS-485)  
V
CC  
= 54Ω (PROFIBUS, V 5V)  
-
CC  
= 21Ω (Six 120Ω terminations for star  
-
configurations, V 4.75V)  
CC  
Change in Magnitude of Driver  
Differential V for  
V  
R
= 54Ω or 100Ω (Figure 4A)  
Full  
-
-
0.2  
V
OD  
L
OUT  
Complementary Output  
States  
Driver Differential V  
OUT  
Common-Mode Load  
(Figure 4B)  
with  
V
R
R
R
R
R
R
= 60Ω, -7V V 12V  
CM  
Full  
Full  
Full  
Full  
Full  
Full  
1.5  
1.7  
0.8  
-1  
2.1  
V
V
V
V
V
V
V
OD3  
L
L
L
L
L
L
CC  
= 60Ω, -25V V 25V (V 4.75V)  
CM CC  
2.3  
-
= 21Ω, -15V V 15V (V 4.75V)  
CM CC  
1.1  
-
Driver Common-Mode V  
(Figure 4)  
V
= 54Ω or 100Ω  
-
-
-
3
5
OUT  
OC  
= 60Ω or 100Ω, -20V V 20V  
-2.5  
-
CM  
Change in Magnitude of Driver  
Common-Mode V for  
DV  
= 54Ω or 100Ω (Figure 4A)  
0.2  
OC  
OUT  
Complementary Output  
States  
Driver Short-Circuit Current  
I
DE = V , -25V V 25V (Note 8)  
CC  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
-250  
-83  
-13  
2.5  
-
-
-
250  
83  
13  
-
mA  
mA  
mA  
V
OSD  
O
I
I
At first foldback, 22V V -22V  
O
OSD1  
OSD2  
At second foldback, 35V V -35V  
-
O
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
V
DE, DI, RE, INV, RINV, DINV  
DE, DI, RE, INV, RINV, DINV  
DI  
-
IH  
V
-
0.8  
1
V
IL  
I
-1  
-
µA  
µA  
IN1  
DE, RE, INV, RINV, DINV  
-15  
6
15  
FN7785 Rev.4.00  
Feb 15, 2019  
Page 5 of 18  
ISL32483E, ISL32485E  
Electrical Specifications Test conditions: V = 4.5V to 5.5V; unless otherwise specified. Typical values are at V = 5V, T = +25°C  
CC  
CC  
A
(Note 6). Boldface limits apply across the operating temperature range, -40°C to +85°C. (Continued)  
TEMP  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(°C)  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
(Note 14)  
TYP  
110  
-75  
(Note 14)  
UNIT  
µA  
Input/Output Current (A/Y,  
B/Z)  
I
DE = 0V,  
V
V
V
V
V
V
V
V
V
V
V
V
= 12V  
-
250  
-
IN2  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
V
= 0V or 5.5V  
CC  
= -7V  
-200  
-800  
-6  
µA  
= ±25V  
±240  
±0.7  
90  
800  
6
µA  
= ±60V (Note 17)  
= 12V  
mA  
µA  
Input Current (A, B)  
(Full Duplex Versions Only)  
I
V
= 0V or 5.5V  
-
125  
-
IN3  
CC  
= -7V  
-100  
-500  
-3  
-70  
µA  
= ±25V  
±200  
±0.5  
20  
500  
3
µA  
= ±60V (Note 17)  
= 12V  
mA  
µA  
Output Leakage Current (Y, Z)  
(Full Duplex Versions Only)  
I
RE = 0V, DE = 0V,  
= 0V or 5.5V  
-
200  
-
OZD  
V
CC  
= -7V  
-100  
-500  
-3  
-5  
µA  
= ±25V  
±40  
±0.15  
-100  
500  
3
µA  
= ±60V (Note 17)  
mA  
mV  
Receiver Differential  
Threshold Voltage  
V
A-B if INV or RINV = 0; B-A if INV or RINV = 1,  
-25V V 25V  
-200  
-10  
TH  
CM  
Receiver Input Hysteresis  
DV  
-25V V 25V  
25  
-
25  
4.75  
4.2  
-
mV  
V
TH  
CM  
= -10mV  
Receiver Output High Voltage  
V
V
I
I
= -2mA  
= -8mA  
Full  
Full  
Full  
Full  
Full  
V
- 0.5  
-
OH  
ID  
O
CC  
2.8  
-
0.4  
-
V
O
Receiver Output Low Voltage  
Receiver Output Low Current  
V
I
= 6mA, V = -200mV  
O ID  
-
0.27  
22  
V
OL  
I
V
= 1V, V = -200mV  
15  
-1  
mA  
µA  
OL  
O ID  
Three-State (High Impedance)  
Receiver Output Current  
I
I
0V V V (Note 16)  
0.01  
1
OZR  
O
CC  
Receiver Short-Circuit Current  
SUPPLY CURRENT  
0V V V  
Full  
±12  
-
±110  
mA  
OSR  
O
CC  
No-Load Supply Current  
(Note 7)  
I
DE = V , RE = 0V or V , DI = 0V or V  
CC CC CC  
Full  
Full  
-
-
2.3  
10  
4.5  
50  
mA  
µA  
CC  
Shutdown Supply Current  
ESD PERFORMANCE  
I
DE = 0V, RE = V , DI = 0V or V (Note 16)  
CC CC  
SHDN  
RS-485 Pins (A, Y, B, Z, A/Y,  
B/Z)  
Human Body Model, 1/2 Duplex  
25  
25  
-
-
±16.5  
±15  
-
-
kV  
kV  
From Bus Pins to  
Full Duplex  
GND  
All Pins  
Human Body Model, per JEDEC  
Machine Model  
25  
25  
-
-
±8  
-
-
kV  
V
±700  
DRIVER SWITCHING CHARACTERISTICS  
Driver Differential Output  
Delay  
t
t
R
= 54Ω, C = 50pF No CM load  
Full  
Full  
Full  
Full  
-
-
-
-
70  
125  
350  
15  
ns  
ns  
ns  
ns  
PLH, PHL  
D
D
(Figure 5)  
-25V V 25V  
CM  
-
4.5  
-
Driver Differential Output  
Skew  
t
R = 54Ω, C = 50pF No CM load  
D D  
(Figure 5)  
SKEW  
-25V V 25V  
25  
CM  
(Note 18)  
Driver Differential Rise or Fall  
Time  
t , t  
R
= 54Ω, C = 50pF No CM load  
Full  
Full  
Full  
Full  
Full  
Full  
70  
170  
300  
550  
-
ns  
ns  
R
F
D
D
(Figure 5)  
-25V V 25V  
CM  
70  
-
4
-
Maximum Data Rate  
f
C
= 820pF (Figure 7)  
1
-
Mbps  
ns  
MAX  
D
Driver Enable to Output High  
Driver Enable to Output Low  
t
SW = GND (Figure 6), (Note 9)  
350  
300  
120  
ZH  
t
SW = V (Figure 6), (Note 9)  
-
-
ns  
ZL  
LZ  
CC  
SW = V (Figure 6)  
Driver Disable from Output  
Low  
t
-
-
ns  
CC  
FN7785 Rev.4.00  
Feb 15, 2019  
Page 6 of 18  
ISL32483E, ISL32485E  
Electrical Specifications Test conditions: V = 4.5V to 5.5V; unless otherwise specified. Typical values are at V = 5V, T = +25°C  
CC  
CC  
A
(Note 6). Boldface limits apply across the operating temperature range, -40°C to +85°C. (Continued)  
TEMP  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
SW = GND (Figure 6)  
(°C)  
(Note 14)  
TYP  
-
(Note 14)  
UNIT  
ns  
Driver Disable from Output  
High  
t
Full  
-
120  
HZ  
Time to Shutdown  
t
(Notes 11, 16)  
Full  
Full  
60  
-
160  
-
600  
ns  
ns  
SHDN  
Driver Enable from Shutdown  
to Output High  
t
SW = GND (Figure 6),  
(Notes 11, 12, 16)  
2000  
ZH(SHDN)  
Driver Enable from Shutdown  
to Output Low  
t
SW = V (Figure 6),  
CC  
(Notes 11, 12, 16)  
Full  
-
-
2000  
ns  
ZL(SHDN)  
RECEIVER SWITCHING CHARACTERISTICS  
Maximum Data Rate  
f
-25V V 25V (Figure 8)  
CM  
Full  
Full  
Full  
