ISL267817IBZ-T7A [RENESAS]

ADC, Successive Approximation;
ISL267817IBZ-T7A
型号: ISL267817IBZ-T7A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

ADC, Successive Approximation

光电二极管 转换器
文件: 总18页 (文件大小:925K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL267817  
12-Bit Differential Input 200kSPS SAR ADC  
FN7877  
Rev 2.00  
April 19, 2012  
The ISL267817 is a 12-bit, 200kSPS sampling SAR-type ADC  
which features excellent linearity over supply and temperature  
variations, and provides a drop-in compatible alternative to all  
ADS7817 performance grades. The robust, fully-differential  
input offers high impedance to minimize errors due to leakage  
currents, and the specified measurement accuracy is  
Features  
• Drop-In Compatible with ADS7817 (All Performance Grades)  
• Differential Input  
• Simple SPI-compatible Serial Digital Interface  
• Guaranteed No Missing Codes  
maintained with input signals up to the supply rails.  
• 200kHz Sampling Rate  
The reference accepts inputs between 0.1V to 2.5V, providing  
design flexibility in a wide variety of applications. The  
ISL267817 also features up to 8kV Human Body Model ESD  
survivability.  
• +4.75V to +5.25V Supply  
• Low 2.15mW Operating Power (200kSPS)  
• Power-down Current between Conversions: 3µA  
• Excellent Differential Non-Linearity (1.0LSB max)  
• Low THD: -85dB (typ)  
The serial digital interface is SPI compatible and is easily  
interfaced to popular FPGAs and microcontrollers. Operating  
from a 5V supply, power dissipation is 2.15mW at a sampling  
rate of 200kSPS, and just 25µW between conversions utilizing  
the Auto Power-Down mode, making the ISL267817 an  
excellent solution for remote industrial sensors and  
battery-powered instruments. It is available in the compact,  
industry-standard 8 Lead SOIC and MSOP packages and is  
specified for operation over the industrial temperature range  
(-40°C to +85°C).  
• Pb-Free (RoHS Compliant)  
• Available in SOIC and MSOP Packages  
Applications  
• Remote Data Acquisition  
• Battery Operated Systems  
• Industrial Process Control  
• Energy Measurement  
• Data Acquisition Systems  
• Pressure Sensors  
• Flow Controllers  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
VREF  
+VCC  
+IN  
DCLOCK  
DOUT  
SAR  
LOGIC  
SERIAL  
INTERFACE  
IN  
CS/SHDN  
VREF  
0
512 1024 1536 2048 2560 3072 3584 4096  
GND  
FIGURE 1. BLOCK DIAGRAM  
FIGURE 2. DIFFERENTIAL LINEARITY ERROR vs CODE  
FN7877 Rev 2.00  
April 19, 2012  
Page 1 of 18  
 
ISL267817  
Typical Connection Diagram  
VREF  
+5V SUPPLY  
+
+
0.1µF  
10µF  
VREF  
+VCC  
DCLOCK  
DOUT  
REFP-P  
REFP-P  
+IN  
–IN  
µP/µC  
GND  
CS/SHDN  
SERIAL  
INTERFACE  
Pin Configuration  
Pin Descriptions  
ISL267817  
PIN NAME  
PIN NUMBER  
DESCRIPTION  
(8 LD SOIC, MSOP)  
TOP VIEW  
VREF  
1
2
3
4
5
6
7
8
Reference Input  
+IN  
Non Inverting Input  
Inverting Input  
1
2
3
4
8
7
6
5
+VCC  
VREF  
+IN  
–IN  
DCLOCK  
DOUT  
GND  
Ground  
IN  
CS/SHDN  
DOUT  
Low = Chip Select, High = Shutdown  
Serial Output Data  
Data Clock  
GND  
CS/SHDN  
DCLOCK  
+VCC  
Power Supply  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
+VCC RANGE  
(V)  
TEMP RANGE  
(°C)  
PKG.  
PACKAGE  
8 Ld SOIC  
8 Ld MSOP  
DWG. #  
M8.15  
M8.118  
ISL267817IBZ  
267817 IBZ  
67817  
4.75 to 5.25  
4.75 to 5.25  
-40°C to +85°C  
-40°C to +85°C  
ISL267817IUZ  
NOTES:  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for the ISL267817. For more information on MSL please see tech brief  
TB363.  
FN7877 Rev 2.00  
April 19, 2012  
Page 2 of 18  
 
 
 
