ISL267450AIUZ-T [RENESAS]

12-Bit 1MSPS SAR ADCs; MSOP8, SOT8; Temp Range: -40° to 85°C;
ISL267450AIUZ-T
型号: ISL267450AIUZ-T
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

12-Bit 1MSPS SAR ADCs; MSOP8, SOT8; Temp Range: -40° to 85°C

光电二极管 转换器
文件: 总18页 (文件大小:1154K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL267440, ISL267450A  
10-Bit and 12-Bit, 1MSPS SAR ADCs  
FN7708  
Rev.2.00  
June 28, 2012  
The ISL267440 and ISL267450A are 10-bit and 12-bit, 1MSPS  
sampling SAR-type ADCs featuring excellent linearity over  
supply and temperature variations. These devices are drop-in  
compatible with the AD7440 and AD7450A. The robust,  
fully-differential input offers high impedance to minimize  
errors due to leakage currents, and the specified  
measurement accuracy is maintained with input signals up to  
the supply rails.  
Features  
• Drop-in Compatible with AD7440, AD7450A  
• Differential Input  
• Simple SPI-compatible Serial Digital Interface  
• Guaranteed No Missing Codes  
• 1MHz Sampling Rate  
The reference accepts inputs from 0.1V to 2.2V for 3V  
operation and 0.1V to 3.5V for 5V operation. This provides  
design flexibility in a wide variety of applications. The  
ISL267440, ISL267450A also feature up to 8kV Human Body  
Model ESD survivability.  
• 3V or 5V Operation  
• Low Operating Current  
- 1.25mA at 1MSPS with 3V Supplies  
- 1.70mA at 1MSPS with 5V Supplies  
• Power-down Current between Conversions: 1µA  
• Excellent Differential Non-Linearity  
• Low THD: -83dB (typ)  
The serial digital interface is SPI compatible and is easily  
interfaced to popular FPGAs and microcontrollers. Power  
dissipation is 8.5mW at a sampling rate of 1MSPS, and just  
5µW between conversions utilizing Auto Power-Down mode  
(with a 5V supply). The ISL267440, ISL267450A are excellent  
solutions for remote industrial sensors and battery-powered  
instruments.  
• Pb-Free (RoHS Compliant)  
• Available in MSOP Package  
Applications  
• Remote Data Acquisition  
• Battery Operated Systems  
• Industrial Process Control  
• Energy Measurement  
• Data Acquisition Systems  
• Pressure Sensors  
The ISL267440, ISL267450A are available in an 8 lead MSOP  
package, and are specified for operation over the Industrial  
temperature range (–40°C to +85°C).  
• Flow Controllers  
1.0  
0.8  
0.6  
0.4  
VREF  
VDD  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
VIN+  
SCLK  
SDATA  
CS  
SAR  
LOGIC  
SERIAL  
INTERFACE  
VIN  
VREF  
0
1024  
2048  
3072  
4096  
GND  
CODE  
FIGURE 1. BLOCK DIAGRAM  
FIGURE 2. DIFFERENTIAL LINEARITY ERROR vs CODE  
FN7708 Rev.2.00  
June 28, 2012  
Page 1 of 18  
ISL267440, ISL267450A  
Typical Connection Diagram  
0.1µF  
+3V/5V  
SUPPLY  
VREF  
10µF  
0.1µF  
+
VREF  
VDD  
SCLK  
SDATA  
CS  
VIN+  
VIN–  
REFP-P  
REFP-P  
µP/µC  
GND  
SERIAL  
INTERFACE  
Pin Configuration  
ISL267440, ISL267450A  
(8 LD MSOP)  
TOP VIEW  
1
2
3
4
8
7
6
5
VDD  
VREF  
VIN+  
VIN  
GND  
SCLK  
SDATA  
CS  
Pin Descriptions  
ISL267440, ISL267450A  
PIN NAME PIN NUMBER  
DESCRIPTION  
VDD  
SCLK  
SDATA  
CS  
8
7
6
5
4
3
2
1
Supply voltage, +2.7V to 5.25V.  
Serial clock input. Controls digital I/O timing and clocks the conversion.  
Digital conversion output.  
Chip select input. Generally controls the start of a conversion though not always the sampling signal.  
GND  
VIN–  
VIN+  
VREF  
Ground  
Negative analog input.  
Positive analog input.  
Reference voltage.  
FN7708 Rev.2.00  
June 28, 2012  
Page 2 of 18  
ISL267440, ISL267450A  
Ordering Information  
PART NUMBER  
PART  
MARKING  
V
RANGE  
(V)  
TEMP RANGE  
(°C)  
PACKAGE  
PKG.  
DWG. #  
DD  
(Note 4)  
ISL267440IUZ (Note 3)  
67440  
67440  
2.7 to 5.25  
2.7 to 5.25  
2.7 to 5.25  
2.7 to 5.25  
2.7 to 5.25  
2.7 to 5.25  
2.7 to 5.25  
2.7 to 5.25  
2.7 to 5.25  
2.7 to 5.25  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
8 Ld MSOP  
M8.118  
ISL267440IUZ-T (Notes 1, 3)  
ISL267440IUZ-T7A (Notes 1, 3)  
ISL267450AIUZ (Note 3)  
8 Ld MSOP  
8 Ld MSOP  
8 Ld MSOP  
8 Ld MSOP  
8 Ld MSOP  
8 Ld SOT-23  
8 Ld SOT-23  
8 Ld SOT-23  
8 Ld SOT-23  
M8.118  
M8.118  
M8.118  
M8.118  
M8.118  
P8.064  
P8.064  
P8.064  
P8.064  
67440  
7450A  
ISL267450AIUZ -T (Notes 1, 3)  
ISL267450AIUZ -T7A (Notes 1, 3)  
ISL267440IHZ-T (Notes 1, 2)  
ISL267440IHZ-T7A (Notes 1, 2)  
ISL267450AIHZ-T (Notes 1, 2)  
ISL267450AIHZ-T7A (Notes 1, 2)  
NOTES:  
7450A  
7450A  
7440 (Note 5)  
7440 (Note 5)  
450A (Note 5)  
450A (Note 5)  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and NiPdAu plate  
-e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
4. For Moisture Sensitivity Level (MSL), please see device information page for ISL267440 or ISL267450A. For more information on MSL please see  
techbrief TB363.  
5. The part marking is located on the bottom of the part.  
FN7708 Rev.2.00  
June 28, 2012  
Page 3 of 18  
ISL267440, ISL267450A  
Table of Contents  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
