ISL267452IHZ-T [INTERSIL]

12-Bit, 555kSPS SAR ADC; 12位, 555kSPS SAR ADC
ISL267452IHZ-T
型号: ISL267452IHZ-T
厂家: Intersil    Intersil
描述:

12-Bit, 555kSPS SAR ADC
12位, 555kSPS SAR ADC

文件: 总16页 (文件大小:716K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit, 555kSPS SAR ADC  
ISL267452  
Features  
The ISL267452 is a 12-bit, 555kSPS sampling SAR-type ADC  
featuring excellent linearity over supply and temperature  
variations, and is drop-in compatible with the AD7452. The  
robust, fully-differential input offers high impedance to minimize  
errors due to leakage currents, and the specified measurement  
accuracy is maintained with input signals up to the supply rails.  
• Drop-in Compatible with AD7452  
• Differential Input (Span = 2VREF)  
• Simple SPI-compatible Serial Digital Interface  
• Guaranteed No Missing Codes  
• 555kHz Sampling Rate  
The reference accepts inputs from 0.1V to 2.2V for 3V operation  
and 0.1V to 3.5V for 5V operation, which provides design  
flexibility in a wide variety of applications. The ISL267452 also  
features up to 8kV Human Body Model ESD survivability.  
• 3V or 5V Operation  
• Low Operating Current  
- 1.25mA at 555kSPS with 3V Supplies  
- 1.70mA at 555kSPS with 5V Supplies  
The serial digital interface is SPI compatible and is easily  
interfaced to all popular FPGAs and microcontrollers. Power  
dissipation is 7mW at a sampling rate of 555kSPS, and just 5µW  
between conversions utilizing Auto Power-Down mode (with a 5V  
supply), making the ISL267452 an excellent solution for remote  
industrial sensors and battery-powered instruments.  
• Power-down Current between Conversions: 1µA  
• Excellent Differential Non-Linearity  
• Low THD: -83dB (typ)  
• Pb-Free (RoHS Compliant)  
The ISL267452 is available in an 8 LD SOT-23 package, and is  
specified for operation over the Industrial temperature range  
(-40°C to +85°C).  
• Available in SOT-23 Package  
Applications  
• Remote Data Acquisition  
• Battery Operated Systems  
• Industrial Process Control  
• Energy Measurement  
• Data Acquisition Systems  
• Pressure Sensors  
• Flow Controllers  
1.0  
0.8  
0.6  
VREF  
VDD  
0.4  
0.2  
0.0  
VIN+  
SCLK  
SDATA  
CS  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
SAR  
LOGIC  
SERIAL  
INTERFACE  
VIN  
VREF  
GND  
0
1024  
2048  
3072  
4096  
CODE  
FIGURE 1. BLOCK DIAGRAM  
FIGURE 2. DIFFERENTIAL LINEARITY ERROR vs CODE  
July 26, 2012  
FN8255.0  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2012. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL267452  
Typical Connection Diagram  
0.1µF  
+3V/5V  
SUPPLY  
VREF  
10µF  
0.1µF  
+
VREF  
VIN+  
VIN–  
VDD  
SCLK  
SDATA  
CS  
VREFP-P  
VREFP-P  
µP/µC  
GND  
SERIAL  
INTERFACE  
Pin Configuration  
ISL267452  
(8 LD SOT-23)  
TOP VIEW  
1
8
7
6
5
VDD  
VREF  
VIN+  
VIN  
GND  
2
3
4
SCLK  
SDATA  
CS  
Pin Descriptions  
ISL267452  
PIN NAME PIN NUMBER  
DESCRIPTION  
VDD  
SCLK  
SDATA  
CS  
8
7
6
5
4
3
2
1
Supply voltage, +2.7V to 5.25V.  
Serial clock input. Controls digital I/O timing and clocks the conversion.  
Digital conversion output.  
Chip select input. Controls the start of a conversion.  
Ground  
GND  
VIN–  
VIN+  
VREF  
Negative analog input.  
Positive analog input.  
Reference voltage.  
FN8255.0  
July 26, 2012  
2
ISL267452  
Ordering Information  
PACKAGE  
Tape & Reel  
(Pb-free)  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
VDD RANGE  
(V)  
TEMP RANGE  
(°C)  
PKG.  
DWG. #  
ISL267452IHZ-T  
ISL267452IHZ-T7A  
NOTES:  
7452 (Note 4)  
7452 (Note 4)  
2.7 to 5.25  
2.7 to 5.25  
-40 to +85  
-40 to +85  
8 Ld SOT-23  
8 Ld SOT-23  
P8.064  
P8.064  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and NiPdAu plate  
-e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL267452. For more information on MSL please see techbrief TB363.  
4. The part marking is located on the bottom of the part.  
FN8255.0  
July 26, 2012  
3
ISL267452  
Table of Contents  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
ADC Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Voltage Reference Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Converter Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Acquisition Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Short Cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Application Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Grounding and Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Signal-to-(Noise + Distortion) Ratio (SINAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Total Harmonic Distortion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Peak Harmonic or Spurious Noise (SFDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Intermodulation Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Aperture Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Aperture Jitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Full Power Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Common-Mode Rejection Ratio (CMRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Integral Nonlinearity (INL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Differential Nonlinearity (DNL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Zero-Code Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Positive Gain Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Negative Gain Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Track and Hold Acquisition Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power Supply Rejection Ratio (PSRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
P8.064 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
FN8255.0  
July 26, 2012  
4
ISL267452  
Absolute Maximum Ratings  
Thermal Information  
Any Pin to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.0V  
Analog Input to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to VDD+0.3V  
Digital I/O to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to VDD+0.3V  
Digital Input Voltage to GND . . . . . . . . . . . . . . . . . . . . . . .-0.3V to VDD+0.3V  
Maximum Current In to Any Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA  
ESD Rating  
Human Body Model (Tested per JESD22-A114F) . . . . . . . . . . . . . . . . 8kV  
Machine Model (Tested per JESD22-A115B) . . . . . . . . . . . . . . . . . 400V  
Charged Device Model (Tested per JESD22-C101E). . . . . . . . . . . . 1.5kV  
Latch Up (Tested per JESD78C; Class 2, Level A) . . . . . . . . . . . . . . . 100mA  
Thermal Resistance (Typical)  
8 Ld SOT-23 Package (Notes 5, 6). . . . . . . .  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
θ
JA (°C/W)  
135  
θ
JC (°C/W)  
99  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
5. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
6. For θ , the “case temp” location is taken at the package top center.  
JC  
Electrical Specifications VDD = +3.0V to +3.6V, f  
= 10MHz, f = 555kSPS, VREF = 2.0V; VDD = +4.75V to +5.25V, f  
= 10MHz,  
SCLK  
S
SCLK  
f
= 555kSPS, VREF = 2.5V; V = VREF, unless otherwise noted. Typical values are at T = +25°C. Boldface limits apply over the operating temperature  
S
CM  
A
range, -40°C to +85°C.  
ISL267452  
TYP  
MIN  
(Note 7)  
MAX  
(Note 7) UNITS  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
DYNAMIC PERFORMANCE  
SINAD  
Signal-to (Noise + Distortion) Ratio  
f
= 100kHz  
70.0  
68.5  
71.4  
70.5  
-84  
dB  
dB  
IN  
VDD = +4.75V to +5.25V  
f
= 100kHz  
IN  
VDD = +3.0V to +3.6V  
THD  
Total Harmonic  
Distortion  
f
= 100kHz  
-76  
-74  
-76  
-74  
dB  
dB  
dB  
dB  
IN  
VDD = +4.75V to +5.25V  
f
= 100kHz  
-84  
IN  
VDD = +3.0V to +3.6V  
SFDR  
Spurious Free Dynamic Range  
f
= 100kHz  
-87  
IN  
VDD = +4.75V to +5.25V  
f
= 100kHz  
-85  
IN  
VDD = +3.0V to +3.6V  
IMD  
tpd  
Intermodulation Distortion  
Aperture Delay  
2nd and 3rd order, f = 90kHz, 110kHz  
IN  
-95  
1
dB  
ns  
Δtpd  
Aperture Jitter  
15  
15  
ps  
β3dB  
Full Power Bandwidth  
@ –3dB  
MHz  
DC ACCURACY  
N
Resolution  
12  
-1  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
INL  
Integral Nonlinearity  
Differential Nonlinearity  
Zero-Code Error  
±0.4  
±0.3  
±0.2  
±0.1  
±0.1  
1
0.95  
6
DNL  
Guaranteed no missed codes to 12 bits  
Zero Volt Differential Input  
-0.95  
-6  
OFFSET  
Positive Gain Error  
Negative Gain Error  
-2  
2
GAIN  
± VREF input range  
-2  
2
ANALOG INPUT (Note 8)  
|AIN| Full-Scale Input Span  
Absolute Input Voltage Range  
2 x VREF  
VIN+ - VIN–  
V
VIN+, VIN– VIN+  
VIN–  
V
= VREF  
V
±VREF/2  
±VREF/2  
V
V
CM  
CM  
V
CM  
FN8255.0  
July 26, 2012  
5
ISL267452  
Electrical Specifications VDD = +3.0V to +3.6V, f  
= 10MHz, f = 555kSPS, VREF = 2.0V; VDD = +4.75V to +5.25V, f  
= 10MHz,  
SCLK  
S
SCLK  
f
= 555kSPS, VREF = 2.5V; V = VREF, unless otherwise noted. Typical values are at T = +25°C. Boldface limits apply over the operating temperature  
S
CM  
A
range, -40°C to +85°C. (Continued)  
ISL267452  
TYP  
MIN  
(Note 7)  
MAX  
(Note 7) UNITS  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
I
Input DC Leakage Current  
Input Capacitance  
-1  
1
µA  
pF  
LEAK  
C
Track/Hold mode  
13/5  
VIN  
REFERENCE INPUT  
VREF VREF Input Voltage Range  
VDD = 3V (1% tolerance for specified  
performance)  
2.0  
2.5  
V
V
VDD = 5V (1% tolerance for specified  
performance)  
I
DC Leakage Current  
-1  
1
μA  
LEAK  
C
VREF Input Capacitance  
Track/Hold mode  
21/18.5  
pF  
VREF  
LOGIC INPUTS  
V
Input High Voltage  
Input Low Voltage  
Input Leakage Current  
Input Capacitance  
2.4  
-1  
V
V
IH  
V
0.8  