ISL267817  
Table of Contents  
Typical Connection Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
ADC Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Voltage Reference Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Power-Down/Standby Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Dynamic Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Static Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Short Cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power-on Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power vs Throughput Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Serial Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Application Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Grounding and Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Package Outline Drawing (M8.15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Package Outline Drawing (M8.118). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
FN7877 Rev 2.00  
April 19, 2012  
Page 3 of 18  
ISL267817  
Absolute Maximum Ratings  
Thermal Information  
Any Pin to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.0V  
Analog Input to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to +VCC+0.3V  
Digital I/O to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to +VCC+0.3V  
Digital Input Voltage to GND . . . . . . . . . . . . . . . . . . . . . .-0.3V to +VCC+0.3V  
Maximum Current In to Any Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA  
ESD Rating  
Human Body Model (Tested per JESD22-A114F) . . . . . . . . . . . . . . . . 8kV  
Machine Model (Tested per JESD22-A115B) . . . . . . . . . . . . . . . . . 400V  
Charged Device Model (Tested per JESD22-C101E). . . . . . . . . . . . 1.5kV  
Latch Up (Tested per JESD78C; Class 2, Level A) . . . . . . . . . . . . . . . 100mA  
Thermal Resistance (Typical)  
8 Ld SOIC Package (Notes 4, 5). . . . . . . . . .  
8 Ld MSOP Package (Notes 4, 5). . . . . . . . .  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
JA (°C/W)  
120  
JC (°C/W)  
64  
64  
165  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
5. For , the “case temp” location is taken at the package top center.  
JC  
Electrical Specifications +VCC = +5V, f  
= 3.2MHz, f = 200kSPS, V  
Boldface limits apply over the operating temperature range, -40°C to +85°C.  
= 2.5V; V = V , Typical values are at T = +25°C.  
CM REF  
DCLOCK  
S
REF  
A
MIN  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 6) TYP  
(Note 6)  
UNITS  
ANALOG INPUT (Note 7)  
|AIN|  
Full-Scale Input Span  
Absolute Input Voltage  
+IN – (–IN)  
+IN  
-VREF  
-0.3  
+VREF  
V
V
+VCC +0.3  
+VCC +0.3  
–IN  
-0.3  
V
C
Input Capacitance  
Sample/Hold Mode  
13/6  
pF  
µA  
VIN  
I
Input DC Leakage Current  
-1  
0.01  
1
LEAK  
SYSTEM PERFORMANCE  
N
Resolution  
12  
12  
-1  
Bits  
Bits  
LSB  
LSB  
LSB  
LSB  
dB  
No Missing Codes  
Integral Nonlinearity  
Differential Nonlinearity  
Zero-Code Error  
INL  
DNL  
±0.5  
±0.4  
±0.25  
±0.12  
80  
1
1
6
4
-1  
OFFSET  
GAIN  
-6  
Gain Error  
-4  
CMRR  
PSRR  
Common-Mode Rejection  
Power Supply Rejection  
82  
dB  
SAMPLING DYNAMICS  
t
Conversion Time  
Acquisition Time  
Throughput Rate  
f
= 3.2MHz  
12  
Clk Cycles  
Clk Cycles  
kSPS  
CONV  
DCLOCK  
t
1.5  
ACQ  
f
200  
max  
DYNAMIC CHARACTERISTICS  
THD  
Total Harmonic Distortion  
V
V
V
V
= 5.0V  
at f = 1kHz  
IN  
-85  
-84  
71  
dB  
dB  
IN  
IN  
IN  
IN  
P-P  
P-P  
P-P  
P-P  
= 5.0V  
= 5.0V  
= 5.0V  
at f = 5kHz  
IN  
SINAD  
SFDR  
BW  
Signal-to (Noise + Distortion) Ratio  
Spurious Free Dynamic Range  
Full Power Bandwidth  
at f = 1kHz  
IN  
dB  
at f = 1kHz  
IN  
85  
15  
dB  
At –3dB  
MHz  
FN7877 Rev 2.00  
April 19, 2012  
Page 4 of 18  
 
 
ISL267817  
Electrical Specifications +VCC = +5V, f  
= 3.2MHz, f = 200kSPS, V  
Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)  
= 2.5V; V = V , Typical values are at T = +25°C.  
CM REF  
DCLOCK  
S
REF  
A
MIN  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 6) TYP  
(Note 6)  
UNITS  
REFERENCE INPUT  
VREF  
VREF Input Range  
0.1  
2.5  
100  
20  
3
V
VREFLEAK Current Drain  
-100  
-20  
-3  
4
µA  
µA  
µA  
f
= 12.5kHz  
0.23  
0.01  
SAMPLE  
CS/SHDN = +VCC  
DIGITAL INPUT/OUTPUT  
Logic Family  
CMOS  
V
Input High Voltage  
3
+VCC + 0.3  
0.8  
V
V
V
V
IH  
V
Input Low Voltage  
-0.3  
3.5  
IL  
V
Output High Voltage  
Output Low Voltage  
I
I
= –250µA  
= 250µA  
OH  
OH  
V
0.4  
OL  
OL  
Output Coding  
Two’s Complement  
I
Input Leakage Current  
Input Capacitance  
-1  
-1  
1
µA  
pF  
µA  
pF  
LEAK  
C
10  
IN  
I
Floating-State Output Current  
Floating-State Output Capacitance  
1
OZ  
C
5
OUT  
POWER REQUIREMENTS  
V
Supply Voltage Range  
Supply Current  
4.75  
5.25  
V
CC  
I
430  
38  
800  
µA  
µA  
µA  
µA  
CC  
f
f
= 12.5kHz (Notes 8, 9)  
= 12.5kHz (Note 9)  
SAMPLE  
223  
0.5  
SAMPLE  
Power Down Current  
CS/SHDN = +VCC, f  
= 0Hz  
3
SAMPLE  
TEMPERATURE RANGE  
Specified Performance  
-40  
+85  
°C  
NOTES:  
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
7. The absolute voltage applied to each analog input must be between GND and +VCC to guarantee datasheet performance.  
8. f  
= 3.2MHz, CS/SHDN = +VCC for 241 clock cycles out of every 256.  
DCLOCK  
9. See “Power vs Throughput Rate” on page 13 for more information regarding lower sample rates.  
Timing Specifications Limits established by characterization and are not production tested. +VCC = 5V, f  
= 3.2MHz, f = 200kSPS,  
S
DCLOCK  
V
= 2.5V; V = V . Boldface limits apply over the operating temperature range, -40°C to +85°C.  
CM REF  
REF  
MIN  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 6)  
TYP  
12  
(Note 6)  
UNITS  
Clk Cycles  
Clk Cycles  
kHz  
t
Analog Input Sample Time  
1.5  
2.0  
SMPL  
t
Conversion Time  
CONV  
f
Throughput Rate  
200  
0
CYC  
CSD  
t
CS/SHDN Falling Edge to DCLOCK Low  
CS/SHDN Falling Edge to DCLOCK Rising Edge  
DCLOCK Falling Edge to Current DOUT Not Valid  
ns  
t
30  
15  
ns  
SUCS  
t
ns  
hDO  
FN7877 Rev 2.00  
April 19, 2012  
Page 5 of 18  
 