ADC Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Voltage Reference Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Converter Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Acquisition Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Short Cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power vs Throughput Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Serial Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Signal-to-(Noise + Distortion) Ratio (SINAD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Total Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Peak Harmonic or Spurious Noise (SFDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Intermodulation Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Aperture Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Aperture Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Full Power Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Common-Mode Rejection Ratio (CMRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Integral Nonlinearity (INL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Differential Nonlinearity (DNL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Zero-Code Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Positive Gain Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Negative Gain Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Track and Hold Acquisition Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Power Supply Rejection Ratio (PSRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Application Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Grounding and Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
M8.118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
P8.064 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
FN7708 Rev.2.00  
June 28, 2012  
Page 4 of 18  
ISL267440, ISL267450A  
Absolute Maximum Ratings  
Thermal Information  
Any Pin to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.0V  
Thermal Resistance (Typical)  
8 Ld MSOP Package (Notes 6, 7). . . . . . . . .  
8 Ld SOT-23 Package (Notes 6, 7). . . . . . . .  
JA (°C/W)  
165  
JC (°C/W)  
Analog Input to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to V +0.3V  
64  
99  
DD  
Digital I/O to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to V +0.3V  
DD  
135  
Digital Input Voltage to GND . . . . . . . . . . . . . . . . . . . . . . . -0.3V to V +0.3V  
Maximum Current In to Any Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA  
ESD Rating  
Human Body Model (Tested per JESD22-A114F) . . . . . . . . . . . . . . . . 8kV  
Machine Model (Tested per JESD22-A115B) . . . . . . . . . . . . . . . . . 400V  
Charged Device Model (Tested per JESD22-C101E). . . . . . . . . . . . 1.5kV  
Latch Up (Tested per JESD78C; Class 2, Level A) . . . . . . . . . . . . . . . 100mA  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
DD  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
6. is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
7. For , the “case temp” location is taken at the package top center.  
JC  
Electrical Specifications V = +3.0V to +3.6V, f  
= 18MHz, f = 1MSPS, V  
= 2.0V; V = +4.75V to +5.25V, f  
DD  
= 18MHz,  
SCLK  
DD  
SCLK  
S
REF  
f
= 1MSPS, V  
= 2.5V; V = V , unless otherwise noted. Typical values are at T = +25°C. Boldface limits apply over the operating temperature  
S
REF  
CM REF  
A
range, -40°C to +85°C.  
ISL267440  
TYP  
ISL267450A  
TYP  
MIN  
(Note 8)  
MAX  
(Note 8) (Note 8)  
MIN  
MAX  
(Note 8) UNITS  
SYMBOL  
DYNAMIC PERFORMANCE  
SINAD Signal-to (Noise + Distortion) Ratio f = 100kHz  
PARAMETER  
TEST CONDITIONS  
61.0  
60.7  
61.6  
61.5  
-82  
70.0  
71.4  
70.5  
-84  
dB  
dB  
IN  
V
= +4.75V to +5.25V  
DD  
f
= 100kHz  
68.5  
IN  
V
= +3.0V to +3.6V  
DD  
THD  
Total Harmonic  
Distortion  
f
V
= 100kHz  
-74  
-72  
-76  
-74  
-76  
-74  
-76  
-74  
dB  
dB  
dB  
dB  
dB  
IN  
= +4.75V to +5.25V  
DD  
f
= 100kHz  
-80  
-84  
IN  
V
= +3.0V to +3.6V  
DD  
SFDR Spurious Free Dynamic Range  
f
= 100kHz  
-82  
-87  
IN  
V
= +4.75V to +5.25V  
DD  
f
= 100kHz  
-82  
-85  
IN  
V
= +3.0V to +3.6V  
DD  
IMD  
Intermodulation Distortion  
2nd and 3rd order, f = 90kHz,  
IN  
-92  
-95  
110kHz  
tpd  
Aperture Delay  
1
1
ns  
ps  
tpd  
3dB  
Aperture Jitter  
15  
15  
15  
15  
Full Power Bandwidth  
@ –3dB  
MHz  
DC ACCURACY  
N
Resolution  
10  
12  
Bits  
LSB  
INL  
DNL  
Integral Nonlinearity  
-0.5  
-0.5  
±0.1  
±0.1  
0.5  
0.5  
-1  
±0.4  
±0.3  
1
Differential Nonlinearity  
Guaranteed no missed codes to 12-  
bits (ISL267450A) or 10 bits  
(ISL267440)  
-0.95  
0.95 LSB  
OFFSET Zero-Code Error  
Zero Volt Differential Input  
-2.5  
-1  
±0.2  
±0.1  
±0.1  
2.5  
1
-6  
-2  
-2  
±0.2  
±0.1  
±0.1  
6
2
2
LSB  
LSB  
LSB  
Positive Gain Error  
GAIN  
± REF input range  
Negative Gain Error  
-1  
1
ANALOG INPUT (Note 9)  
|AIN| Full-Scale Input Span  
2 x V  
REF  
VIN+ - VIN–  
VIN+ - VIN–  
V
FN7708 Rev.2.00  
June 28, 2012  
Page 5 of 18  
ISL267440, ISL267450A  
Electrical Specifications V = +3.0V to +3.6V, f  
= 18MHz, f = 1MSPS, V  
= 2.0V; V = +4.75V to +5.25V, f  
DD  