1
IL  
I
µA  
pF  
LEAK  
C
10  
IN  
LOGIC OUTPUTS  
V
Output High Voltage  
I
= 200µA  
VDD - 0.3  
-1  
V
V
OH  
SOURCE  
= 200µA  
SINK  
V
Output Low Voltage  
I
0.4  
1
OL  
I
Floating-State Output Current  
Floating-State Output Capacitance  
Output Coding  
µA  
pF  
OZ  
C
10  
OUT  
Two’s Complement  
CONVERSION RATE  
t
Conversion Time  
Acquisition Time  
Throughput Rate  
f
= 10MHz  
1.6  
µs  
ns  
CONV  
SCLK  
t
200  
555  
ACQ  
f
kSPS  
max  
POWER REQUIREMENTS  
VDD Positive Supply Voltage Range  
2.7  
3.6  
V
V
4.75  
5.25  
I
Positive Supply Input Current  
DD  
Static  
1
µA  
µA  
µA  
Dynamic  
3V  
5V  
1250  
1700  
Power Dissipation  
Static Mode  
VDD = 3V  
VDD = 5V  
VDD = 3V, f  
VDD = 5V, f  
3
5
µW  
µW  
Dynamic  
= 555kSPS  
= 555kSPS  
3.75  
8.5  
mW  
mW  
smpl  
smpl  
NOTES:  
7. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
8. The absolute voltage applied to each analog input must be between GND and VDD to guarantee datasheet performance.  
FN8255.0  
July 26, 2012  
6
ISL267452  
Timing Specifications Limits established by characterization and are not production tested. V = 3.0V to 3.6V, f  
= 10MHz,  
DD  
SCLK  
f
= 555kSPS, V  
= 2.0V; V = 4.75V to 5.25V, f  
= 10MHz, f = 555kSPS, V  
REF  
= 2.5V; V = V unless otherwise noted. Boldface limits apply  
REF  
REF  
DD  
S
SCLK  
S
CM  
over the operating temperature range, -40°C to +85°C.  
MIN  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 7)  
TYP  
(Note 7)  
UNITS  
MHz  
ns  
f
t
Clock Frequency  
Clock Period  
0.01  
100  
10  
SCLK  
SCLK  
t
Acquisition Time  
Conversion Time  
CS Pulse Width  
200  
1.6  
ns  
ACQ  
t
µs  
CONV  
t
10  
10  
ns  
CSW  
t
CS Falling Edge to S  
CLK  
Falling Edge Setup Time  
ns  
CSS  
t
CS Falling Edge to SDATA Valid  
SCLK Falling Edge to SDATA Valid  
SCLK Falling Edge to SDATA Hold  
SCLK Pulse Width  
20  
40  
ns  
CDV  
t
ns  
CLKDV  
t
10  
ns  
SDH  
t
0.4 x t  
SCLK  
ns  
SW  
DISABLE  
t
SCLK Falling Edge to SDATA Disable Time  
(Note 9)  
Extrapolated back to true bus relinquish  
10  
35  
ns  
t
Quiet Time Before Sample  
60  
ns  
QUIET  
NOTE:  
9. During characterization, t  
is measured from the release point with a 10pF load (see Figure 4) and the equivalent timing using the AD7452  
DISABLE  
loading (25pF) is calculated.  
tCSW  
CS  
tCONV  
tCSS  
SCLK  
1
2
13  
16  
3
5
14  
15  
4
tCLKDV  
0
tSW  
MSB  
tACQ  
D0  
tCDV  
tQUIET  
HI-Z  
SDATA  
D1  
0
0
0
D2  
FIGURE 3. SERIAL INTERFACE TIMING DIAGRAM  
VDD  
RL  
2.85kΩ  
OUTPUT  
PIN  
CL  
10pF  
FIGURE 4. EQUIVALENT LOAD CIRCUIT  
FN8255.0  
July 26, 2012  
7
ISL267452  
Typical Performance Characteristics  
75  
70  
65  
60  
55  
0
5.25V  
8192 POINT FFT  
f
f
= 555kSPS  
SAMPLE  
= 92.5kHz  
-20  
IN  
SINAD = 70.9dB  
THD = 82.9dB  
SFDR = 86.6dB  
-40  
4.75V  
3.6V  
2.7V  
-60  
-80  
-100  
-120  
-140  
-160  
0
50  
100  
150  
200  
250 277.5  
10  
100  
INPUT FREQUENCY (kHz)  
1k  
FREQUENCY (kHz)  
FIGURE 5. ISL267452 SINAD vs ANALOG INPUT FREQUENCY FOR  
VARIOUS SUPPLY VOLTAGES  
FIGURE 6. ISL267452 DYNAMIC PERFORMANCE WITH VDD = 3V  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
8192 POINT FFT  
f
f
= 555kSPS  
SAMPLE  
= 92.5kHz  
-20  
-40  
IN  
SINAD = 71.7dB  
THD = 85dB  
SFDR = 86.2dB  
-60  
-80  
-100  
-120  
-140  
-160  
0
50  
100  
150  
200  
250 277.5  
10k  
100k  
FREQUENCY (Hz)  
1k  
10k  
FREQUENCY (kHz)  
FIGURE 7. ISL267452 DYNAMIC PERFORMANCE WITH VDD = 5V  
FIGURE 8. CMRR vs FREQUENCY FOR VDD = 5V  
1.0  
0.8  
0
-20  
250mV  
SINE WAVE ON VDD  
P-P  
NO DECOUPLING ON VDD  
0.6  
0.4  
-40  
0.2  
0.0  
-60  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-80  
-100  
-120  
0
1024  
2048  
3072  
4096  
0
100 200 300 400 500 600 700 800 900 1000  
FREQUENCY (kHz)  
CODE  
FIGURE 9. TYPICAL DNL FOR THE ISL267452 FOR VDD = 5V  
FIGURE 10. PSRR vs SUPPLY RIPPLE FREQUENCY WITHOUT SUPPLY  
DECOUPLING  
FN8255.0  
July 26, 2012  
8
ISL267452  
Typical Performance Characteristics (Continued)  
1.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Pos DNL  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
Neg DNL  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
2.5  
3.5  
0
1024  
2048  
3072  
4096  
CODE  
VREF (V)  
FIGURE 11. TYPICAL INL FOR THE ISL267452 FOR VDD = 5V  
FIGURE 12. CHANGE IN DNL vs VREF FOR THE ISL267452 FOR  
VDD = 5V  
2.5  
2.0  
1.5  
2.5  
2.0  
1.5  
POS INL  
1.0  
1.0  
0.5  
POS DNL  
NEG INL  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
0.5  
0.0  
-0.5  
-1.0  
NEG DNL  
0.0  
0.5  
1.0  
VREF (V)  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
VREF (V)  
1.5  
2.0  
FIGURE 13. CHANGE IN INL vs VREF FOR THE ISL267452 FOR  
VDD = 3V  
FIGURE 14. CHANGE IN DNL vs VREF FOR THE ISL267452 FOR  