 
 
 
ISL267817  
Timing Specifications Limits established by characterization and are not production tested. +VCC = 5V, f  
= 3.2MHz, f = 200kSPS,  
S
DCLOCK  
V
= 2.5V; V = V . Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)  
CM REF  
REF  
MIN  
(Note 6)  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
TYP  
35  
40  
22  
1
(Note 6)  
150  
50  
UNITS  
ns  
t
DCLOCK Falling Edge to Next DOUT Valid  
CS/SHDN Rising Edge to DOUT Disable Time  
DCLOCK Falling Edge to DOUT Enabled  
DCLOCK Fall Time  
dDO  
t
See Note 10  
ns  
DIS  
t
100  
ns  
EN  
t
t
100  
ns  
f
r
DCLOCK Rise Time  
1
100  
ns  
NOTE:  
10. During characterization, t  
is measured from the release point with a 10pF load (see Figure 4) and the equivalent timing using the ADS7817 loading  
DIS  
(3kΩ, 100pF) is calculated.  
tCYC  
CS/SHDN  
POWER  
DOWN  
tSUCS  
DCLOCK  
tCSD  
NULL  
Hi-Z  
Hi-Z  
BIT  
NULL  
BIT  
DOUT  
B11 B10 B9  
(MSB)  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1 B0  
Note 11  
tDATA  
B11 B10 B9  
B8  
tSMPL  
tCONV  
tCYC  
CS/SHDN  
POWER  
DOWN  
tSUCS  
DCLOCK  
tCSD  
Hi-Z  
Hi-Z  
NULL  
BIT  
DOUT  
B11 B10 B9  
(MSB)  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9 B10 B11  
Note 12  
tSMPL  
tCONV  
tDATA  
NOTES:  
11. After completing the data transfer, additional clocks applied while CS/SHDN is low will result in the previous data being retransmitted LSB-first,  
followed by indefinite transmission of zeros.  
12. After completing the data transfer, additional clocks applied while CS/SHDN is low will result in indefinite transmission of zeros.  
FIGURE 3. SERIAL INTERFACE TIMING DIAGRAM  
+VCC  
RL  
2.85kΩ  
OUTPUT  
PIN  
CL  
10pF  
FIGURE 4. EQUIVALENT LOAD CIRCUIT  
FN7877 Rev 2.00  
April 19, 2012  
Page 6 of 18  
 