= 18MHz,  
SCLK  
DD  
SCLK  
S
REF  
f
= 1MSPS, V  
= 2.5V; V = V , unless otherwise noted. Typical values are at T = +25°C. Boldface limits apply over the operating temperature  
S
REF CM REF A  
range, -40°C to +85°C. (Continued)  
ISL267440  
TYP  
ISL267450A  
TYP  
MIN  
(Note 8)  
MAX  
(Note 8) (Note 8)  
MIN  
MAX  
(Note 8) UNITS  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
Absolute Input Voltage Range  
VIN+, VIN– VIN+  
VIN–  
V
= V  
REF  
V
±V /2  
V
±V /2  
V
V
CM  
CM REF  
CM REF  
V
±V /2  
V
±V /2  
CM REF  
CM REF  
I
Input DC Leakage Current  
Input Capacitance  
-1  
1
-1  
1
µA  
pF  
LEAK  
C
Track/Hold mode  
13/5  
13/5  
VIN  
REFERENCE INPUT  
Input Voltage Range  
V
V
V
= 3V (1% tolerance for specified  
2.0  
2.5  
2.0  
2.5  
V
V
REF  
REF  
DD  
performance)  
V
= 5V (1% tolerance for specified  
DD  
performance)  
I
DC Leakage Current  
-1  
1
-1  
1
µA  
pF  
LEAK  
C
REF Input Capacitance  
Track/Hold mode  
21/18.5  
21/18.5  
REF  
LOGIC INPUTS  
V
Input High Voltage  
Input Low Voltage  
Input Leakage Current  
Input Capacitance  
2.4  
-1  
2.4  
-1  
V
V
IH  
V
0.8  
1
0.8  
1
IL  
I
µA  
pF  
LEAK  
C
10  
10  
IN  
LOGIC OUTPUTS  
V
Output High Voltage  
I
= 200µA  
V
- 0.3  
V - 0.3  
DD  
V
V
OH  
SOURCE  
= 200µA  
SINK  
DD  
V
Output Low Voltage  
I
0.4  
1
0.4  
1
OL  
I
Floating-State Output Current  
Floating-State Output Capacitance  
Output Coding  
-1  
-1  
µA  
pF  
OZ  
C
10  
10  
OUT  
Two’s Complement  
CONVERSION RATE  
t
Conversion Time  
Acquisition Time  
Throughput Rate  
f
= 18MHz  
888  
200  
888  
200  
ns  
ns  
CONV  
SCLK  
t
ACQ  
f
1000  
1000 kSPS  
max  
POWER REQUIREMENTS  
V
Positive Supply Voltage Range  
2.7  
3.6  
2.7  
3.6  
V
V
DD  
4.75  
5.25  
4.75  
5.25  
I
Positive Supply Input Current  
DD  
Static  
1
1
µA  
µA  
µA  
Dynamic  
3V  
5V  
1250  
1700  
1250  
1700  
Power Dissipation  
Static Mode  
V
V
V
V
= 3V  
3
3
5
µW  
µW  
DD  
DD  
DD  
DD  
= 5V  
5
Dynamic  
= 3V, f  
= 5V, f  
= 1MSPS  
= 1MSPS  
3.75  
8.50  
3.75 mW  
8.50 mW  
smpl  
smpl  
NOTES:  
8. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
9. The absolute voltage applied to each analog input must be between GND and V to guarantee datasheet performance.  
DD  
FN7708 Rev.2.00  
June 28, 2012  
Page 6 of 18  
ISL267440, ISL267450A  
Timing Specifications Limits established by characterization and are not production tested. V = 3.0V to 3.6V, f  
= 18MHz,  
SCLK  
DD  
f
= 1MSPS, V  
REF  
= 2.0V; V = 4.75V to 5.25V, f  
= 18MHz, f = 1MSPS, V  
REF  
= 2.5V; V = V unless otherwise noted. Boldface limits apply over  
S
DD  
SCLK  
S
CM REF  
the operating temperature range, -40°C to +85°C.  
MIN  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 8)  
TYP  
(Note 8)  
UNITS  
MHz  
ns  
f
t
Clock Frequency  
Clock Period  
0.01  
55  
18  
SCLK  
SCLK  
t
Acquisition Time (Note 10)  
Conversion Time  
ns  
ACQ  
t
888  
ns  
CONV  
t
CS Pulse Width  
10  
10  
ns  
CSW  
t
CS Falling Edge to S  
CLK  
Falling Edge Setup Time  
ns  
CSS  
t
CS Falling Edge to SDATA Valid  
SCLK Falling Edge to SDATA Valid  
SCLK Falling Edge to SDATA Hold  
SCLK Pulse Width  
20  
40  
ns  
CDV  
t
ns  
CLKDV  
t
10  
ns  
SDH  
t
0.4 x t  
SCLK  
0.6 x t  
SCLK  
ns  
SW  
DISABLE  
t
SCLK Falling Edge to SDATA Disable Time  
(Note 11)  
Extrapolated back to true bus relinquish  
10  
35  
ns  
t
Quiet Time Before Sample  
60  
ns  
QUIET  
NOTE:  
10. Read the “Acquisition Time” section on page 13 for a discussion of this parameter.  
11. During characterization, t is measured from the release point with a 10pF load (see Figure 4) and the equivalent timing using the  
DISABLE  
AD7440/450A loading (25pF) is calculated.  
FIGURE 3. SERIAL INTERFACE TIMING DIAGRAM  
VDD  
RL  
2.85k  
OUTPUT  
PIN  
CL  
10pF  
FIGURE 4. EQUIVALENT LOAD CIRCUIT  
FN7708 Rev.2.00  
June 28, 2012  
Page 7 of 18  
ISL267440, ISL267450A  
Typical Performance Characteristics  
75  
0
-20  
8192-POINT FFT  
5.25V  
f
f
= 1MSPS  
SAMPLE  
= 95.2kHz  
IN  
SINAD = 72.0dB  
THD = -91dB  
SFDR = 93dB  
70  
-40  
4.75V  
3.6V  
2.7V  
-60  
65  
-80  
-100  
-120  
-140  
60  
55  
10  
100  
1k  
0
100  
200  
300  
400  
500  
INPUT FREQUENCY (kHz)  
FREQUENCY (kHz)  
FIGURE 5. ISL267450A SINAD vs ANALOG INPUT FREQUENCY FOR  
VARIOUS SUPPLY VOLTAGES  
FIGURE 6. ISL267450A DYNAMIC PERFORMANCE WITH V = 5V  
DD  
1.0  
0.8  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0.6  
0.4  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
10k  
100k  
FREQUENCY (Hz)  
1k  
10k  
0
1024  
2048  
3072  
4096  
CODE  
FIGURE 7. CMRR vs FREQUENCY FOR V = 5V  
DD  
FIGURE 8. TYPICAL DNL FOR THE ISL267450A FOR V = 5V  
DD  
0
-20  
1.0  
0.8  
250mV  
SINE WAVE ON VDD  
P-P  
NO DECOUPLING ON VDD  
0.6  
0.4  
-40  
0.2  
-60  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-80  
-100  
-120  
0
100 200 300 400 500 600 700 800 900 1000  
FREQUENCY (kHz)  
0
1024  
2048  
3072  
4096  
CODE  
FIGURE 9. PSRR vs SUPPLY RIPPLE FREQUENCY WITHOUT SUPPLY  
DECOUPLING  