Full  
1
-
15  
90  
4
-
Mbps  
ns  
MAX  
, t  
Receiver Input to Output Delay  
t
-25V V 25V (Figure 8)  
150  
10  
50  
PLH PHL  
CM  
Receiver Skew | t  
- t  
|
t
(Figure 8)  
-
ns  
PLH PHL  
SKD  
Receiver Enable to Output  
Low  
t
R
= 1kΩ, C = 15pF, SW = V (Figure 9),  
CC  
-
-
ns  
ZL  
L
L
(Notes 10, 16)  
Receiver Enable to Output  
High  
t
R
= 1kΩ, C = 15pF, SW = GND (Figure 9),  
Full  
Full  
Full  
-
-
-
-
-
-
50  
50  
50  
ns  
ns  
ns  
ZH  
L
L
(Notes 10, 16)  
R = 1kΩ, C = 15pF, SW = V (Figure 9)  
L
(Note 16)  
R = 1kΩ, C = 15pF, SW = GND (Figure 9)  
L
Receiver Disable from Output  
Low  
t
LZ  
L
CC  
Receiver Disable from Output  
High  
t
HZ  
L
(Note 16)  
Time to Shutdown  
t
(Notes 11, 16)  
Full  
Full  
60  
-
160  
-
600  
ns  
ns  
SHDN  
Receiver Enable from  
t
R
= 1kΩ, C = 15pF, SW = GND (Figure 9),  
2000  
ZH(SHDN)  
L
L
Shutdown to Output High  
(Notes 11, 13, 16)  
Receiver Enable from  
t
R
= 1kΩ, C = 15pF, SW = V (Figure 9),  
Full  
-
-
2000  
ns  
ZL(SHDN)  
L
L
CC  
Shutdown to Output Low  
(Notes 11, 13, 16)  
NOTES:  
6. All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise  
specified.  
7. Supply current specification is valid for loaded drivers when DE = 0V.  
8. Applies to peak current. See “Typical Performance Curves” beginning on page 10 for more information.  
9. Keep RE = 0 to prevent the device from entering shutdown.  
10. The RE signal high time must be short enough (typically <100ns) to prevent the device from entering shutdown.  
11. Transceivers (except on the ISL32485E) are put into shutdown by bringing RE high and DE low. If the inputs are in this state for less than 60ns, the  
parts are ensured not to enter shutdown. If the inputs are in this state for at least 600ns, the parts are ensured to enter shutdown. See “Low Power  
Shutdown Mode” on page 14.  
12. Keep RE = VCC and set the DE signal low time >600ns to ensure that the device enters shutdown.  
13. Set the RE signal high time >600ns to ensure that the device enters shutdown.  
14. Compliance to datasheet limits is assured by one or more methods: production test, characterization, and/or design.  
15. Tested according to TIA/EIA-485-A, Section 4.2.6 (±80V for 15ms at a 1% duty cycle).  
16. Does not apply to the ISL32485E. The ISL32485E has no Rx enable function and thus no shutdown function.  
17. See “Caution” statement in “Absolute Maximum Ratings” on page 5.  
18. This parameter is not production tested.  
FN7785 Rev.4.00  
Feb 15, 2019  
Page 7 of 18  
ISL32483E, ISL32485E  
Test Circuits and Waveforms  
R /2  
L
R /2  
375Ω  
375Ω  
DE  
DI  
L
V
DE  
DI  
CC  
V
CC  
Z
Y
Z
Y
V
CM  
V
D
OD  
V
D
OD  
V
OC  
V
R /2  
L
OC  
R /2  
L
FIGURE 4A. V AND V  
OD  
FIGURE 4B. V AND V WITH COMMON-MODE LOAD  
OD OC  
OC  
FIGURE 4. DC DRIVER TEST CIRCUITS  
3V  
0V  
DI  
50%  
50%  
375Ω*  
DE  
DI  
t
t
PHL  
PLH  
V
CC  
V
OH  
OUT (Z)  
Z
R
C
D
D
D
V
V
OUT (Y)  
CM  
Y
OL  
375Ω*  
SIGNAL  
GENERATOR  
+V  
-V  
OD  
*USED ONLY FOR COMMON  
MODE LOAD TESTS  
90%  
10%  
90%  
10%  
DIFF OUT (Y - Z)  
OD  
t
t
R
F
SKEW = |t  
- t |  
PLH PHL  
FIGURE 5A. TEST CIRCUIT  
FIGURE 5B. MEASUREMENT POINTS  
FIGURE 5. DRIVER PROPAGATION DELAY AND DIFFERENTIAL TRANSITION TIMES  
DE  
DI  
Z
Y
110Ω  
V
CC  
D
3V  
GND  
SW  
SIGNAL  
GENERATOR  
DE  
50%  
50%  
(Note 11  
C
L
0V  
t
, t  
ZH ZH(SHDN)  
(Note 11)  
t
HZ  
OUTPUT HIGH  
V
OH  
V
- 0.5V  
OH  
PARAMETER  
OUTPUT  
Y/Z  
RE  
DI  
SW C (pF)  
L
OUT (Y, Z)  
2.3V  
0V  
t
X
1/0  
0/1  
1/0  
0/1  
1/0  
0/1  
GND  
50  
50  
HZ  
t
Y/Z  
X
V
t
, t  
t
ZL ZL(SHDN)  
(Note 11  
LZ  
CC  
LZ  
V
CC  
t
Y/Z  
0 (Note 9)  
0 (Note 9)  
GND  
100  
100  
100  
100  
ZH  
OUT (Y, Z)  
2.3V  
OUTPUT LOW  
t
Y/Z  
V
ZL  
CC  
V
+ 0.5V  
OL  
V
OL  
t
Y/Z  
1 (Note 12)  
1 (Note 12)  
GND  
ZH(SHDN)  
t
Y/Z  
V
CC  
ZL(SHDN)  
FIGURE 6A. TEST CIRCUIT  
FIGURE 6B. MEASUREMENT POINTS  
FIGURE 6. DRIVER ENABLE AND DISABLE TIMES  
FN7785 Rev.4.00  
Feb 15, 2019  
Page 8 of 18  
ISL32483E, ISL32485E  
Test Circuits and Waveforms(Continued)  
DE  
3V  
0V  
V
CC  
+
DI  
Z
Y
DI  
54Ω  
C
V
D
D
OD  
-
SIGNAL  
GENERATOR  
+V  
OD  
DIFF OUT (Y - Z)  
0V  
-V  
OD  
FIGURE 7A. TEST CIRCUIT  
FIGURE 7B. MEASUREMENT POINTS  
FIGURE 7. DRIVER DATA RATE  
RE  
B
A
V
V
+ 750mV  
- 750mV  
CM  
15pF  
B
V
V
CM  
CM  
RO  
R
A
CM  
t
t
PHL  
PLH  
SIGNAL  
GENERATOR  
SIGNAL  
GENERATOR  
V
CC  
50%  
50%  
RO  
V
CM  
0V  
FIGURE 8A. TEST CIRCUIT  
FIGURE 8B. MEASUREMENT POINTS  
FIGURE 8. RECEIVER PROPAGATION DELAY AND DATA RATE  
RE  
B
A
1kΩ  
V
RE  
CC  
RO  
3V  
0V  
R
(Note 11)  
GND  
SW  
SIGNAL  
GENERATOR  
50%  
50%  
15pF  
t
t
, t  
ZH ZH(SHDN)  
t
HZ  
OUTPUT HIGH  
(Note 11)  
V
PARAMETER  
DE  
0
A
SW  
GND  
OH  
V
- 0.5V  
OH  
1.5V  
RO  
t
+1.5V  
-1.5V  
+1.5V  
-1.5V  
+1.5V  
-1.5V  
HZ  
0V  
t
0
V
LZ  
CC  
, t  
ZL ZL(SHDN)  
t
LZ  
t
(Note 10)  
(Note 10)  
0
GND  
ZH  
(Note 11)  
V
CC  
t
0
V
ZL  
CC  
RO  
1.5V  
OUTPUT LOW  
V
+ 0.5V  
V
OL  
OL  
t
(Note 13)  
0
GND  
ZH(SHDN)  
t
(Note 13)  
0
V
CC  
ZL(SHDN)  
FIGURE 9A. TEST CIRCUIT  
FIGURE 9B. MEASUREMENT POINTS  
FIGURE 9. RECEIVER ENABLE AND DISABLE TIMES  
FN7785 Rev.4.00  
Feb 15, 2019  
Page 9 of 18  
ISL32483E, ISL32485E  
Typical Performance Curves  
V
= 5V, T = +25°C; unless otherwise specified.  
A
CC  
3.6  
90  
R
= 20Ω  
D
R
= 30Ω  
D
80  
70  
60  
50  
40  
30  
20  
10  
0
3.4  
+25°C  
+85°C  
R
= 100Ω  
D
R
= 54Ω  
D
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
R
= 100Ω  
D
R
= 54Ω  
D
0
1
2
3
4
5
-40  
-25  
0
25  
50  