VDD = 3V  
5
4
3
6
5
4
3
2
POS INL  
1
0
2
3V  
-1  
1
0
NEG INL  
-2  
-3  
-4  
-5  
5V  
-1  
-2  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
VREF (V)  
VREF (V)  
FIGURE 15. CHANGE IN OFFSET ERROR vs REFERENCE VOLTAGE  
FOR VDD = 5V AND 3V FOR THE ISL267452  
FIGURE 16. CHANGE IN INL vs VREF FOR THE ISL267452 FOR  
VDD = 5V  
FN8255.0  
July 26, 2012  
9
ISL267452  
Typical Performance Characteristics (Continued)  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
70k  
60k  
50k  
40k  
30k  
20k  
10k  
0
65,516  
CODES  
5V  
3V  
9.0  
8.5  
8.0  
7.5  
10  
10  
CODES  
CODES  
7.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
2044  
2045  
2046  
2047  
2048  
2049  
2050  
VREF (V)  
CODE  
FIGURE 17. CHANGE IN ENOB vs REFERENCE VOLTAGE FOR  
VDD = 5V AND 3V FOR THE ISL267452  
FIGURE 18. HISTOGRAM OF 10,000 CONVERSIONS OF A DC INPUT  
FOR THE ISL267452 WITH VDD = 5V  
An external clock must be applied to the SCLK pin to generate a  
conversion result. The allowable frequency range for SCLK is  
10kHz to 10MHz (555kSPS). Serial output data is transmitted on  
the falling edge of SCLK. The receiving device (FPGA, DSP or  
Microcontroller) may latch the data on the rising edge of SCLK to  
maximize set-up and hold times.  
Functional Description  
The ISL267452 is based on a successive approximation register  
(SAR) architecture utilizing capacitive charge redistribution  
digital to analog converters (DACs). Figure 19 shows a simplified  
representation of the converter. During the acquisition phase  
(ACQ) the differential input is stored on the sampling capacitors  
(CS). The comparator is in a balanced state since the switch  
A stable, low-noise reference voltage must be applied to the  
VREF pin to set the full-scale input range and common-mode  
voltage. See “Voltage Reference Input” on page 11 for more  
details.  
across its inputs is closed. The signal is fully acquired after t  
ACQ  
has elapsed, and the switches then transition to the conversion  
phase (CONV) so the stored voltage may be converted to digital  
format. The comparator will become unbalanced when the  
differential switch opens and the input switches transition  
(assuming that the stored voltage is not exactly at mid-scale).  
The comparator output reflects whether the stored voltage is  
above or below mid-scale, which sets the value of the MSB. The  
SAR logic then forces the capacitive DACs to adjust up or down by  
one quarter of full-scale by switching in binarily weighted  
capacitors. Again, the comparator output reflects whether the  
stored voltage is above or below the new value, setting the value  
of the next lowest bit. This process repeats until all 12 bits have  
been resolved.  
ADC Transfer Function  
The output coding for the ISL267452 is twos complement. The  
first code transition occurs at successive LSB values (i.e., 1 LSB,  
2 LSB, and so on). The LSB size of the ISL267452 is  
2*VREF/4096. The ideal transfer characteristic of the  
ISL267452 is shown in Figure 20.  
1LSB = 2•VREF/4096  
011...111  
011...110  
000...001  
000...000  
111...111  
CONV  
CS  
VIN+  
VIN–  
ACQ  
ACQ  
SAR  
LOGIC  
ACQ  
CS  
CONV  
100...010  
100...001  
100...000  
CONV  
VREF  
VREF  
+ ½LSB  
+VREF +VREF  
1½LSB 1LSB  
0V  
ANALOG INPUT  
VIN+ – (VIN–)  
FIGURE 19. SAR ADC ARCHITECTURAL BLOCK DIAGRAM  
FIGURE 20. IDEAL TRANSFER CHARACTERISTICS  
FN8255.0  
July 26, 2012  
10  
ISL267452  
Note that there is a trade-off between VREF and the allowable  
Analog Input  
common mode input voltage (VCM). The full-scale input range is  
proportional to VREF; therefore the VCM range must be limited  
for larger values of VREF in order to keep the absolute maximum  
and minimum voltages on the VIN+ and VIN– pins within  
specification. Figures 23 and 24 illustrate this relationship for 5V  
and 3V operation, respectively. The dashed lines show the  
theoretical VCM range based solely on keeping the VIN+ and  
VIN– pins within the supply rails. Additional restrictions are  
imposed due to the required headroom of the input circuitry,  
resulting in practical limits shown by the shaded area.  
The ISL267452 features a fully differential input with a nominal  
full-scale range equal to twice the applied VREF voltage. Each  
input swings VREF V , 180° out-of-phase from one another for  
P-P  
a total differential input of 2*VREF (refer to Figure 21).  
Differential signaling offers several benefits over a single-ended  
input, such as:  
• Doubling of the full-scale input range (and therefore the  
dynamic range)  
• Improved even order harmonic distortion  
VCM  
• Better noise immunity due to common mode rejection  
5.0  
4.25V  
4.0  
VREFP-P  
VREFP-P  
VIN+  
VIN–  
3.25V  
3.0  
ISL267452  
2.0  