 
ISL267817  
VIL = 0.8V  
50%  
50%  
DCLOCK  
DCLOCK  
DOUT  
CS/SHDN  
DCLOCK  
t
t
SUCS  
t
EN  
hDO  
DOUT  
50%  
VOH = VDD - 0.2V  
VOL = 0.4V  
VIL = 0.8V  
50%  
t
VIH = 2.4V  
DCLOCK  
DOUT  
CS/SHDN  
DCLOCK  
CS/SHDN  
DOUT  
t
t
CSD  
DIS  
hDO  
10%  
VOL = 0.4V  
50%  
FIGURE 5. TIMING PARAMETER DEFINITIONS  
FN7877 Rev 2.00  
April 19, 2012  
Page 7 of 18  
ISL267817  
Typical Performance Characteristics T = +25°C, V = 5V, V = 2.5V, f  
= 200kHz,  
A
CC  
REF  
SAMPLE  
f
= 16 * f  
, unless otherwise specified.  
CLK  
SAMPLE  
2.5  
1.2  
2.0  
0.8  
1.5  
1.0  
0.4  
0.5  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-0.4  
-0.8  
-1.2  
1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40  
-50  
-30  
-10  
10  
30  
50  
70  
90  
REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
FIGURE 6. CHANGE IN OFFSET vs REFERENCE VOLTAGE  
FIGURE 7. CHANGE IN OFFSET vs TEMPERATURE  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-50  
-30  
-10  
10  
30  
50  
70  
90  
1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40  
TEMPERATURE (°C)  
REFERENCE VOLTAGE (V)  
FIGURE 8. CHANGE IN GAIN vs REFERENCE VOLTAGE  
FIGURE 9. CHANGE IN GAIN vs TEMPERATURE  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
9.0  
0.1  
1
10  
100  
1k  
1.0  
10.0  
RIPPLE FREQUENCY (Hz)  
REFERENCE VOLTAGE (V)  
FIGURE 10. EFFECTIVE NUMBER OF BITS vs REFERENCE VOLTAGE  
FIGURE 11. POWER SUPPLY REJECTION vs RIPPLE FREQUENCY  
FN7877 Rev 2.00  
April 19, 2012  
Page 8 of 18  
ISL267817  
Typical Performance Characteristics T = +25°C, V = 5V, V = 2.5V, f  
= 200kHz,  
A
CC  
REF  
SAMPLE  
f
= 16 * f  
, unless otherwise specified. (Continued)  
SAMPLE  
CLK  
0
73  
72  
71  
70  
69  
68  
67  
SNR  
-20  
-40  
-60  
-80  
SINAD  
-100  
-120  
0
25  
50  
75  
100  
1
10  
INPUT FREQUENCY (kHz)  
100  
FREQUENCY (kHz)  
FIGURE 12. FREQUENCY SPECTRUM (8192 POINT FFT;  
= 9.9kHz, –0.5dB  
FIGURE 13. SIGNAL-TO-NOISE RATIO AND SIGNAL-TO-  
(NOISE+DISTORTION) vs INPUT FREQUENCY  
f
IN  
95  
90  
85  
80  
75  
70  
65  
-95  
80  
70  
60  
50  
40  
30  
20  
10  
0
SFDR  
THD  
-90  
-85  
-80  
-75  
-70  
-65  
1
10  
INPUT FREQUENCY (kHz)  
100  
-60  
-50  
-40  
-30  
-20  
-10  
0
INPUT LEVEL (dB)  
FIGURE 14. SPURIOUS FREE DYNAMIC RANGE AND TOTAL  
FIGURE 15. SIGNAL-TO-(NOISE+DISTORTION) vs INPUT LEVEL  
HARMONIC DISTORTION vs INPUT FREQUENCY  
1.5  
1.0  
0.5  
0.0  
-0.5  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
CHANGE IN INTEGRAL  
LINEARITY (LSB)  
CHANGE IN DIFFERENTIAL  
LINEARITY (LSB)  
0
80  
160  
240  
320  
400  
0
512 1024 1536 2048 2560 3072 3584 4096  
SAMPLE RATE (kHz)  
FIGURE 16. CHANGE IN INTEGRAL LINEARITY and DIFFERENTIAL  
LINEARITY vs SAMPLE RATE  
FIGURE 17. INTEGRAL LINEARITY ERROR vs CODE  
FN7877 Rev 2.00  
April 19, 2012  
Page 9 of 18  
ISL267817  
Typical Performance Characteristics T = +25°C, V = 5V, V = 2.5V, f  
= 200kHz,  
SAMPLE  
A
CC  
REF  
f
= 16 * f  
, unless otherwise specified. (Continued)  
CLK  
SAMPLE  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
1.00  
CHANGE IN INTEGRAL  
LINEARITY (LSB)  
0.75  
0.50  
0.25  
0.00  
CHANGE IN DIFFERENTIAL  
LINEARITY (LSB)  
-0.25  
-0.50  
-0.75  
-1.00  
1.00  
1.25  
1.50  
1.75  
2.00  
2.25  
2.50  
0
512 1024 1536 2048 2560 3072 3584 4096  
REFERENCE VOLTAGE (V)  
FIGURE 18. DIFFERENTIAL LINEARITY ERROR vs CODE  
FIGURE 19. CHANGE IN INTEGRAL LINEARITY AND DIFFERENTIAL  
LINEARITY vs REFERENCE VOLTAGE  
600  
550  
500  
450  
400  
350  
300  
10  
1
0.1  
0.01  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 20. INPUT LEAKAGE CURRENT vs TEMPERATURE  
FIGURE 21. SUPPLY CURRENT vs TEMPERATURE  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
20  
15  
10  
5
0
-50  
-25  
0
25  
50  
75  
100  
0
80  
160  
SAMPLE RATE (kHz)  
TEMPERATURE (°C)  
FIGURE 22. POWER DOWN SUPPLY CURRENT vs TEMPERATURE  
FIGURE 23. REFERENCE CURRENT vs SAMPLE RATE  
(CODE = FF8h)  
FN7877 Rev 2.00  
April 19, 2012  
Page 10 of 18  
ISL267817  
Typical Performance Characteristics T = +25°C, V = 5V, V = 2.5V, f  
= 200kHz,  
SAMPLE  
A
CC  
REF  
f
= 16 * f  
, unless otherwise specified. (Continued)  
SAMPLE  
CLK  
30  
25  
20  
15  
10  
5
0
-50  
-25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
FIGURE 24. REFERENCE CURRENT vs TEMPERATURE (CODE = FF8h)  
A stable, low-noise reference voltage must be applied to the VREF  
pin to set the full-scale input range and common-mode voltage. See  
“Voltage Reference Input” on page 12 for more details.  
Functional Description  
The ISL267817 is based on a successive approximation register  
(SAR) architecture utilizing capacitive charge redistribution  
digital to analog converters (DACs). Figure 25 shows a simplified  
representation of the converter. During the acquisition phase  
(ACQ), the differential input is stored on the sampling capacitors  
(CS). The comparator is in a balanced state since the switch  
ADC Transfer Function  
The output coding for the ISL267817 is twos complement. The  
first code transition occurs at successive LSB values (i.e., 1 LSB,  
2 LSB, and so on). The LSB size is 2*VREF/4096. The ideal  
transfer characteristic of the ISL267817 is shown in Figure 26.  
across its inputs is closed. The signal is fully acquired after t  
ACQ  
has elapsed, and the switches then transition to the conversion  
phase (CONV) so the stored voltage may be converted to digital  
format. The comparator will become unbalanced when the  
differential switch opens and the input switches transition  
(assuming that the stored voltage is not exactly at mid-scale).  
The comparator output reflects whether the stored voltage is  
above or below mid-scale, which sets the value of the MSB. The  
SAR logic then forces the capacitive DACs to adjust up or down by  
one quarter of full-scale by switching in binarily weighted  
capacitors. Again, the comparator output reflects whether the  
stored voltage is above or below the new value, setting the value  
of the next lowest bit. This process repeats until all 12 bits have  
been resolved.  
1LSB = 2•VREF/4096  
011...111  
011...110  
000...001  
000...000  
111...111  
100...010  
100...001  
100...000  
VREF  
+ ½LSB  
+VREF +VREF  
1½LSB 1LSB  
0V  
ANALOG INPUT  
+IN – (–IN)  
CONV  
FIGURE 26. IDEAL TRANSFER CHARACTERISTICS  
+IN  
–IN  
ACQ  
ACQ  
SAR  
LOGIC  
ACQ CONV  
Analog Input  
The ISL267817 features a fully differential input with a nominal  
full-scale range equal to twice the applied VREF voltage. Each  
CONV  
VREF  
input swings VREF V , 180° out-of-phase from one another for  
P-P  
a total differential input of 2*VREF (refer to Figure 27).  
FIGURE 25. SAR ADC ARCHITECTURAL BLOCK DIAGRAM  
An external clock must be applied to the DCLOCK pin to generate  
a conversion result. The allowable frequency range for DCLOCK is  
10kHz to 3.2MHz (625SPS to 200kSPS). Serial output data is  
transmitted on the falling edge of DCLOCK. The receiving device  
(FPGA, DSP or Microcontroller) may latch the data on the rising  
edge of DCLOCK to maximize set-up and hold times.  
VREF PP  
+IN  
–IN  
ISL267817  
VCM  
VREF PP  
FIGURE 27. DIFFERENTIAL INPUT SIGNALING  
FN7877 Rev 2.00  
April 19, 2012  
Page 11 of 18  
 