FIGURE 10. TYPICAL INL FOR THE ISL267450A FOR V = 5V  
DD  
FN7708 Rev.2.00  
June 28, 2012  
Page 8 of 18  
ISL267440, ISL267450A  
Typical Performance Characteristics (Continued)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
2.5  
2.0  
1.5  
Pos INL  
1.0  
0.5  
Pos DNL  
0.0  
Neg INL  
-0.5  
-1.0  
-1.5  
-2.0  
Neg DNL  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
(V)  
2.5  
3.0  
3.5  
V
V
(V)  
REF  
REF  
FIGURE 11. CHANGE IN DNL vs VREF FOR THE ISL267450A FOR  
FIGURE 12. CHANGE IN INL vs VREF FOR THE ISL267450A FOR  
= 3V  
V
= 5V  
V
DD  
DD  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
6
5
4
3
Pos DNL  
Neg DNL  
2
3V V  
DD  
DD  
1
0
5V V  
1.0  
-1  
-2  
0.0  
0.5  
1.5  
2.0  
(V)  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
V
(V)  
V
REF  
REF  
FIGURE 13. CHANGE IN DNL vs VREF FOR THE ISL267450A FOR  
= 3V  
FIGURE 14. CHANGE IN OFFSET ERROR vs REFERENCE VOLTAGE  
FOR V = 5V AND 3V FOR THE ISL267450A  
V
DD  
DD  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
5
4
3
5V V  
DD  
3V V  
DD  
2
Pos INL  
Neg INL  
1
0
9.0  
-1  
-2  
-3  
-4  
-5  
8.5  
8.0  
7.5  
7.0  
0.0  
0.5  
1.0  
1.5  
V
2.0  
(V)  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
V
2.0  
2.5  
3.0  
3.5  
(V)  
REF  
REF  
FIGURE 15. CHANGE IN INL vs VREF FOR THE ISL267450A FOR  
= 5V  
FIGURE 16. CHANGE IN ENOB vs REFERENCE VOLTAGE FOR  
= 5V AND 3V FOR THE ISL267450A  
V
V
DD  
DD  
FN7708 Rev.2.00  
June 28, 2012  
Page 9 of 18  
ISL267440, ISL267450A  
Typical Performance Characteristics (Continued)  
70k  
60k  
50k  
40k  
30k  
20k  
10k  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
65,516  
CODES  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
10  
CODES  
10  
CODES  
0
256  
512  
768  
1024  
2044  
2045  
2046  
2047  
2048  
2049  
2050  
CODE  
CODE  
FIGURE 17. HISTOGRAM OF 10,000 CONVERSIONS OF A DC INPUT  
FOR THE ISL267450A WITH V = 5V  
FIGURE 18. TYPICAL DNL FOR THE ISL267440 FOR V = 5V  
DD  
DD  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
-20  
8192-POINT FFT  
f
f
= 1MSPS  
SAMPLE  
= 95.2kHz  
IN  
SINAD = 61.6dB  
THD = -75dB  
SFDR = 81dB  
-40  
-60  
-80  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-100  
-120  
-140  
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
CODE  
FIGURE 19. ISL267440 DYNAMIC PERFORMANCE WITH V = 5V  
DD  
FIGURE 20. TYPICAL INL FOR THE ISL267440 FOR V = 5V  
DD  
FN7708 Rev.2.00  
June 28, 2012  
Page 10 of 18  
ISL267440, ISL267450A  
Functional Description  
1LSB = 2•VREF/4096  
011...111  
011...110  
The ISL267440, ISL267450A are based on a successive  
approximation register (SAR) architecture utilizing capacitive  
charge redistribution digital to analog converters (DACs).  
Figure 21 shows a simplified representation of the converter.  
During the acquisition phase (ACQ) the differential input is stored  
on the sampling capacitors (CS). The comparator is in a balanced  
state since the switch across its inputs is closed. The signal is  
000...001  
000...000  
111...111  
fully acquired after t  
has elapsed, and the switches then  
ACQ  
transition to the conversion phase (CONV) so the stored voltage  
may be converted to digital format. The comparator will become  
unbalanced when the differential switch opens and the input  
switches transition (assuming that the stored voltage is not  
exactly at mid-scale). The comparator output reflects whether the  
stored voltage is above or below mid-scale, which sets the value  
of the MSB. The SAR logic then forces the capacitive DACs to  
adjust up or down by one quarter of full-scale by switching in  
binarily weighted capacitors. Again, the comparator output  
reflects whether the stored voltage is above or below the new  
value, setting the value of the next lowest bit. This process  
repeats until all 12 bits have been resolved.  
100...010  
100...001  
100...000  
VREF  
+VREF +VREF  
1½LSB 1LSB  
0V  
+ ½LSB  
ANALOG INPUT  
VIN+ – (VIN–)  
FIGURE 22. IDEAL TRANSFER CHARACTERISTICS  
Analog Input  
The ISL267440, ISL267450A feature a fully differential input  
with a nominal full-scale range equal to twice the applied VREF  
voltage. Each input swings VREF V , 180° out of phase from  
P-P  
one another for a total differential input of 2*VREF (refer to  
Figure 23). Differential signaling offers several benefits over a  
single-ended input, such as:  
CONV  
CS  
• Doubling of the full-scale input range (and therefore the  
dynamic range)  
VIN+  
VIN–  
ACQ  
ACQ  
SAR  
LOGIC  
ACQ  
CS  
CONV  
• Improved even order harmonic distortion  
CONV  
• Better noise immunity due to common mode rejection  
VREF  
FIGURE 21. SAR ADC ARCHITECTURAL BLOCK DIAGRAM  
VREF P-P  
VIN+  
VIN–  
ISL267440,  
ISL267450A  
An external clock must be applied to the SCLOCK pin to generate  
a conversion result. The allowable frequency range for SCLOCK is  
10kHz to 18MHz (556SPS to 1MSPS). Serial output data is  
transmitted on the falling edge of SCLOCK. The receiving device  
(FPGA, DSP or Microcontroller) may latch the data on the rising  