VCM  
1.75V  
1.0  
FIGURE 21. DIFFERENTIAL INPUT SIGNALING  
VREF  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Figure 22 shows the relationship between the reference voltage  
and the full-scale input range for two different values of VREF.  
FIGURE 23. RELATIONSHIP BETWEEN VREF AND VCM FOR VDD = 5V  
VCM  
2.5  
V
5.0  
2.5  
4.0  
3.0  
2.0  
1.0  
VIN–  
VCM  
VIN+  
2.0  
1.5  
1.0  
0.5  
2.0V  
1.0V  
2.0V  
P-P  
t
VREF = 2V  
VREF  
V
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00  
FIGURE 24. RELATIONSHIP BETWEEN VREF AND VCM FOR VDD = 3V  
5.0  
4.0  
3.0  
2.0  
1.0  
VIN–  
VCM  
Voltage Reference Input  
VIN+  
2.5V  
P-P  
An external low-noise reference voltage must be applied to the VREF  
pin to set the full-scale input range of the converter. The reference  
input accepts voltages ranging from 0.1V to 2.2V for 3V operation  
and 0.1V to 3.5V for 5V operation. The device is specified with a  
reference voltage of 2.5V for 5V operation and 2.0V for 3V  
operation.  
t
VREF = 2.5V  
Figures 26 and 27 illustrate possible voltage reference options for  
the ISL267452. Figure 26 uses the precision ISL21090 voltage  
reference, which exhibits exceptionally low drift and low noise. The  
ISL21090 must use a power supply greater than 4.7V. The VREF  
input pin of the ISL267452 uses very low current, so the decoupling  
capacitor can be small (0.1µF).  
FIGURE 22. RELATIONSHIP BETWEEN VREF AND FULL-SCALE RANGE  
Figure 27 illustrates the ISL21010 voltage reference being used  
with the ISL267452. The ISL21010 series voltage references have  
higher noise and drift than the ISL26090 devices, but they consume  
very low operating current and are excellent for battery-powered  
applications.  
FN8255.0  
July 26, 2012  
11  
ISL267452  
100  
10  
VDD = 5V  
1
VDD = 3V  
0.1  
0.01  
0
50  
100  
150  
200  
250  
300  
350  
THROUGHPUT (kSPS)  
FIGURE 25. POWER CONSUMPTION vs THROUGHPUT RATE  
5V  
BULK  
+
0.1µF  
DNC  
DNC  
DNC  
1
8
7
6
5
VDD  
ISL267452  
V
2
3
4
IN  
VREF  
2.5V  
COMP  
GND  
V
OUT  
0.1µF  
0.1µF  
TRIM  
ISL21090  
FIGURE 26. PRECISION VOLTAGE REFERENCE FOR +5V SUPPLY  
+3.0V TO +3.6V  
OR +5V  
+
BULK  
0.1µF  
V
1
2
0.1µF  
IN  
GND  
3
VDD  
ISL267452  
VREF  
V
OUT  
1.25, 2.048 OR 2.5V  
ISL21010  
0.1µF  
FIGURE 27. VOLTAGE REFERENCE FOR +3.0V TO +3.6V, OR FOR +5V SUPPLY  
(12 bits) is completed on SCLK cycle 15. At this point in time, the  
SAR comparator is powered down and the capacitor array is  
placed back into Track mode. The last SAR comparator decision  
is output from SDATA on the 16th SCLK cycle. When the last data  
bit is output from SDATA, the output switches to a logic 0 until CS  
is taken high, at which time, the SDATA output enters a High-Z  
state.  
Converter Operation  
The ISL267452 is designed to minimize power consumption by  
only powering up the SAR comparator during conversion time.  
When the converter is in track mode (its sample capacitors are  
tracking the input signal) the SAR comparator is powered down.  
The state of the converter is dictated by the logic state of CS.  
When CS is high, the SAR comparator is powered down while the  
sampling capacitor array is tracking the input. When CS  
transitions low, the capacitor array immediately captures the  
analog signal that is being tracked. After CS is taken low, the  
SCLK pin is toggled 16 times. For the first 3 clocks, the  
Figure 28 on page 13 illustrates the system timing for the  
ISL267452.  
comparator is powered up and auto-zeroed, then the SAR  
decision process is begun. This process uses 12 SCLK cycles.  
Each SAR decision is presented to the SDATA output on the next  
clock cycle after the SAR decision is performed. The SAR process  
FN8255.0  
July 26, 2012  
12  
ISL267452  
FIGURE 28. ISL267452 SYSTEM TIMING  
Power-On Reset  
Application Hints  
Grounding and Layout  
When power is first applied, the ISL267452 performs a power-on  
reset that requires approximately 2.5ms to execute. After this is  
complete, a single dummy conversion must be executed (by  
taking CS low) in order to initialize the switched capacitor track  
and hold. The dummy conversion cycle will take 1.6µs with an  
10MHz SCLK. Once the dummy cycle is complete, the ADC mode  
will be determined by the state of CS. Regular conversions can be  
started immediately after this dummy cycle is completed and  
time has been allowed for proper acquisition.  
The printed circuit board that houses the ISL267452 should be  
designed so that the analog and digital sections are separated  
and confined to certain areas of the board. This facilitates the  
use of ground planes that can be easily separated. A minimum  
etch technique is generally best for ground planes since it gives  