 
 
ISL267817  
Differential signaling offers several benefits over a single-ended  
input, such as:  
VCM  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
• Doubling of the full-scale input range (and therefore the  
dynamic range)  
4.0  
• Improved even order harmonic distortion  
2.8  
2.2  
• Better noise immunity due to common mode rejection  
SINGLE-ENDED  
Figure 28 shows the relationship between the reference voltage  
and the full-scale input range for two different values of VREF.  
Note that there is a trade-off between VREF and the allowable  
common mode input voltage (VCM). The full-scale input range is  
proportional to VREF; therefore the VCM range must be limited  
for larger values of VREF in order to keep the absolute maximum  
and minimum voltages on the +IN and –IN pins within  
-0.3  
0.5  
1.0  
1.5  
2.0  
2.5  
FIGURE 29. RELATIONSHIP BETWEEN VREF AND VCM FOR  
SINGLE-ENDED INPUTS (+VCC = 5V)  
specification. Figures 29 and 30 illustrate this relationship for  
single-ended and differential inputs, respectively.  
VCM  
V
5.0  
4.0  
5.0  
4.0  
3.0  
2.0  
1.0  
–IN  
3.0  
+IN  
2.75  
2.0Vpp  
VCM  
2.0  
DIFFERENTIAL  
1.0  
0.0  
0.95  
-0.3  
0.5  
t
-1.0  
VREF = 2V  
1.0  
1.5  
2.0  
2.5  
FIGURE 30. RELATIONSHIP BETWEEN VREF AND VCM FOR  
DIFFERENTIAL INPUTS (+VCC = 5V)  
V
5.0  
4.0  
3.0  
2.0  
1.0  
–IN  
Voltage Reference Input  
+IN  
An external low-noise reference voltage must be applied to the VREF  
pin to set the full-scale input range of the converter. The reference  
input accepts voltages ranging from 0.1V to 2.5V; however the  
device is specified with a reference voltage of 2.5V.  
2.5Vpp  
VCM  
Figures 31 and 32 illustrate possible voltage reference options  
for the ISL267817. Figure 31 uses the precision ISL21090  
voltage reference which exhibits exceptionally low drift and low  
noise. The VREF input pin of the ISL267817 devices uses very low  
current, so the decoupling capacitor can be small (0.1µF).  
t
VREF = 2.5V  
FIGURE 28. RELATIONSHIP BETWEEN VREF AND FULL-SCALE RANGE  
Figure 32 illustrates the ISL21010 voltage reference being used  
with these ADCs. The ISL21010 series voltage references have  
higher noise and drift than the ISL26090 devices, but they  
consume very low operating current and are excellent for  
battery-powered applications.  
FN7877 Rev 2.00  
April 19, 2012  
Page 12 of 18  
 
 
 