edge of SCLOCK to maximize set-up and hold times.  
VCM  
VREF P-P  
FIGURE 23. DIFFERENTIAL INPUT SIGNALING  
Figure 24 shows the relationship between the reference voltage  
and the full-scale input range for two different values of VREF.  
A stable, low-noise reference voltage must be applied to the  
VREF pin to set the full-scale input range and common-mode  
voltage. See “Voltage Reference Input” on page 12 for more  
details.  
ADC Transfer Function  
The output coding for the ISL267440, ISL267450A is twos  
complement. The first code transition occurs at successive LSB  
values (i.e., 1 LSB, 2 LSB, and so on). The LSB size of the  
ISL267450A is 2*VREF/4096, while the LSB size of the  
ISL267440 is 2*VREF/1024. The ideal transfer characteristic of  
the ISL267440, ISL267450A is shown in Figure 22.  
FN7708 Rev.2.00  
June 28, 2012  
Page 11 of 18  
ISL267440, ISL267450A  
VCM  
V
2.5  
2.5  
2.0  
1.5  
1.0  
0.5  
5.0  
4.0  
VIN–  
VCM  
VIN+  
2.0V  
P-P  
2.0V  
1.0V  
3.0  
2.0  
1.0  
t
VREF=2V  
VREF  
V
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00  
FIGURE 26. RELATIONSHIP BETWEEN VREF AND VCM FOR V = 3V  
DD  
5.0  
VIN–  
VCM  
VIN+  
Voltage Reference Input  
4.0  
3.0  
2.0  
1.0  
2.5V  
P-P  
An external low-noise reference voltage must be applied to the  
VREF pin to set the full-scale input range of the converter. The  
reference input accepts voltages ranging from 0.1V to 2.2V for 3V  
operation and 0.1V to 3.5V for 5V operation. The device is  
specified with a reference voltage of 2.5V for 5V operation and  
2.0V for 3V operation.  
t
VREF=2.5V  
Figures 27 and 28 illustrate possible voltage reference options  
for the ISL267440/ISL26750A. Figure 27 uses the precision  
ISL21090 voltage reference which exhibits exceptionally low drift  
and low noise. The ISL21090 must use a power supply greater  
than 4.7V. The VREF input pin of the ISL267XX devices uses very  
low current, so the decoupling capacitor can be small (0.1µF).  
FIGURE 24. RELATIONSHIP BETWEEN VREF AND FULL-SCALE RANGE  
Note that there is a trade-off between VREF and the allowable  
common mode input voltage (VCM). The full-scale input range is  
proportional to VREF; therefore the VCM range must be limited  
for larger values of VREF in order to keep the absolute maximum  
Figure 28 illustrates the ISL21010 voltage reference being used  
with these ADCs. The ISL21010 series voltage references have  
higher noise and drift than the ISL26090 devices, but they  
consume very low operating current and are excellent for  
battery-powered applications.  
and minimum voltages on the V + and V – pins within  
specification. Figures 25 and 26 illustrate this relationship for 5V  
and 3V operation, respectively. The dashed lines show the  
IN IN  
theoretical VCM range based solely on keeping the V + and V  
IN IN  
pins within the supply rails. Additional restrictions are imposed  
due to the required headroom of the input circuitry, resulting in  
practical limits shown by the shaded area.  
VCM  
5.0  
4.25V  
4.0  
3.25V  
3.0  
2.0  
1.75V  
1.0  
VREF  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
FIGURE 25. RELATIONSHIP BETWEEN VREF AND VCM FOR V = 5V  
DD  
FN7708 Rev.2.00  
June 28, 2012  
Page 12 of 18  
ISL267440, ISL267450A  
5V  
BULK  
+
0.1µF  
DNC  
DNC  
DNC  
1
8
7
6
5
V
DD  
ISL267440  
ISL267450A  
V
2
3
4
IN  
VREF  
2.5V  
COMP  
GND  
V
OUT  
0.1µF  
0.1µF  
TRIM  
ISL21090  
FIGURE 27. PRECISION VOLTAGE REFERENCE FOR +5V SUPPLY  
+2.7V TO +3.6V  
OR +5V  
+
BULK  
0.1µF  
V
1
2
0.1µF  
IN  
GND  
3
V
DD  
ISL267440  
ISL267450A  
VREF  
V
OUT  
1.25, 2.048 OR 2.5V  
ISL21010  
0.1µF  
FIGURE 28. VOLTAGE REFERENCE FOR +2.7V TO +3.6V, OR FOR +5V SUPPLY  
Converter Operation  
Power-On Reset  
The ISL267440 and ISL267450A are designed to minimize  
power consumption by only powering up the SAR comparator  
during conversion time. When the converter is in track mode (its  
sample capacitors are tracking the input signal) the SAR  
comparator is powered down. The state of the converter is  
dictated by the logic state of CS. When CS is high, the SAR  
comparator is powered down while the sampling capacitor array  
is tracking the input. When CS transitions low, the capacitor array  
immediately captures the analog signal that is being tracked.  
After CS is taken low, the SCLK pin is toggled 16 times. For the  
first 3 clocks, the comparator is powered up and auto-zeroed,  
then the SAR decision process is begun. This process uses 12  
SCLK cycles for the 12-bit ISL267450A. Each SAR decision is  
presented to the SDATA output on the next clock cycle after the  
SAR decision is performed. The SAR process (12 bits) is  
completed on SCLK cycle 15. At this point in time, the SAR  
comparator is powered down and the capacitor array is placed  
back into Track mode. The last SAR comparator decision is  
output from SDATA on the 16th SCLK cycle. When the last data  
bit is output from SDATA, the output switches to a logic 0 until CS  
is taken high, at which time, the SDATA output enters a High-Z  