the best shielding. Digital and analog ground planes should be  
joined in only one place, and the connection should be a star  
ground point established as close to the GND pin on the  
ISL267452 as possible. Avoid running digital lines under the  
device, as this will couple noise onto the die. The analog ground  
plane should be allowed to run under the ISL267452 to avoid  
noise coupling.  
Acquisition Time  
To achieve the maximum sample rate (555kSps) in the  
ISL267452 device, the maximum acquisition time is 200ns. For  
slower conversion rates, or for conversions performed using a  
slower SCLK value than 10MHz, the minimum acquisition time is  
200ns. This minimum acquisition time also applies to all the  
devices if short cycling is utilized.  
The power supply lines to the device should use as large a trace  
as possible to provide low impedance paths and reduce the  
effects of glitches on the power supply line.  
Fast switching signals, such as clocks, should be shielded with  
digital ground to avoid radiating noise to other sections of the  
board, and clock signals should never run near the analog inputs.  
Avoid crossover of digital and analog signals. Traces on opposite  
sides of the board should run at right angles to each other. This  
reduces the effects of feedthrough through the board. A  
microstrip technique is by far the best but is not always possible  
with a double-sided board.  
Short Cycling  
In cases where a lower resolution conversion is acceptable, CS  
can be pulled high before all SCLK falling edges have elapsed.  
This is referred to as short cycling, and it can be used to further  
optimize power dissipation. In this mode, a lower resolution  
result will be output, but the ADC will enter static mode sooner  
and exhibit a lower average power consumption than if the  
complete conversion cycle were carried out. The minimum  
acquisition time (t  
) requirement of 200ns must be met for  
the next conversion to be valid.  
In this technique, the component side of the board is dedicated  
to ground planes, while signals are placed on the solder side.  
ACQ  
Good decoupling is also important. All analog supplies should be  
decoupled with μF tantalum capacitors in parallel with 0.1μF  
capacitors to GND. To achieve the best from these decoupling  
components, they must be placed as close as possible to the  
device.  
FN8255.0  
July 26, 2012  
13  
ISL267452  
Aperture Jitter  
Terminology  
This is the sample-to-sample variation in the effective point in  
time at which the actual sample is taken.  
Signal-to-(Noise + Distortion) Ratio (SINAD)  
This is the measured ratio of signal-to-(noise + distortion) at the  
output of the ADC. The signal is the rms amplitude of the  
fundamental. Noise is the sum of all nonfundamental signals up  
Full Power Bandwidth  
The full power bandwidth of an ADC is that input frequency at  
which the amplitude of the reconstructed fundamental is  
reduced by 3dB for a full-scale input.  
to half the sampling frequency (f /2), excluding DC. The ratio is  
s
dependent on the number of quantization levels in the  
digitization process; the more levels, the smaller the quantization  
noise. The theoretical signal-to-(noise + distortion) ratio for an  
ideal N-bit converter with a sine wave input is given by  
Equation 1:  
Common-Mode Rejection Ratio (CMRR)  
The common-mode rejection ratio is defined as the ratio of the  
power in the ADC output at full-scale frequency, f, to the power of  
(EQ. 1)  
Signal-to-(Noise + Distortion) = (6.02 N + 1.76)dB  
a 250mV  
sine wave applied to the common-mode voltage of  
P-P  
VIN+ and VIN– of frequency fs:  
Thus, for a 12-bit converter, this is 74dB.  
CMRR(dB) = 10log(Pfl Pfs)  
(EQ. 3)  
Total Harmonic Distortion  
Pf is the power at the frequency f in the ADC output; Pfs is the  
Total harmonic distortion (THD) is the ratio of the rms sum of  
harmonics to the fundamental. For the ISL267452, it is defined  
as Equation 2:  
power at frequency fs in the ADC output.  
Integral Nonlinearity (INL)  
This is the maximum deviation from a straight line passing  
through the endpoints of the ADC transfer function.  
2
2
2
2
2
V
+ V + V + V + V  
2
3 4 5 6  
THD(dB) = 20log -----------------------------------------------------------------------  
(EQ. 2)  
2
V
1
Differential Nonlinearity (DNL)  
where V is the rms amplitude of the fundamental and V , V ,  
V , V , and V are the rms amplitudes of the second to the sixth  
1
2
3
This is the difference between the measured and the ideal 1 LSB  
change between any two adjacent codes in the ADC.  
4
5
6
harmonics.  
Zero-Code Error  
Peak Harmonic or Spurious Noise (SFDR)  
This is the deviation of the midscale code transition (111...111 to  
000...000) from the ideal VIN+ – VIN– (i.e., 0 LSB).  