 
ISL267817  
+5V  
BULK  
+
0.1µF  
DNC  
VIN  
DNC  
DNC  
1
8
7
6
5
+VCC  
VREF  
ISL267817  
2
3
4
2.5V  
COMP VOUT  
GND TRIM  
0.1µF  
0.1µF  
ISL21090  
FIGURE 31. PRECISION VOLTAGE REFERENCE  
+5V  
+
BULK  
0.1µF  
VIN  
1
2
0.1µF  
GND  
3
+VCC  
ISL267817  
VREF  
VOUT  
1.25, 2.048 OR 2.5V  
ISL21010  
0.1µF  
FIGURE 32. LOWER COST VOLTAGE REFERENCE  
POWER-DOWN/STANDBY MODES  
STATIC MODE  
The mode of operation of the ISL267817 is selected by  
controlling the logic state of the CS/SHDN signal during a  
conversion. There are two possible modes of operation: dynamic  
mode or static mode. When CS/SHDN is high (deasserted), the  
ADC will be in static mode. Conversely, when CS/SHDN is low  
(asserted), the device will be in dynamic mode. There are no  
minimum or maximum number of DCLOCK cycles required to  
enter static mode, which simplifies power management and  
allows the user to easily optimize power dissipation versus  
throughput for different application requirements.  
The ISL267817 enters the power-saving static mode  
automatically any time CS/SHDN is deasserted. It is not required  
that the user force a device into this mode following a conversion  
in order to optimize power consumption.  
SHORT CYCLING  
In cases where a lower resolution conversion is acceptable,  
CS/SHDN can be pulled high before 12 DCLOCK falling edges  
have elapsed. This is referred to as short cycling, and it can be  
used to further optimize power dissipation. In this mode, a lower  
resolution result will be acquired, but the ADC will enter static  
mode sooner and exhibit a lower average power dissipation than  
if the complete conversion cycle were carried out. The acquisition  
time (tACQ) requirement must be met for the next conversion to  
be valid.  
DYNAMIC MODE  
This mode is entered when a conversion result is desired by  
asserting CS/SHDN. Figure 33 shows the general diagram of  
operation in this mode. The conversion is initiated on the falling  
edge of CS/SHDN, as described in the “Serial Digital Interface”  
section on page 14. As soon as CS/SHDN is brought high, the  
conversion will be terminated and DOUT will go back into  
three-state. Sixteen serial clock cycles are required to complete  
the conversion and access the complete conversion result.  
CS/SHDN may idle high until the next conversion or idle low until  
sometime prior to the next conversion. Once a data transfer is  
complete, i.e., when DOUT has returned to three-state, another  
conversion can be initiated by again bringing CS/SHDN low.  
POWER-ON RESET  
The ISL267817 performs a power-on reset when the supplies are  
first activated, which requires approximately 2.5ms to execute.  
After this is complete, a single dummy cycle must be executed in  
order to initialize the switched capacitor track and hold. A  
dummy cycle will take 5μs with an 3.2MHz DCLOCK. Once the  
dummy cycle is complete, the ADC mode will be determined by  
the state of CS/SHDN. At this point, switching between dynamic  
and static modes is controlled by CS/SHDN with no delay  
required between states.  
CS/SHDN  
10  
POWER vs THROUGHPUT RATE  
16  
1
DCLOCK  
DOUT  
The ISL267817 provides reduced power consumption at lower  
conversion rates by automatically switching into a low-power  
mode after completing a conversion. Maximum power savings  
are achieved by running SCLK at the maximum rate, as shown in  
Figure 34. If SCLK is operated at a fixed 16x multiple of the  
NULL BIT AND CONVERSION RESULT  
FIGURE 33. NORMAL MODE OPERATION  
FN7877 Rev 2.00  
April 19, 2012  
Page 13 of 18  
 
 
 
ISL267817  
sample rate then the average power consumption of the ADC is  
roughly constant, decreasing somewhat at lower throughput  
rates (Figure 35).  
Serial Digital Interface  
Conversion data is accessed with an SPI-compatible serial  
interface. The interface consists of the data clock (DCLOCK),  
serial data output (DOUT), and chip select/shutdown (CS/SHDN).  
The shutdown current is impacted by the state of the CS/SHDN  
pin, as shown in Figure 36.  
A falling edge on the CS/SHDN signal initiates a conversion by  
placing the part into the acquisition (ACQ) phase. After t  
has  
ACQ  
1000  
elapsed, the part enters the conversion (CONV) phase and begins  
outputting the conversion result starting with a null bit followed  
by the most significant bit (MSB) and ending with the least  
significant bit (LSB). The CS/SHDN pin can be pulled high at this  
point to put the device into Standby mode and reduce the power  
consumption. If CS/SHDN is held low after the LSB bit has been  
output, the conversion result will be repeated in reverse order  
until the MSB is transmitted, after which the serial output enters  
a high impedance state. The ISL267817 will remain in this state,  
dissipating typical dynamic power levels, until CS/SHDN  
T
= +25°C  
A
VCC = 5V  
VREF = 2.5V  
f
= 3.2MHz  
CLK  
100  
10  
1
transitions high then low to initiate the next conversion.  
Data Format  
Output data is encoded in two’s complement format, as shown in  
Table 1. The voltage levels in the table are idealized and don’t  
account for any gain/offset errors or noise.  
1
10  
100  
1k  
SAMPLE RATE (kHz)  
FIGURE 34. POWER CONSUMPTION vs SAMPLE RATE, f  
= 3.2MHz  
CLK  
TABLE 1. TWO’S COMPLEMENT DATA FORMATTING  
1000  
INPUT  
–Full Scale  
VOLTAGE  
–VREF  
DIGITAL OUTPUT  
1000 0000 0000  
1000 0000 0001  
0000 0000 0000  
0111 1111 1110  
0111 1111 1111  
–Full Scale + 1LSB  
Midscale  
–VREF+ ½ LSB  
0
100  
10  
+Full Scale – 1LSB  
+Full Scale  
+VREF– 1½ LSB  
+VREF – ½ LSB  
T
= +25°C  
A
VCC = 5V  
VREF = 2.5V  
TERMINOLOGY  
f
= 16 f  
CLK  
SAMPLE  
1
Signal-to-(Noise + Distortion) Ratio (SINAD)  
1
10  
100  
1k  
This is the measured ratio of signal-to-(noise + distortion) at the  
output of the ADC. The signal is the RMS amplitude of the  
fundamental. Noise is the sum of all non-fundamental signals up  
SAMPLE RATE (kHz)  
FIGURE 35. SHUTDOWN CURRENT vs SAMPLE RATE,  
= 16 • f  
f
CLK  
SAMPLE  
to half the sampling frequency (f /2), excluding DC. The ratio  
s
60  
50  
40  
30  
20  
10  
0
is dependent on the number of quantization levels in the  
digitization process; the more levels, the smaller the quantization  
noise. The theoretical signal-to-(noise + distortion) ratio for an  
ideal N-bit converter with a sine wave input is given by  
Equation 1:  
CSB = HIGH  
(VCC)  
(EQ. 1)  
Signal-to-(Noise + Distortion) = 6.02 N + 1.76dB  
CSB = LOW  
(GND)  
Thus, for a 12-bit converter this is 74dB, and for a 10-bit this is  
62dB.  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS sum of  
harmonics to the fundamental. For the ISL267817, it is defined  
as Equation 2:  
1
10  
100  
1k  
SAMPLE RATE (kHz)  
FIGURE 36. SHUTDOWN CURRENT vs SAMPLE RATE  
2
2
2
2
2
V
+ V + V + V + V  
2
3 4 5 6  
THDdB= 20log -----------------------------------------------------------------------  
(EQ. 2)  
2
V
1
FN7877 Rev 2.00  
April 19, 2012  
Page 14 of 18  
 