state.  
When power is first applied, the ISL267440/ISL267450A  
performs a power-on reset that requires approximately 2.5ms to  
execute. After this is complete, a single dummy conversion must  
be executed (by taking CS low) in order to initialize the switched  
capacitor track and hold. The dummy conversion cycle will take  
1µs with an 18MHz SCLK. Once the dummy cycle is complete,  
the ADC mode will be determined by the state of CS. Regular  
conversions can be started immediately after this dummy cycle  
is completed and time has been allowed for proper acquisition.  
Acquisition Time  
To achieve the maximum sample rate (1MSps) in the  
ISL267450A device, the maximum acquisition time is 200ns. For  
slower conversion rates, or for conversions performed using a  
slower SCLK value than 18MHz, the minimum acquisition time is  
200ns. This same minimum applies to the ISL267440. This  
minimum acquisition time also applies to all the devices if short  
cycling is utilized.  
Short Cycling  
In cases where a lower resolution conversion is acceptable, CS  
can be pulled high before all SCLK falling edges have elapsed.  
This is referred to as short cycling, and it can be used to further  
optimize power dissipation. In this mode, a lower resolution  
result will be output, but the ADC will enter static mode sooner  
and exhibit a lower average power consumption than if the  
complete conversion cycle were carried out. The minimum  
Figures 29 and 30 on page 14 illustrate the system timing for the  
12, and 10-bit converters respectively.  
acquisition time (t  
) requirement of 200ns must be met for  
the next conversion to be valid.  
ACQ  
FN7708 Rev.2.00  
June 28, 2012  
Page 13 of 18  
ISL267440, ISL267450A  
FIGURE 29. ISL267450A SYSTEM TIMING  
FIGURE 30. ISL267440 SYSTEM TIMING  
Power vs Throughput Rate  
Serial Digital Interface  
The ISL267440 and ISL267450A provide reduced power  
consumption at lower conversion rates by automatically  
switching into a low-power mode after completing a conversion.  
The average power consumption of the ADC decreases at lower  
throughput rates. Figure 31 shows the typical power  
Conversion data is accessed with an SPI-compatible serial  
interface. The interface consists of the serial clock (SCLK), serial  
data output (SDATA), and chip select (CS).  
The serial interface is designed around using 16 SCLK cycles to  
perform an autozero on the SAR comparator and additional SCLK  
cycles for SAR comparator decisions (12 SLCKs in the 12-bit  
device, 10 SCLKs in the 10-bit device, and 8 SCLKs in the 8-bit  
device). If short cycling is not used, all converter throughput  
cycles take 16 SCLKs. The SDATA output goes low after the last  
conversion decision has been presented to the SDATA output, as  
shown in Figures 29 and 30.  
consumption over a wide range of throughput rates.  
100  
10  
V
= 5V  
DD  
1
0.1  
V
= 3V  
150  
DD  
0.01  
0
50  
100  
200  
250  
300  
350  
THROUGHPUT (Ksps)  
FIGURE 31. POWER CONSUMPTION vs THROUGHPUT RATE  
FN7708 Rev.2.00  
June 28, 2012  
Page 14 of 18  
ISL267440, ISL267450A  
second order terms include (fa + fb) and (fa – fb), while the third  
order terms include (2fa + fb), (2fa – fb), (fa + 2fb), and (fa –2fb).  
Data Format  
Output data is encoded in two’s complement format as shown in  
Table 1. The voltage levels in the table are idealized and don’t  
account for any gain/offset errors or noise.  
The ISL267440, ISL267450A is tested using the CCIF standard,  
where two input frequencies near the top end of the input  
bandwidth are used. In this case, the second order terms are  
usually distanced in frequency from the original sine waves,  
while the third order terms are usually at a frequency close to the  
input frequencies. As a result, the second and third order terms  
are specified separately. The calculation of the intermodulation  
distortion is as per the THD specification, where it is the ratio of  
the rms sum of the individual distortion products to the rms  
amplitude of the sum of the fundamentals expressed in dBs.  
TABLE 1. TWO’S COMPLEMENT DATA FORMATTING  
INPUT  
–Full Scale  
VOLTAGE  
–VREF  
DIGITAL OUTPUT  
1000 0000 0000  
1000 0000 0001  
0000 0000 0000  
0111 1111 1110  
0111 1111 1111  
–Full Scale + 1LSB  
Midscale  
–VREF+ 1LSB  
0
+Full Scale – 1LSB  
+Full Scale  
+VREF– 1LSB  
+VREF  
Aperture Delay  
This is the amount of time from the leading edge of the sampling  
clock until the ADC actually takes the sample.  
Terminology  
Signal-to-(Noise + Distortion) Ratio (SINAD)  
This is the measured ratio of signal-to-(noise + distortion) at the  
output of the ADC. The signal is the rms amplitude of the  
fundamental. Noise is the sum of all nonfundamental signals up  
Aperture Jitter  
This is the sample-to-sample variation in the effective point in  
time at which the actual sample is taken.  
to half the sampling frequency (f /2), excluding DC. The ratio  
s
Full Power Bandwidth  
The full power bandwidth of an ADC is that input frequency at  
which the amplitude of the reconstructed fundamental is  