75 85  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
FIGURE 10. DRIVER OUTPUT CURRENT vs DIFFERENTIAL OUTPUT  
VOLTAGE  
FIGURE 11. DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs  
TEMPERATURE  
70  
60  
2.45  
2.40  
V
, +25°C  
OL  
DE = V , RE = X  
CC  
V
, +85°C  
OL  
50  
40  
30  
20  
10  
0
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
DE = GND, RE = GND  
-10  
-20  
-30  
V
, +85°C  
1
OH  
V
, +25°C  
3
OH  
-40  
-25  
0
25  
50  
75 85  
0
2
4
5
TEMPERATURE (°C)  
RECEIVER OUTPUT VOLTAGE (V)  
FIGURE 13. RECEIVER OUTPUT CURRENT vs RECEIVER OUTPUT  
VOLTAGE  
FIGURE 12. SUPPLY CURRENT vs TEMPERATURE  
1000  
150  
+85°C  
V
= 0V TO 5.5V  
CC  
800  
600  
400  
200  
0
100  
50  
Y OR Z = LOW  
+25°C  
0
Y or Z  
-50  
-100  
-150  
-200  
-400  
-600  
Y OR Z = HIGH  
+25°C  
A/Y or B/Z  
+85°C  
-60 -50 -40 -30 -20 -10  
0
10 20 30 40 50 60  
-70 -60 -50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70  
OUTPUT VOLTAGE (V)  
BUS PIN VOLTAGE (V)  
FIGURE 14. DRIVER OUTPUT CURRENT vs SHORT-CIRCUIT VOLTAGE  
FIGURE 15. BUS PIN CURRENT vs BUS PIN VOLTAGE  
FN7785 Rev.4.00  
Feb 15, 2019  
Page 10 of 18  
ISL32483E, ISL32485E  
Typical Performance Curves  
V
= 5V, T = +25°C; unless otherwise specified. (Continued)  
A
CC  
4.0  
85  
R
= 54Ω, C = 50pF  
D
R
= 54Ω, C = 50pF  
D
D
D
80  
75  
70  
65  
60  
55  
50  
3.5  
3.0  
2.5  
2.0  
t
PLH  
t
PHL  
|t  
- t  
|
PLH PHL  
-40  
-25  
0
25  
50  
75 85  
-40  
-25  
0
25  
50  
75 85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 17. DRIVER DIFFERENTIAL SKEW vs TEMPERATURE  
FIGURE 16. DRIVER DIFFERENTIAL PROPAGATION DELAY vs  
TEMPERATURE  
A
R
= 54Ω, C = 50pF  
D
25  
D
B
5
0
VID = ±1V  
20  
15  
10  
5
DI  
5
0
RO  
RO  
RO  
0
5
0
3
2
1
-5  
-10  
-15  
-20  
-25  
0
-1  
-2  
-3  
A
B
A/Y - B/Z  
TIME (400ns/DIV)  
TIME (400ns/DIV)  
FIGURE 18. RECEIVER PERFORMANCE WITH ±25V CMV  
FIGURE 19. DRIVER AND RECEIVER WAVEFORMS  
FN7785 Rev.4.00  
Feb 15, 2019  
Page 11 of 18  
ISL32483E, ISL32485E  
Driver (Tx) Features  
Application Information  
The RS-485/RS-422 driver is a differential output device that  
delivers at least 1.5V across a 54Ω load (RS-485) and at least  
2.4V across a 100Ω load (RS-422). The drivers feature low  
propagation delay skew to maximize bit width and to minimize  
EMI. All drivers are three-statable using the active high DE input.  
RS-485 and RS-422 are differential (balanced) data  
transmission standards used for long haul or noisy environments.  
RS-422 is a subset of RS-485, so RS-485 transceivers are also  
RS-422 compliant. RS-422 is a point-to-multipoint (multidrop)  
standard that allows only one driver and up to 10 receivers  
(assuming one-unit load devices) on each bus. RS-485 is a true  
multipoint standard that allows up to 32 one-unit load devices  
(any combination of drivers and receivers) on each bus. To allow  
for multipoint operation, the RS-485 specification requires that  
drivers must handle bus contention without sustaining any  
damage.  
The driver outputs are slew rate limited to minimize EMI and  
reflections in unterminated or improperly terminated networks.  
High Overvoltage (Fault) Protection  
Increases Ruggedness  
The ±60V fault protection (referenced to the IC GND) on the  
RS-485 pins makes these transceivers some of the most rugged  
on the market. This level of protection makes the ISL3248xE  
perfect for applications where power (such as 24V and 48V  
supplies) must be routed in the conduit with the data lines, or for  
outdoor applications where large transients are likely to occur.  
When power is routed with the data lines, even a momentary  
short between the supply and data lines destroys an unprotected  
device. The ±60V fault levels of this family are at least five times  
higher than the levels specified for standard RS-485 ICs. The  
ISL3248xE’s protection is active whether the Tx is enabled or  
disabled, and even if the IC is powered down or VCC and Ground  
are floating.  
An important advantage of RS-485 is the extended  
Common-Mode Range (CMR) that specifies that the driver  
outputs and receiver inputs withstand signals that range from  
+12V to -7V. RS-422 and RS-485 are intended for runs as long as  
4000ft, so the wide CMR is necessary to handle ground potential  
differences and voltages induced in the cable by external fields.  
The ISL3248xE are a family of ruggedized RS-485 transceivers  
that improve on the RS-485 basic requirements and increase  
system reliability. The CMR increases to ±25V and the RS-485  
bus pins (receiver inputs and driver outputs) include fault  
protection against voltages and transients up to ±60V.  
Additionally, larger-than-required differential output voltages  
If transients or voltages (including overshoots and ringing)  
greater than ±60V are possible, additional external protection is  
required.  
(V ) increase noise immunity, while the ±16.5kV built-in ESD  
OD  
protection complements the fault protection.  
Receiver (Rx) Features  
Widest Common-Mode Voltage (CMV)  
Tolerance Improves Operating Range  
These devices use a differential input receiver for maximum noise  
immunity and common-mode rejection. Input sensitivity is better  
than ±200mV, as required by the RS-422 and RS-485  
specifications.  
RS-485 networks operating in industrial complexes or over long  
distances are susceptible to large CMV variations. Either of these  
operating environments can suffer from large node-to-node ground  
potential differences or CMV pickup from external electromagnetic  