Peak harmonic or spurious noise is defined as the ratio of the  
rms value of the next largest component in the ADC output  
spectrum (up to fS/2 and excluding DC) to the rms value of the  
fundamental (also referred to as Spurious Free Dynamic Range  
(SFDR)). Normally, the value of this specification is determined by  
the largest harmonic in the spectrum, but for ADCs where the  
harmonics are buried in the noise floor, it will be a noise peak.  
Positive Gain Error  
This is the deviation of the last code transition (011...110 to  
011...111) from the ideal VIN+ – VIN– (i.e., +REF – 1 LSB), after  
the zero code error has been adjusted out.  
Negative Gain Error  
Intermodulation Distortion  
This is the deviation of the first code transition (100...000 to  
100...001) from the ideal VIN+ – VIN– (i.e., – REF + 1 LSB), after  
the zero code error has been adjusted out.  
With inputs consisting of sine waves at two frequencies, fa and  
fb, any active device with nonlinearities will create distortion  
products at sum and difference frequencies of mfa ± nfb where  
m and n = 0, 1, 2 or 3. Intermodulation distortion terms are those  
for which neither m nor n are equal to zero. For example, the  
second order terms include (fa + fb) and (fa – fb), while the third  
order terms include (2fa + fb), (2fa – fb), (fa + 2fb), and (fa –2fb).  
Track and Hold Acquisition Time  
The track and hold acquisition time is the minimum time  
required for the track and hold amplifier to remain in track mode  
for its output to reach and settle to within 0.5 LSB of the applied  
input signal.  
The ISL267452 is tested using the CCIF standard, where two  
input frequencies near the top end of the input bandwidth are  
used. In this case, the second order terms are usually distanced  
in frequency from the original sine waves, while the third order  
terms are usually at a frequency close to the input frequencies.  
As a result, the second and third order terms are specified  
separately. The calculation of the intermodulation distortion is as  
per the THD specification, where it is the ratio of the rms sum of  
the individual distortion products to the rms amplitude of the  
sum of the fundamentals expressed in dBs.  
Power Supply Rejection Ratio (PSRR)  
The power supply rejection ratio is defined as the ratio of the  
power in the ADC output at full-scale frequency, f, to ADC VDD  
supply of frequency f . The frequency of this input varies from  
S
1kHz to 1MHz.  
PSRR(dB) = 10log(Pf Pfs)  
(EQ. 4)  
Pf is the power at frequency f in the ADC output; Pfs is the power  
at frequency f in the ADC output.  
Aperture Delay  
s
This is the amount of time from the leading edge of the sampling  
clock until the ADC actually takes the sample.  
FN8255.0  
July 26, 2012  
14  
ISL267452  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest revision.  
DATE  
REVISION  
FN8255.0  
CHANGE  
July 26, 2012  
Initial Release.  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISL267452  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
FITs are available from our website at: http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8255.0  
July 26, 2012  
15  
ISL267452  
Small Outline Transistor Plastic Packages (SOT23-8)  
P8.064  
0.20 (0.008)  
M
e
C
VIEW C  
8 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE  
INCHES MILLIMETERS  
MIN  
C
L
b
8
SYMBOL  
MAX  
0.057  
0.0059  
0.051  
0.015  
0.013  
0.009  
0.008  
0.118  
0.118  
0.067  
MIN  
0.90  
0.00  
0.90  
0.22  
0.22  
0.08  
0.08  
2.80  
2.60  
1.50  
MAX  
1.45  
0.15  
1.30  
0.38  
0.33  
0.22  
0.20  
3.00  
3.00  
1.70  
NOTES  
A
A1  
A2  
b
0.036  
0.000  
0.036  
0.009  
0.009  
0.003  
0.003  
0.111  
0.103  
0.060  
-
-
-
-
7
2
6
5
4
C
E1  
L
C
E
L
1
3
b1  
c
6
6
3
-
e1  
D
c1  
D
C
C
L
E
E1  
e
3
-
0.0256 Ref  
0.0768 Ref  
0.014 0.022  
0.65 Ref  
1.95 Ref  
0.55  
SEATING  
PLANE  
A2  
A1  
A
e1  
L
-
-C-  
0.35  
4
L1  
L2  
N
0.024 Ref.  
0.010 Ref.  
8
0.60 Ref.  
0.25 Ref.  
8
0.10 (0.004)  
C
5
b
R
0.004  
-
0.10  
0.10  
-
WITH  
PLATING  
b1  
R1  
α
0.004  
0.010  
0.25  
o
o
o
o
0
8
0
8
-
c
c1  
Rev. 2 9/03  
NOTES:  
BASE METAL  
1. Dimensioning and tolerance per ASME Y14.5M-1994.  
2. Package conforms to EIAJ SC-74 and JEDEC MO178BA.  
4X θ1  
3. Dimensions D and E1 are exclusive of mold flash, protrusions, or gate  
burrs.  
R1  
4. Footlength L measured at reference to gauge plane.  
5. “N” is the number of terminal positions.  
R
6. These Dimensions apply to the flat section of the lead between 0.08mm  
and 0.15mm from the lead tip.  
GAUGE PLANE  
SEATING  
PLANE  
7. Controlling dimension: MILLIMETER. Converted inch dimensions  
are for reference only  
L
C
α
L2  
L1  
4X θ1  
VIEW C  
FN8255.0  
July 26, 2012  
16  