reduced by 3dB for a full-scale input.  
is dependent on the number of quantization levels in the  
digitization process; the more levels, the smaller the quantization  
noise. The theoretical signal-to-(noise + distortion) ratio for an  
ideal N-bit converter with a sine wave input is given by:  
Signal-to-(Noise + Distortion) = 6.02 N + 1.76dB  
(EQ. 1)  
Common-Mode Rejection Ratio (CMRR)  
The common-mode rejection ratio is defined as the ratio of the  
power in the ADC output at full-scale frequency, f, to the power of  
Thus, for a 12-bit converter this is 74dB, and for a 10-bit this is 62dB.  
a 250mV  
VIN+ and VIN– of frequency fs:  
sine wave applied to the common-mode voltage of  
P-P  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the rms sum of  
harmonics to the fundamental. For the ISL267440, ISL267450A,  
it is defined as:  
CMRRdB= 10logPfl Pfs  
(EQ. 3)  
Pf is the power at the frequency f in the ADC output; Pfs is the  
power at frequency fs in the ADC output.  
2
2
2
2
2
V
+ V + V + V + V  
2
3 4 5 6  
THDdB= 20log -----------------------------------------------------------------------  
(EQ. 2)  
2
V
Integral Nonlinearity (INL)  
1
This is the maximum deviation from a straight line passing  
through the endpoints of the ADC transfer function.  
where V is the rms amplitude of the fundamental and V , V ,  
1
2
3
V , V , and V are the rms amplitudes of the second to the  
4
5
6
sixth harmonics.  
Differential Nonlinearity (DNL)  
This is the difference between the measured and the ideal 1 LSB  
change between any two adjacent codes in the ADC.  
Peak Harmonic or Spurious Noise (SFDR)  
Peak harmonic or spurious noise is defined as the ratio of the  
rms value of the next largest component in the ADC output  
spectrum (up to fS/2 and excluding DC) to the rms value of  
the fundamental (also referred to as Spurious Free Dynamic  
Range (SFDR)). Normally, the value of this specification is  
determined by the largest harmonic in the spectrum, but for  
Zero-Code Error  
This is the deviation of the midscale code transition (111...111 to  
000...000) from the ideal VIN+ – VIN– (i.e., 0 LSB).  
Positive Gain Error  
This is the deviation of the last code transition (011...110 to  
011...111) from the ideal VIN+ – VIN– (i.e., +REF – 1 LSB), after  
the zero code error has been adjusted out.  
ADCs where the harmonics are buried in the noise floor, it will be  
a noise peak.  
Intermodulation Distortion  
With inputs consisting of sine waves at two frequencies, fa and  
fb, any active device with nonlinearities will create distortion  
products at sum and difference frequencies of mfa ± nfb where  
m and n = 0, 1, 2 or 3. Intermodulation distortion terms are those  
for which neither m nor n are equal to zero. For example, the  
Negative Gain Error  
This is the deviation of the first code transition (100...000 to  
100...001) from the ideal VIN+ – VIN– (i.e., – REF + 1 LSB), after  
the zero code error has been adjusted out.  
FN7708 Rev.2.00  
June 28, 2012  
Page 15 of 18  
ISL267440, ISL267450A  
ground planes should be joined in only one place, and the  
connection should be a star ground point established as close to  
the GND pin on the ISL267440, ISL267450A as possible. Avoid  
running digital lines under the device, as this will couple noise  
onto the die. The analog ground plane should be allowed to run  
under the ISL267440, ISL267450A to avoid noise coupling.  
Track and Hold Acquisition Time  
The track and hold acquisition time is the minimum time  
required for the track and hold amplifier to remain in track mode  
for its output to reach and settle to within 0.5 LSB of the applied  
input signal.  
Power Supply Rejection Ratio (PSRR)  
The power supply rejection ratio is defined as the ratio of the  
power in the ADC output at full-scale frequency, f, to ADC VDD  
The power supply lines to the device should use as large a trace  
as possible to provide low impedance paths and reduce the  
effects of glitches on the power supply line.  
supply of frequency f . The frequency of this input varies from  
1kHz to 1MHz.  
S
Fast switching signals, such as clocks, should be shielded with  
digital ground to avoid radiating noise to other sections of the  
board, and clock signals should never run near the analog inputs.  
Avoid crossover of digital and analog signals. Traces on opposite  
sides of the board should run at right angles to each other. This  
reduces the effects of feedthrough through the board. A  
microstrip technique is by far the best but is not always possible  
with a double-sided board.  
PSRRdB= 10logPf Pfs  
(EQ. 4)  
Pf is the power at frequency f in the ADC output; Pfs is the power  
at frequency f in the ADC output.  
s
Application Hints  
Grounding and Layout  
In this technique, the component side of the board is dedicated  
to ground planes, while signals are placed on the solder side.  
The printed circuit board that houses the ISL267440,  
Good decoupling is also important. All analog supplies should be  