sources, and devices with only the minimum required +12V to -7V  
CMR can malfunction. The ISL3248xE’s extended ±25V CMR is the  
widest available, allowing operation in environments that would  
overwhelm lesser transceivers. Additionally, the Rx does not phase  
invert (erroneously change state), even with CMVs of ±40V or  
differential voltages as large as 40V.  
The receiver input (load) current surpasses the RS-422  
specification of 3mA and is four times lower than the RS-485  
Unit Load (UL) requirement of 1mA maximum. Therefore, these  
products are known as one-quarter UL transceivers and there can  
be up to 128 of these devices on a network while still complying  
with the RS-485 loading specification.  
The receivers functions with common-mode voltages as great as  
±25V, making them ideal for industrial or long networks where  
induced voltages are a realistic concern.  
Cable Invert (Polarity Reversal) Function  
Large node count RS-485 networks are commonly wired  
backwards during installation. When this happens, the node is  
unable to communicate over the network. When technicians find  
the miswired node, the connector must be rewired, which is time  
consuming.  
All the receivers include a full fail-safe function that ensures a  
high-level receiver output if the receiver inputs are unconnected  
(floating), shorted together, or connected to a terminated bus  
with all the transmitters disabled (an idle bus).  
The Rx outputs feature high drive levels (typically 22mA at  
The ISL3248xE simplify this task by including cable invert pins  
(INV, DINV, RINV) that allow the technician to invert the polarity of  
the Rx input and/or the Tx output pins simply by moving a jumper  
to change the state of the invert pins. When the invert pin is low,  
the IC operates like any standard RS-485 transceiver and the bus  
pins have their normal polarity definition of A and Y being  
noninverting and B and Z being inverting. With the invert pin  
high, the corresponding bus pins reverse their polarity, so B and Z  
are now noninverting and A and Y become inverting.  
V
= 1V) to ease the design of optically coupled isolated  
OL  
interfaces. Except for the ISL32485E, Rx outputs are  
three-statable using the active low RE input.  
The Rx includes noise filtering circuitry to reject high frequency  
signals and typically rejects pulses narrower than 50ns  
(equivalent to 20Mbps).  
This unique cable invert function is superior to that found on  
competing devices because the Rx full fail-safe function is  
FN7785 Rev.4.00  
Feb 15, 2019  
Page 12 of 18  
ISL32483E, ISL32485E  
maintained even when the Rx polarity is reversed. Competitor  
devices implement the Rx invert function simply by inverting the  
Rx output. This means that with the Rx inputs floating or shorted  
together, the Rx appropriately delivers a Logic 1 in normal  
polarity, but outputs a Logic 0 when the IC is operated in the  
inverted mode. This innovative Renesas Rx design ensures that  
the Rx output remains high with the Rx inputs floating or shorted  
DE, DI = V  
RE = GND  
CC  
5.0  
2.5  
3.5V  
2.8V  
V
CC  
0
5.0  
2.5  
0
RL = 1kΩ  
RL = 1kΩ  
together (V = 0V), regardless of the state of the invert pins.  
ID  
A/Y  
ISL83088E  
ISL3248XE  
The full duplex ISL32483E includes two invert pins that allow for  
separate control of the Rx and Tx polarities. If only the Rx cable is  
miswired, only the RINV pin needs to be driven to a Logic 1. If the  
Tx cable is miswired, DINV must be connected to a logic high. The  
half-duplex version has only one logic pin (INV) that, when high,  
switches the polarity of both the Tx and the Rx blocks.  
5.0  
2.5  
RO  
ISL3248XE  
0
TIME (40µs/DIV)  
FIGURE 20. HOT PLUG PERFORMANCE (ISL3248XE) vs ISL83088E  
WITHOUT HOT PLUG CIRCUITRY  
High V Improves Noise Immunity and  
OD  
Flexibility  
ESD Protection  
The ISL3248xE driver design delivers larger differential output  
All pins on the ISL3248xE devices include Class 3 (>8kV) Human  
Body Model (HBM) ESD protection structures that can survive ESD  
events commonly seen during manufacturing. Even so, the RS-485  
pins (driver outputs and receiver inputs) incorporate more  
advanced structures that allow them to survive ESD events in  
excess of ±16.5kV HBM (±15kV for the full-duplex version). The  
RS-485 pins are particularly vulnerable to ESD strikes because  
they typically connect to an exposed port on the exterior of the  
finished product. Touching the port pins or connecting a cable can  
cause an ESD event that can destroy unprotected ICs. The new ESD  
structures protect the device whether or not it is powered up and  
without interfering with the exceptional ±25V CMR. This built-in  
ESD protection minimizes the need for board-level protection  
structures (such as transient suppression diodes) and the  
associated, undesirable capacitive load they present.  
voltages (V ) than the RS-485 standard requirements or than  
most RS-485 transmitters can deliver. The typical ±2.5V V  
OD  
provides more noise immunity than networks built using many  
other transceivers.  
OD  
Another advantage of the large V is the ability to drive more  
OD  
than two bus terminations, which allows for using the ISL3248xE  
in star topologies and other multi-terminated, nonstandard  
network topologies.  
Figure 10 on page 10 details the transmitter’s V versus I  
OD  
OUT  
characteristic and includes load lines for four (30Ω) and six (20Ω)  
120Ω terminations. Figure 10 shows that the driver typically  
delivers ±1.3V into six terminations and the “Electrical  