 
 
 
 
ISL267817  
where V is the RMS amplitude of the fundamental and V , V ,  
Power Supply Rejection Ratio (PSRR)  
1
2
3
V , V , and V are the RMS amplitudes of the second to the sixth  
harmonics.  
4
5
6
The power supply rejection ratio is defined as the ratio of the  
power in the ADC output at full-scale frequency, f, to ADC +VCC  
supply of frequency f . The frequency of this input varies from  
1kHz to 1MHz.  
Peak Harmonic or Spurious Noise (SFDR)  
S
Peak harmonic or spurious noise is defined as the ratio of the  
RMS value of the next largest component in the ADC output  
spectrum (up to fS/2 and excluding DC) to the RMS value of  
the fundamental. Also referred to as Spurious Free Dynamic  
Range (SFDR). Normally, the value of this specification is  
determined by the largest harmonic in the spectrum, but for  
ADCs where the harmonics are buried in the noise floor, it will be  
a noise peak.  
PSRRdB= 10logPf Pfs  
(EQ. 4)  
Pf is the power at frequency f in the ADC output; Pfs is the power  
at frequency f in the ADC output.  
s
Application Hints  
Grounding and Layout  
Full Power Bandwidth  
The printed circuit board that houses the ISL267817 should be  
designed so that the analog and digital sections are separated  
and confined to certain areas of the board. This facilitates the  
use of ground planes that can be easily separated. A minimum  
etch technique is generally best for ground planes since it gives  
the best shielding. Digital and analog ground planes should be  
joined in only one place, and the connection should be a star  
ground point established as close to the GND pin on the  
ISL267817 as possible. Avoid running digital lines under the  
device, as this will couple noise onto the die. The analog ground  
plane should be allowed to run under the ISL267817 to avoid  
noise coupling.  
The full power bandwidth of an ADC is that input frequency at  
which the amplitude of the reconstructed fundamental is  
reduced by 3dB for a full-scale input.  
Common-Mode Rejection Ratio (CMRR)  
The common-mode rejection ratio is defined as the ratio of the  
power in the ADC output at full-scale frequency, f, to the power of  
a 250mV  
sine wave applied to the common-mode voltage of  
P-P  
+IN and –IN of frequency fs:  
CMRRdB= 10logPfl Pfs  
(EQ. 3)  
Pf is the power at the frequency f in the ADC output; Pfs is the  
power at frequency fs in the ADC output.  
The power supply lines to the device should use as large a trace  
as possible to provide low impedance paths and reduce the  
effects of glitches on the power supply line.  
Integral Nonlinearity (INL)  
This is the maximum deviation from a straight line passing  
through the endpoints of the ADC transfer function.  
Fast switching signals, such as clocks, should be shielded with  
digital ground to avoid radiating noise to other sections of the  
board, and clock signals should never run near the analog inputs.  
Avoid crossover of digital and analog signals. Traces on opposite  
sides of the board should run at right angles to each other. This  
reduces the effects of feedthrough through the board. A  
microstrip technique is by far the best but is not always possible  
with a double-sided board.  
Differential Nonlinearity (DNL)  
This is the difference between the measured and the ideal 1 LSB  
change between any two adjacent codes in the ADC.  
Zero-Code Error  
This is the deviation of the midscale code transition (111...111 to  
000...000) from the ideal +IN – (–IN) (i.e., 0 LSB).  
In this technique, the component side of the board is dedicated  
to ground planes, while signals are placed on the solder side.  
Gain Error  
Good decoupling is also important. All analog supplies should be  
decoupled with 10μF tantalum capacitors in parallel with 0.1μF  
capacitors to GND. To achieve the best from these decoupling  
components, they must be placed as close as possible to the  
device.  
This is the deviation of the first code transition (100...000 to  
100...001) from the ideal +IN – (–IN) (i.e., – VREF + ½ LSB) or the  
last code transition (011...110 to 011...111) from the ideal +IN –  
(–IN) (i.e., +VREF – 1½ LSB), after the zero code error has been  
adjusted out.  
Track and Hold Acquisition Time  
The track and hold acquisition time is the minimum time  
required for the track and hold amplifier to remain in track mode  
for its output to reach and settle to within 0.5 LSB of the applied  
input signal.  
FN7877 Rev 2.00  
April 19, 2012  
Page 15 of 18  
ISL267817  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest revision.  
DATE  
REVISION  
FN7877.2  
CHANGE  
March 19, 2012  
Renamed in Figure 1 pin names to match package pinout names  
Electrical Spec Table Reference Input on page 5 changed “REF” to “VREF”  
Modified text in Figures 31 and 32 by renaming Figure titles from “Precision Voltage Reference for +5V Supply”  
to “Precision Voltage Reference” and “Voltage Reference for +2.7V to +3.6V or for +5V” to “Lower Cost Voltage  
Reference”, Changed pin names VDD to +VCC, Removed +2.7V to +3.5V and leaving +5V in Figure 32  
Removed “+” from VREF capacitor in “Typical Connection Diagram” on page 2.  
Replaced last sentence of 1st paragraph, 2nd paragraph and graphic in “Voltage Reference Input” on page 12.  
Removed “Applications Information” section  
M8.15 - Updated to latest revision - Changed Note 1 "1982" to "1994"  
December 14, 2011  
FN7877.1  
FN7877.0  
Pg 1, Added mention of MSOP package to last paragraph of description and last Features bullet.  
Pg 2, Removed "Coming Soon" for ISL267817IUZ package in Ordering Information table.  
Changed "(8 LD SOIC)" to "(8 LD SOIC, MSOP)" in the Pin Configuration  
Pg 18, Inserted latest M8.118 POD at the end of the document  
October 28, 2011  
Initial Release  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISL267817  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
FITs are available from our website at: http://rel.intersil.com/reports/search.php  
© Copyright Intersil Americas LLC 2011-2012. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7877 Rev 2.00  
April 19, 2012  
Page 16 of 18  
ISL267817  
Package Outline Drawing  
M8.15  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 4, 1/12  
DETAIL "A"  
1.27 (0.050)  
0.40 (0.016)  
INDEX  
AREA  
6.20 (0.244)  
5.80 (0.228)  
0.50 (0.20)  
x 45°  
0.25 (0.01)  
4.00 (0.157)  
3.80 (0.150)  
8°  
0°  
1
2
3
0.25 (0.010)  
0.19 (0.008)  
SIDE VIEW “B”  
TOP VIEW  
2.20 (0.087)  
1
8
SEATING PLANE  
0.60 (0.023)  
1.27 (0.050)  
1.75 (0.069)  
5.00 (0.197)  
4.80 (0.189)  
2
3
7
6
1.35 (0.053)  
-C-  
4
5
0.25(0.010)  
0.10(0.004)  
1.27 (0.050)  
0.51(0.020)  
0.33(0.013)  
5.20(0.205)  
SIDE VIEW “A  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
2. Package length does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
3. Package width does not include interlead flash or protrusions. Interlead  
flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.  
4. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
5. Terminal numbers are shown for reference only.  
6. The lead width as measured 0.36mm (0.014 inch) or greater above the  
seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).  
7. Controlling dimension: MILLIMETER. Converted inch dimensions are not  
necessarily exact.  
8. This outline conforms to JEDEC publication MS-012-AA ISSUE C.  
FN7877 Rev 2.00  
April 19, 2012  
Page 17 of 18  
ISL267817  
Package Outline Drawing  
M8.118  
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE  
Rev 4, 7/11  
5
3.0±0.05  
A
DETAIL "X"  
D
8
1.10 MAX  
SIDE VIEW 2  
0.09 - 0.20  
4.9±0.15  
3.0±0.05  
5
0.95 REF  
PIN# 1 ID  
1
2
B
0.65 BSC  
GAUGE  
PLANE  
TOP VIEW  
0.25  
3°±3°  
0.55 ± 0.15  
DETAIL "X"  
0.85±010  
H
C
SEATING PLANE  
0.10 C  
0.25 - 0.36  
0.10 ± 0.05  
0.08  
C A-B D  
M
SIDE VIEW 1  
(5.80)  
NOTES:  
1. Dimensions are in millimeters.  
(4.40)  
(3.00)  
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA  
and AMSEY14.5m-1994.  
3. Plastic or metal protrusions of 0.15mm max per side are not  
included.  
(0.65)  
4. Plastic interlead protrusions of 0.15mm max per side are not  
included.  
(0.40)  
(1.40)  
5. Dimensions are measured at Datum Plane "H".  
6. Dimensions in ( ) are for reference only.  
TYPICAL RECOMMENDED LAND PATTERN  
FN7877 Rev 2.00  
April 19, 2012  
Page 18 of 18  