decoupled with μF tantalum capacitors in parallel with 0.1μF  
capacitors to GND. To achieve the best from these decoupling  
components, they must be placed as close as possible to the  
device.  
ISL267450A should be designed so that the analog and digital  
sections are separated and confined to certain areas of the  
board. This facilitates the use of ground planes that can be easily  
separated. A minimum etch technique is generally best for  
ground planes since it gives the best shielding. Digital and analog  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest revision.  
DATE  
REVISION  
FN7708.2  
CHANGE  
June 15, 2012  
Page 2- Typical Connection Diagram: Added value to cap 0.1µF and removed ‘+’ from the 0.1 capacitor.  
Page 3, Ordering Information Table: “Removed coming soon on all the SOT23’s.”  
Page11- Figure22, Ideal Transfer Characteristics: replaced the diagram for clarity.  
March 22, 2012  
FN7708.1  
FN7708.0  
Page 12 - Updated Voltage Reference Input section  
Page 13 - Removed Applications Information section  
Pages 13, 14 - Replaced/updated the following sections: Power-Down/Standby Modes, Dynamic Mode, Static  
Mode, Short Cycling, Power-on Reset, Power vs Throughput Rate, and Serial Digital Interface with:  
Converter Operation, Power-On Reset, Acquisition Time, Short Cycling, Power vs Throughput Rate, and Serial  
Digital Interface setions.  
Page 18 - Added package outline drawing P8.064  
December 5, 2011  
Initial release.  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISL267440, ISL267450A  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
FITs are available from our website at: http://rel.intersil.com/reports/search.php  
FN7708 Rev.2.00  
June 28, 2012  
Page 16 of 18  
ISL267440, ISL267450A  
Package Outline Drawings  
M8.118  
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE  
Rev 4, 7/11  
5
3.0±0.05  
A
DETAIL "X"  
D
8
1.10 MAX  
SIDE VIEW 2  
0.09 - 0.20  
4.9±0.15  
3.0±0.05  
5
0.95 REF  
PIN# 1 ID  
1
2
B
0.65 BSC  
GAUGE  
PLANE  
TOP VIEW  
0.25  
3°±3°  
0.55 ± 0.15  
DETAIL "X"  
0.85±010  
H
C
SEATING PLANE  
0.10 C  
0.25 - 0.36  
0.10 ± 0.05  
0.08  
C A-B D  
M
SIDE VIEW 1  
(5.80)  
NOTES:  
1. Dimensions are in millimeters.  
(4.40)  
(3.00)  
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA  
and AMSEY14.5m-1994.  
3. Plastic or metal protrusions of 0.15mm max per side are not  
included.  
(0.65)  
4. Plastic interlead protrusions of 0.15mm max per side are not  
included.  
(0.40)  
(1.40)  
5. Dimensions are measured at Datum Plane "H".  
6. Dimensions in ( ) are for reference only.  
TYPICAL RECOMMENDED LAND PATTERN  
FN7708 Rev.2.00  
June 28, 2012  
Page 17 of 18  
ISL267440, ISL267450A  
Small Outline Transistor Plastic Packages (SOT23-8)  
P8.064  
0.20 (0.008) M  
C
VIEW C  
8 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE  
C
L
e
INCHES  
MIN  
MILLIMETERS  
b
8
SYMBOL  
MAX  
0.057  
0.0059  
0.051  
0.015  
0.013  
0.009  
0.008  
0.118  
0.118  
0.067  
MIN  
0.90  
0.00  
0.90  
0.22  
0.22  
0.08  
0.08  
2.80  
2.60  
1.50  
MAX  
1.45  
0.15  
1.30  
0.38  
0.33  
0.22  
0.20  
3.00  
3.00  
1.70  
NOTES  
A
A1  
A2  
b
0.036  
0.000  
0.036  
0.009  
0.009  
0.003  
0.003  
0.111  
0.103  
0.060  
-
-
-
-
7
2
6
5
4
C
E1  
L
C
L
E
1
3
b1  
c
6
6
3
-
e1  
D
c1  
D
C
C
L
E
E1  
e
3
-
0.0256 Ref  
0.0768 Ref  
0.014 0.022  
0.65 Ref  
1.95 Ref  
0.35 0.55  
SEATING  
PLANE  
A2  
A1  
A
e1  
L
-
-C-  
4
L1  
L2  
N
0.024 Ref.  
0.010 Ref.  
8
0.60 Ref.  
0.25 Ref.  
8
0.10 (0.004) C  
5
b
R
0.004  
-
0.10  
-
WITH  
PLATING  
b1  
R1  
0.004  
0.010  
0.10  
0.25  
o
o
o
o
0
8
0
8
-
c
c1  
Rev. 2 9/03  
NOTES:  
BASE METAL  
1. Dimensioning and tolerance per ASME Y14.5M-1994.  
2. Package conforms to EIAJ SC-74 and JEDEC MO178BA.  
4X 1  
3. Dimensions D and E1 are exclusive of mold flash, protrusions,  
or gate burrs.  
R1  
4. Footlength L measured at reference to gauge plane.  
5. “N” is the number of terminal positions.  
R
6. These Dimensions apply to the flat section of the lead between  
0.08mm and 0.15mm from the lead tip.  
GAUGE PLANE  
SEATING  
PLANE  
7. Controlling dimension: MILLIMETER. Converted inch dimen-  
sions are for reference only  
L
C
L2  
L1  
4X 1  
VIEW C  
© Copyright Intersil Americas LLC 2011-2012. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7708 Rev.2.00  
June 28, 2012  
Page 18 of 18  

相关型号:

ISL267450AIUZ-T7A

12-Bit 1MSPS SAR ADCs; MSOP8, SOT8; Temp Range: -40° to 85°C
RENESAS

ISL267450AIUZ-T7A

10-Bit and 12-Bit, 1MSPS SAR ADCs
INTERSIL

ISL267450IBZ

12-Bit, 1MSPS SAR ADCs
INTERSIL

ISL267450IUZ

12-Bit, 1MSPS SAR ADCs
INTERSIL

ISL267452

12-Bit, 555kSPS SAR ADC
INTERSIL

ISL267452IHZ-T

12-Bit, 555kSPS SAR ADC
INTERSIL

ISL267452IHZ-T7A

12-Bit, 555kSPS SAR ADC
INTERSIL

ISL267817

Intersil’s Solutions for Industrial Process Control
INTERSIL

ISL267817IBZ

12-Bit Differential Input 200kSPS SAR ADC
INTERSIL

ISL267817IBZ-T7

ADC, Successive Approximation
RENESAS

ISL267817IBZ-T7A

ADC, Successive Approximation
RENESAS

ISL267817IUZ

12-Bit Differential Input 200kSPS SAR ADC
INTERSIL