Specifications” on page 5 ensures a V of ±0.8V at 21Ω across  
OD  
the full temperature range. The RS-485 standard requires a  
minimum 1.5V V into two terminations, but the ISL3248xE  
delivers RS-485 voltage levels with two to three times the  
number of terminations.  
OD  
Data Rate, Cables and Terminations  
RS-485/RS-422 are intended for network lengths up to 4000ft,  
but the maximum system data rate decreases as the  
transmission length increases. The ISL3248xE can operate at full  
data rates with lengths up to 800ft. (244m). Jitter is the limiting  
parameter at this data rate, so employing encoded data streams  
(such as Manchester coded or Return-to-Zero) can allow  
increased transmission distances.  
Hot Plug Function  
When a piece of equipment powers up, there is a period of time  
when the processor or ASIC driving the RS-485 control lines (DE,  
RE) is unable to ensure that the RS-485 Tx and Rx outputs are  
kept disabled. If the equipment is connected to a bus, a driver  
activating prematurely during power-up can crash the bus. To  
avoid crashes, the ISL3248xE devices incorporate a hot plug  
Use twisted pair cables for RS-485/RS-422 networks. Twisted  
pair cables tend to pick up noise and other electromagnetically  
induced voltages as common-mode signals that are effectively  
rejected by the differential receivers in these ICs.  
function. Circuitry monitoring V ensures the Tx and Rx outputs  
CC  
remain disabled during power-up and power-down if V is less  
CC  
than 3.5V, regardless of the state of DE and RE. The disabled Tx  
and Rx outputs allow the processor/ASIC to stabilize and drive  
the RS-485 control lines to the proper states. Figure 20  
illustrates the power-up and power-down performance of the  
ISL3248xE compared to an RS-485 IC without the hot plug  
feature.  
Note: Proper termination is imperative to minimize reflections  
and terminations are recommended unless power dissipation is  
an overriding concern. In point-to-point, or point-to-multipoint  
networks (single driver on bus like RS-422), terminate the main  
cable in its characteristic impedance (typically 120Ω) at the end  
farthest from the driver. In multireceiver applications, keep stubs  
connecting receivers to the main cable should be as possible.  
Multipoint (multidriver) systems require that the main cable is  
terminated in its characteristic impedance at both ends. Keep  
stubs connecting a transceiver to the main cable should be as  
possible.  
FN7785 Rev.4.00  
Feb 15, 2019  
Page 13 of 18  
ISL32483E, ISL32485E  
Built-in Driver Overload Protection  
Low Power Shutdown Mode  
The RS-485 specification requires that drivers survive worst-case  
bus contentions undamaged. These transceivers meet this  
requirement using driver output short-circuit current limits and  
on-chip thermal shutdown circuitry.  
These BiCMOS transceivers all use a fraction of the power  
required by competitive devices, but they also include a  
shutdown feature (except the ISL32485E) that reduces the  
already low quiescent I to a 10µA trickle. These devices enter  
CC  
shutdown whenever the receiver and driver are simultaneously  
The driver output stages incorporate a double foldback,  
short-circuit current limiting scheme that ensures that the output  
current never exceeds the RS-485 specification, even at the  
common-mode and fault condition voltage range extremes. The  
first foldback current level (70mA) is set to ensure that the  
driver never folds back when driving loads with common-mode  
voltages up to ±25V. The very low second foldback current  
setting (9mA) minimizes power dissipation if the Tx is enabled  
when a fault occurs.  
disabled (RE = V and DE = GND) for a period of at least 600ns.  
CC  
Disabling both the driver and the receiver for less than 60ns  
ensures that the transceiver does not enter shutdown.  
Note: The receiver and driver enable times increase when the  
transceiver enables from shutdown. See Notes 9 through 13 on  
page 7 for more information.  
Die Characteristics  
In the event of a major short-circuit condition, the ISL3248xE's  
thermal shutdown feature disables the drivers whenever the die  
temperature becomes excessive. Thermal shutdown eliminates  
the power dissipation, allowing the die to cool. The drivers  
automatically re-enable after the die temperature drops about  
15°C. If the contention persists, the thermal shutdown/reenable  
cycle repeats until the fault is cleared. The receivers stay  
operational during thermal shutdown.  
SUBSTRATE POTENTIAL (POWERED UP):  
GND  
PROCESS:  
Si Gate BiCMOS  
FN7785 Rev.4.00  
Feb 15, 2019  
Page 14 of 18  
ISL32483E, ISL32485E  
Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted.  
Please visit our website to ensure you have the latest revision.  
DATE  
REVISION  
FN7785.4  
CHANGE  
Feb 15, 2019  
Updated links throughout document.  
Added Related Literature section.  
Updated ordering information table by adding all tape and reel information and updating notes.  
Updated last sentence in first paragraph under “High Overvoltage (Fault) Protection Increases Ruggedness” on  
page 12.  
Removed About Intersil section.  
Updated disclaimer.  
May 13, 2015  
Oct 28, 2014  
FN7785.3  
FN7785.2  
-Figure 3 on page 2: Changed the title from "ISL34183E" to "ISL32483E.  
-“Thermal Information” on page 5 changes are:  
* 14 Ld SOIC Package: Changed Theta-ja: From 88 to 78 and Theta-jc from 39 to 42.  
*8 Ld SOIC Package: Changed Theta-ja: From 108 to 104.  
- Changed "MAX" on “Driver Differential Rise or Fall Time” on page 6 from 400 to 550.  