相关型号:

ISL267817IUZ

12-Bit Differential Input 200kSPS SAR ADC
INTERSIL

ISL267817IUZ

12-Bit Differential Input 200kSPS SAR ADC; MSOP8, SOIC8; Temp Range: -40° to 85°C
RENESAS

ISL267817IUZ-T

12-Bit Differential Input 200kSPS SAR ADC; MSOP8, SOIC8; Temp Range: -40° to 85°C
RENESAS

ISL267817IUZ-T7A

12-Bit Differential Input 200kSPS SAR ADC; MSOP8, SOIC8; Temp Range: -40° to 85°C
RENESAS

ISL28005

Micropower, Rail-to-Rail Input Current Sense Amplifier with Voltage Output
INTERSIL

ISL28005FH-100EVAL1Z

Micropower, Rail-to-Rail Input Current Sense Amplifier with Voltage Output
INTERSIL

ISL28005FH-20EVAL1Z

Micropower, Rail-to-Rail Input Current Sense Amplifier with Voltage Output
INTERSIL

ISL28005FH-50EVAL1Z

Micropower, Rail-to-Rail Input Current Sense Amplifier with Voltage Output
INTERSIL

ISL28005FH100Z-T7

Micropower, Rail-to-Rail Input Current Sense Amplifier with Voltage Output
INTERSIL

ISL28005FH100Z-T7A

Micropower, Rail-to-Rail Input Current Sense Amplifier
INTERSIL

ISL28005FH20Z-T7

Micropower, Rail-to-Rail Input Current Sense Amplifier with Voltage Output
INTERSIL

ISL28005FH20Z-T7A

Micropower, Rail-to-Rail Input Current Sense Amplifier
INTERSIL