相关型号:

ISL267452IHZ-T7A

12-Bit, 555kSPS SAR ADC
INTERSIL

ISL267817

Intersil’s Solutions for Industrial Process Control
INTERSIL

ISL267817IBZ

12-Bit Differential Input 200kSPS SAR ADC
INTERSIL

ISL267817IBZ-T7

ADC, Successive Approximation
RENESAS

ISL267817IBZ-T7A

ADC, Successive Approximation
RENESAS

ISL267817IUZ

12-Bit Differential Input 200kSPS SAR ADC
INTERSIL

ISL267817IUZ

12-Bit Differential Input 200kSPS SAR ADC; MSOP8, SOIC8; Temp Range: -40° to 85°C
RENESAS

ISL267817IUZ-T

12-Bit Differential Input 200kSPS SAR ADC; MSOP8, SOIC8; Temp Range: -40° to 85°C
RENESAS

ISL267817IUZ-T7A

12-Bit Differential Input 200kSPS SAR ADC; MSOP8, SOIC8; Temp Range: -40° to 85°C
RENESAS

ISL28005

Micropower, Rail-to-Rail Input Current Sense Amplifier with Voltage Output
INTERSIL

ISL28005FH-100EVAL1Z

Micropower, Rail-to-Rail Input Current Sense Amplifier with Voltage Output
INTERSIL

ISL28005FH-20EVAL1Z

Micropower, Rail-to-Rail Input Current Sense Amplifier with Voltage Output
INTERSIL