On p6, in the "Driver Switching Characteristics" section, "Driver Differential Output Skew" parameter, in the  
second "Test Conditions" line, added "(Note 18)" after the -25V Vcm 25V" entry. And on p7, added a new  
Note 18 to the notes section saying, "This parameter is not production tested."  
Updated POD M8.15 to most recent version with following changes:  
Changed in Typical Recommended Land Pattern the following:  
2.41(0.095) to 2.20(0.087)  
0.76 (0.030) to 0.60(0.023)  
0.200 to 5.20(0.205)  
Changed Note 1 "1982" to "1994"  
Mar 8, 2012  
Jan 18, 2011  
FN7785.1  
FN7785.0  
Page 5 - Thermal Resistance - 8 Ld SOIC package Theta JA changed from 116 to 108  
Page 13 - Updated Figure 15 to show Pos breakdown between 60V and 70V.  
Initial Release  
FN7785 Rev.4.00  
Feb 15, 2019  
Page 15 of 18  
ISL32483E, ISL32485E  
For the most recent package outline drawing, see M14.15.  
Package Outline Drawings  
M14.15  
14 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 1, 10/09  
4
0.10 C A-B 2X  
8.65  
A
3
6
DETAIL"A"  
0.22±0.03  
D
14  
8
6.0  
3.9  
4
0.10 C D 2X  
0.20 C 2X  
7
PIN NO.1  
ID MARK  
(0.35) x 45°  
4° ± 4°  
5
0.31-0.51  
0.25M C A-B D  
B
3
6
TOP VIEW  
0.10 C  
H
1.75 MAX  
1.25 MIN  
0.25  
GAUGE PLANE  
SEATING PLANE  
C
0.10-0.25  
1.27  
0.10 C  
SIDE VIEW  
DETAIL "A"  
(1.27)  
(0.6)  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSEY14.5m-1994.  
3. Datums A and B to be determined at Datum H.  
(5.40)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
5. The pin #1 indentifier may be either a mold or mark feature.  
6. Does not include dambar protrusion. Allowable dambar protrusion  
shall be 0.10mm total in excess of lead width at maximum condition.  
(1.50)  
7. Reference to JEDEC MS-012-AB.  
TYPICAL RECOMMENDED LAND PATTERN  
FN7785 Rev.4.00  
Feb 15, 2019  
Page 16 of 18  
ISL32483E, ISL32485E  
M8.15  
For the most recent package outline drawing, see M8.15.  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 4, 1/12  
DETAIL "A"  
1.27 (0.050)  
0.40 (0.016)  
INDEX  
AREA  
6.20 (0.244)  
5.80 (0.228)  
0.50 (0.20)  
x 45°  
0.25 (0.01)  
4.00 (0.157)  
3.80 (0.150)  
8°  
0°  
1
2
3
0.25 (0.010)  
0.19 (0.008)  
SIDE VIEW “B”  
TOP VIEW  
2.20 (0.087)  
1
8
SEATING PLANE  
0.60 (0.023)  
1.27 (0.050)  
1.75 (0.069)  
5.00 (0.197)  
4.80 (0.189)  
2
3
7
6
1.35 (0.053)  
-C-  
4
5
0.25(0.010)  
0.10(0.004)  
1.27 (0.050)  
0.51(0.020)  
0.33(0.013)  
5.20(0.205)  
SIDE VIEW “A  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
19. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
20. Package length does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
21. Package width does not include interlead flash or protrusions. Interlead  
flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.  
22. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
23. Terminal numbers are shown for reference only.  
24. The lead width as measured 0.36mm (0.014 inch) or greater above the  
seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).  
25. Controlling dimension: MILLIMETER. Converted inch dimensions are not  
necessarily exact.  
26. This outline conforms to JEDEC publication MS-012-AA ISSUE C.  
FN7785 Rev.4.00  
Feb 15, 2019  
Page 17 of 18  
1RWLFH  
ꢃꢅ 'HVFULSWLRQVꢀRIꢀFLUFXLWVꢆꢀVRIWZDUHꢀDQGꢀRWKHUꢀUHODWHGꢀLQIRUPDWLRQꢀLQꢀWKLVꢀGRFXPHQWꢀDUHꢀSURYLGHGꢀRQO\ꢀWRꢀLOOXVWUDWHꢀWKHꢀRSHUDWLRQꢀRIꢀVHPLFRQGXFWRUꢀSURGXFWVꢀ  
DQGꢀDSSOLFDWLRQꢀH[DPSOHVꢅꢀ<RXꢀDUHꢀIXOO\ꢀUHVSRQVLEOHꢀIRUꢀWKHꢀLQFRUSRUDWLRQꢀRUꢀDQ\ꢀRWKHUꢀXVHꢀRIꢀWKHꢀFLUFXLWVꢆꢀVRIWZDUHꢆꢀDQGꢀLQIRUPDWLRQꢀLQꢀWKHꢀGHVLJQꢀRIꢀ\RXUꢀ  
SURGXFWꢀRUꢀV\VWHPꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀDQGꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ  
WKHVHꢀFLUFXLWVꢆꢀVRIWZDUHꢆꢀRUꢀLQIRUPDWLRQꢅ  
ꢁꢅ 5HQHVDVꢀ(OHFWURQLFVꢀKHUHE\ꢀH[SUHVVO\ꢀGLVFODLPVꢀDQ\ꢀZDUUDQWLHVꢀDJDLQVWꢀDQGꢀOLDELOLW\ꢀIRUꢀLQIULQJHPHQWꢀRUꢀDQ\ꢀRWKHUꢀFODLPVꢀLQYROYLQJꢀSDWHQWVꢆꢀFRS\ULJKWVꢆꢀRUꢀ  
RWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀWKLUGꢀSDUWLHVꢆꢀE\ꢀRUꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRUꢀWHFKQLFDOꢀLQIRUPDWLRQꢀGHVFULEHGꢀLQꢀWKLVꢀ  
GRFXPHQWꢆꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢆꢀWKHꢀSURGXFWꢀGDWDꢆꢀGUDZLQJVꢆꢀFKDUWVꢆꢀSURJUDPVꢆꢀDOJRULWKPVꢆꢀDQGꢀDSSOLFDWLRQꢀH[DPSOHVꢅꢀ  
ꢇꢅ 1RꢀOLFHQVHꢆꢀH[SUHVVꢆꢀLPSOLHGꢀRUꢀRWKHUZLVHꢆꢀLVꢀJUDQWHGꢀKHUHE\ꢀXQGHUꢀDQ\ꢀSDWHQWVꢆꢀFRS\ULJKWVꢀRUꢀRWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀRUꢀ  
RWKHUVꢅ  
ꢈꢅ <RXꢀVKDOOꢀQRWꢀDOWHUꢆꢀPRGLI\ꢆꢀFRS\ꢆꢀRUꢀUHYHUVHꢀHQJLQHHUꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢆꢀZKHWKHUꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀ  
DQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀRUꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀVXFKꢀDOWHUDWLRQꢆꢀPRGLILFDWLRQꢆꢀFRS\LQJꢀRUꢀUHYHUVHꢀHQJLQHHULQJꢅ  
ꢉꢅ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀFODVVLILHGꢀDFFRUGLQJꢀWRꢀWKHꢀIROORZLQJꢀWZRꢀTXDOLW\ꢀJUDGHVꢊꢀꢋ6WDQGDUGꢋꢀDQGꢀꢋ+LJKꢀ4XDOLW\ꢋꢅꢀ7KHꢀLQWHQGHGꢀDSSOLFDWLRQVꢀIRUꢀ  
HDFKꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀGHSHQGVꢀRQꢀWKHꢀSURGXFWꢌVꢀTXDOLW\ꢀJUDGHꢆꢀDVꢀLQGLFDWHGꢀEHORZꢅ  
ꢋ6WDQGDUGꢋꢊ  
&RPSXWHUVꢍꢀRIILFHꢀHTXLSPHQWꢍꢀFRPPXQLFDWLRQVꢀHTXLSPHQWꢍꢀWHVWꢀDQGꢀPHDVXUHPHQWꢀHTXLSPHQWꢍꢀDXGLRꢀDQGꢀYLVXDOꢀHTXLSPHQWꢍꢀKRPHꢀ  
HOHFWURQLFꢀDSSOLDQFHVꢍꢀPDFKLQHꢀWRROVꢍꢀSHUVRQDOꢀHOHFWURQLFꢀHTXLSPHQWꢍꢀLQGXVWULDOꢀURERWVꢍꢀHWFꢅ  
ꢋ+LJKꢀ4XDOLW\ꢋꢊ 7UDQVSRUWDWLRQꢀHTXLSPHQWꢀꢎDXWRPRELOHVꢆꢀWUDLQVꢆꢀVKLSVꢆꢀHWFꢅꢏꢍꢀWUDIILFꢀFRQWUROꢀꢎWUDIILFꢀOLJKWVꢏꢍꢀODUJHꢐVFDOHꢀFRPPXQLFDWLRQꢀHTXLSPHQWꢍꢀNH\ꢀ  
ILQDQFLDOꢀWHUPLQDOꢀV\VWHPVꢍꢀVDIHW\ꢀFRQWUROꢀHTXLSPHQWꢍꢀHWFꢅ  
8QOHVVꢀH[SUHVVO\ꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀSURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGRFXPHQWꢆꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀQRWꢀLQWHQGHGꢀRUꢀDXWKRUL]HGꢀIRUꢀXVHꢀLQꢀSURGXFWVꢀRUꢀV\VWHPVꢀWKDWꢀPD\ꢀSRVHꢀDꢀGLUHFWꢀWKUHDWꢀWRꢀ  
KXPDQꢀOLIHꢀRUꢀERGLO\ꢀLQMXU\ꢀꢎDUWLILFLDOꢀOLIHꢀVXSSRUWꢀGHYLFHVꢀRUꢀV\VWHPVꢍꢀVXUJLFDOꢀLPSODQWDWLRQVꢍꢀHWFꢅꢏꢆꢀRUꢀPD\ꢀFDXVHꢀVHULRXVꢀSURSHUW\ꢀGDPDJHꢀꢎVSDFHꢀV\VWHPꢍꢀ  
XQGHUVHDꢀUHSHDWHUVꢍꢀQXFOHDUꢀSRZHUꢀFRQWUROꢀV\VWHPVꢍꢀDLUFUDIWꢀFRQWUROꢀV\VWHPVꢍꢀNH\ꢀSODQWꢀV\VWHPVꢍꢀPLOLWDU\ꢀHTXLSPHQWꢍꢀHWFꢅꢏꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀ  
DQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀGDPDJHVꢀRUꢀORVVHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀDQ\ꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀWKDWꢀLVꢀ  
LQFRQVLVWHQWꢀZLWKꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢆꢀXVHUꢌVꢀPDQXDOꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢅ  
ꢑꢅ :KHQꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀUHIHUꢀWRꢀWKHꢀODWHVWꢀSURGXFWꢀLQIRUPDWLRQꢀꢎGDWDꢀVKHHWVꢆꢀXVHUꢌVꢀPDQXDOVꢆꢀDSSOLFDWLRQꢀQRWHVꢆꢀꢋ*HQHUDOꢀ1RWHVꢀIRUꢀ  
+DQGOLQJꢀDQGꢀ8VLQJꢀ6HPLFRQGXFWRUꢀ'HYLFHVꢋꢀLQꢀWKHꢀUHOLDELOLW\ꢀKDQGERRNꢆꢀHWFꢅꢏꢆꢀDQGꢀHQVXUHꢀWKDWꢀXVDJHꢀFRQGLWLRQVꢀDUHꢀZLWKLQꢀWKHꢀUDQJHVꢀVSHFLILHGꢀE\ꢀ  
5HQHVDVꢀ(OHFWURQLFVꢀZLWKꢀUHVSHFWꢀWRꢀPD[LPXPꢀUDWLQJVꢆꢀRSHUDWLQJꢀSRZHUꢀVXSSO\ꢀYROWDJHꢀUDQJHꢆꢀKHDWꢀGLVVLSDWLRQꢀFKDUDFWHULVWLFVꢆꢀLQVWDOODWLRQꢆꢀHWFꢅꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀPDOIXQFWLRQVꢆꢀIDLOXUHꢀRUꢀDFFLGHQWꢀDULVLQJꢀRXWꢀRIꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRXWVLGHꢀRIꢀVXFKꢀ  
VSHFLILHGꢀUDQJHVꢅ  
ꢒꢅ $OWKRXJKꢀ5HQHVDVꢀ(OHFWURQLFVꢀHQGHDYRUVꢀWRꢀLPSURYHꢀWKHꢀTXDOLW\ꢀDQGꢀUHOLDELOLW\ꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀVHPLFRQGXFWRUꢀSURGXFWVꢀKDYHꢀVSHFLILFꢀ  
FKDUDFWHULVWLFVꢆꢀVXFKꢀDVꢀWKHꢀRFFXUUHQFHꢀRIꢀIDLOXUHꢀDWꢀDꢀFHUWDLQꢀUDWHꢀDQGꢀPDOIXQFWLRQVꢀXQGHUꢀFHUWDLQꢀXVHꢀFRQGLWLRQVꢅꢀ8QOHVVꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀ  
SURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢆꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀ  
DUHꢀQRWꢀVXEMHFWꢀWRꢀUDGLDWLRQꢀUHVLVWDQFHꢀGHVLJQꢅꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀLPSOHPHQWLQJꢀVDIHW\ꢀPHDVXUHVꢀWRꢀJXDUGꢀDJDLQVWꢀWKHꢀSRVVLELOLW\ꢀRIꢀERGLO\ꢀLQMXU\ꢆꢀ  
LQMXU\ꢀRUꢀGDPDJHꢀFDXVHGꢀE\ꢀILUHꢆꢀDQGꢓRUꢀGDQJHUꢀWRꢀWKHꢀSXEOLFꢀLQꢀWKHꢀHYHQWꢀRIꢀDꢀIDLOXUHꢀRUꢀPDOIXQFWLRQꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀVXFKꢀDVꢀVDIHW\ꢀ  
GHVLJQꢀIRUꢀKDUGZDUHꢀDQGꢀVRIWZDUHꢆꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢀUHGXQGDQF\ꢆꢀILUHꢀFRQWUROꢀDQGꢀPDOIXQFWLRQꢀSUHYHQWLRQꢆꢀDSSURSULDWHꢀWUHDWPHQWꢀIRUꢀDJLQJꢀ  
GHJUDGDWLRQꢀRUꢀDQ\ꢀRWKHUꢀDSSURSULDWHꢀPHDVXUHVꢅꢀ%HFDXVHꢀWKHꢀHYDOXDWLRQꢀRIꢀPLFURFRPSXWHUꢀVRIWZDUHꢀDORQHꢀLVꢀYHU\ꢀGLIILFXOWꢀDQGꢀLPSUDFWLFDOꢆꢀ\RXꢀDUHꢀ  
UHVSRQVLEOHꢀIRUꢀHYDOXDWLQJꢀWKHꢀVDIHW\ꢀRIꢀWKHꢀILQDOꢀSURGXFWVꢀRUꢀV\VWHPVꢀPDQXIDFWXUHGꢀE\ꢀ\RXꢅ  
ꢔꢅ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀIRUꢀGHWDLOVꢀDVꢀWRꢀHQYLURQPHQWDOꢀPDWWHUVꢀVXFKꢀDVꢀWKHꢀHQYLURQPHQWDOꢀFRPSDWLELOLW\ꢀRIꢀHDFKꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWꢅꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀFDUHIXOO\ꢀDQGꢀVXIILFLHQWO\ꢀLQYHVWLJDWLQJꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢀWKDWꢀUHJXODWHꢀWKHꢀLQFOXVLRQꢀRUꢀXVHꢀRIꢀ  
FRQWUROOHGꢀVXEVWDQFHVꢆꢀLQFOXGLQJꢀZLWKRXWꢀOLPLWDWLRQꢆꢀWKHꢀ(8ꢀ5R+6ꢀ'LUHFWLYHꢆꢀDQGꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀLQꢀFRPSOLDQFHꢀZLWKꢀDOOꢀWKHVHꢀ  
DSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀGDPDJHVꢀRUꢀORVVHVꢀRFFXUULQJꢀDVꢀDꢀUHVXOWꢀRIꢀ\RXUꢀQRQFRPSOLDQFHꢀ  
ZLWKꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢅ  
ꢄꢅ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDQGꢀWHFKQRORJLHVꢀVKDOOꢀQRWꢀEHꢀXVHGꢀIRUꢀRUꢀLQFRUSRUDWHGꢀLQWRꢀDQ\ꢀSURGXFWVꢀRUꢀV\VWHPVꢀZKRVHꢀPDQXIDFWXUHꢆꢀXVHꢆꢀRUꢀVDOHꢀLVꢀ  
SURKLELWHGꢀXQGHUꢀDQ\ꢀDSSOLFDEOHꢀGRPHVWLFꢀRUꢀIRUHLJQꢀODZVꢀRUꢀUHJXODWLRQVꢅꢀ<RXꢀVKDOOꢀFRPSO\ꢀZLWKꢀDQ\ꢀDSSOLFDEOHꢀH[SRUWꢀFRQWUROꢀODZVꢀDQGꢀUHJXODWLRQVꢀ  
SURPXOJDWHGꢀDQGꢀDGPLQLVWHUHGꢀE\ꢀWKHꢀJRYHUQPHQWVꢀRIꢀDQ\ꢀFRXQWULHVꢀDVVHUWLQJꢀMXULVGLFWLRQꢀRYHUꢀWKHꢀSDUWLHVꢀRUꢀWUDQVDFWLRQVꢅ  
ꢃꢂꢅ ,WꢀLVꢀWKHꢀUHVSRQVLELOLW\ꢀRIꢀWKHꢀEX\HUꢀRUꢀGLVWULEXWRUꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀRUꢀDQ\ꢀRWKHUꢀSDUW\ꢀZKRꢀGLVWULEXWHVꢆꢀGLVSRVHVꢀRIꢆꢀRUꢀRWKHUZLVHꢀVHOOVꢀRUꢀ  
WUDQVIHUVꢀWKHꢀSURGXFWꢀWRꢀDꢀWKLUGꢀSDUW\ꢆꢀWRꢀQRWLI\ꢀVXFKꢀWKLUGꢀSDUW\ꢀLQꢀDGYDQFHꢀRIꢀWKHꢀFRQWHQWVꢀDQGꢀFRQGLWLRQVꢀVHWꢀIRUWKꢀLQꢀWKLVꢀGRFXPHQWꢅ  
ꢃꢃꢅ 7KLVꢀGRFXPHQWꢀVKDOOꢀQRWꢀEHꢀUHSULQWHGꢆꢀUHSURGXFHGꢀRUꢀGXSOLFDWHGꢀLQꢀDQ\ꢀIRUPꢆꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢆꢀZLWKRXWꢀSULRUꢀZULWWHQꢀFRQVHQWꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢅ  
ꢃꢁꢅ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀLIꢀ\RXꢀKDYHꢀDQ\ꢀTXHVWLRQVꢀUHJDUGLQJꢀWKHꢀLQIRUPDWLRQꢀFRQWDLQHGꢀLQꢀWKLVꢀGRFXPHQWꢀRUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWVꢅ  
ꢎ1RWHꢃꢏ ꢋ5HQHVDVꢀ(OHFWURQLFVꢋꢀDVꢀXVHGꢀLQꢀWKLVꢀGRFXPHQWꢀPHDQVꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢀDQGꢀDOVRꢀLQFOXGHVꢀLWVꢀGLUHFWO\ꢀRUꢀLQGLUHFWO\ꢀFRQWUROOHGꢀ  
VXEVLGLDULHVꢅ  
ꢎ1RWHꢁꢏ ꢋ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢎVꢏꢋꢀPHDQVꢀDQ\ꢀSURGXFWꢀGHYHORSHGꢀRUꢀPDQXIDFWXUHGꢀE\ꢀRUꢀIRUꢀ5HQHVDVꢀ(OHFWURQLFVꢅ  
ꢎ5HYꢅꢈꢅꢂꢐꢃꢀꢀ1RYHPEHUꢀꢁꢂꢃꢒꢏ  
Corporate Headquarters  
ContactInformation
TOYOSU FORESIA, 3-2-24 Toyosu,  
For further information on a product, technology, the most up-to-date  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
version of a document, or your nearest sales office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas Electronics  
Corporation. All trademarks and registered trademarks are the property  
of their respective owners.  
‹ꢀꢁꢂꢃꢄꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢅꢀ$OOꢀULJKWVꢀUHVHUYHGꢅ  

相关型号:

ISL32485E

Fault Protected, Extended CMR, RS-485/RS-422 Transceivers
INTERSIL

ISL32485EIBZ

Fault Protected, Extended CMR, RS-485/RS-422 Transceivers
INTERSIL

ISL32485EIBZ

Fault Protected, Extended CMR, RS-485/RS-422 Transceivers with Cable Invert and ±16.5kV ESD; SOIC8; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL32485EIBZ-T13

LINE TRANSCEIVER
RENESAS

ISL3248X

Providing high-performance solutions for every link in the signal chain
INTERSIL

ISL32490E

±60V Fault Protected, 5V, RS-485/RS-422 Transceivers with ±25V CMR
INTERSIL

ISL32490E-98E

Add a Loss of Signal (LOS) Indicator to Your RS-485 or RS-422 Transceiver
INTERSIL

ISL32490EIBZ

±60V Fault Protected, 5V, RS-485/RS-422 Transceivers with ±25V CMR
INTERSIL

ISL32490EIUZ

±60V Fault Protected, 5V, RS-485/RS-422 Transceivers with ±25V CMR and ESD Protection
INTERSIL

ISL32492E

±60V Fault Protected, 5V, RS-485/RS-422 Transceivers with ±25V CMR
INTERSIL

ISL32492EIBZ

±60V Fault Protected, 5V, RS-485/RS-422 Transceivers with ±25V CMR
INTERSIL

ISL32492EIBZ-T

±60V Fault Protected, 5V, RS-485/RS-422 Transceivers with ±25V CMR and ESD Protection; MSOP8, SOIC8; Temp Range: -40&deg; to 85&deg;C
RENESAS