ISL267450IUZ [INTERSIL]

12-Bit, 1MSPS SAR ADCs; 12位, 1MSPS SAR型ADC
ISL267450IUZ
型号: ISL267450IUZ
厂家: Intersil    Intersil
描述:

12-Bit, 1MSPS SAR ADCs
12位, 1MSPS SAR型ADC

文件: 总19页 (文件大小:747K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit, 1MSPS SAR ADCs  
ISL267450  
The ISL267450 is a 12-bit, 1MSPS sampling SAR-type ADC with  
Features  
• Drop-in Compatible with AD7450  
a differential input span of 2*V  
volts. The ISL267450 features  
REF  
• Differential Input  
excellent linearity over supply and temperature variations and is  
drop-in compatible with the AD7450. The device can operate  
from a supply voltage of either 5V or 3V and maintain  
• Simple SPI-compatible Serial Digital Interface  
• Guaranteed No Missing Codes  
• 1MHz Sampling Rate  
measurement accuracy with input signals up to the supply rails.  
The serial digital interface is SPI compatible and is easily  
interfaced to popular FPGAs and microcontrollers. Power  
dissipation is 9.0mW at a sampling rate of 1MSPS, and just 5µW  
between conversions utilizing Auto Power-Down mode (with a 3V  
supply).  
• 3V or 5V Operation  
• Low Operating Current  
- 1.25mA at 833kSPS with 3V Supplies  
- 1.7mA at 1MSPS with 5V Supplies  
The ISL267450 is available in 8 Ld SOIC or MSOP packages, and  
are specified for operation over the Industrial temperature range  
(–40°C to +85°C).  
• Power-down Current between Conversions: 1µA  
• Excellent Differential Non-Linearity  
• Low THD: -83dB (typ)  
• Pb-Free (RoHS Compliant)  
• Available in SOIC and MSOP Packages  
Applications  
• Remote Data Acquisition  
• Battery Operated Systems  
• Industrial Process Control  
• Energy Measurement  
• Data Acquisition Systems  
• Pressure Sensors  
• Flow Controllers  
Block Diagram  
+VDD  
VREF  
SCLK  
V
IN+  
SERIAL  
INTERFACE  
ADC  
SDATA  
VIN-  
CS  
GND  
August 10, 2012  
FN8341.0  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2012. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL267450  
Typical Connection Diagram  
0.1µF  
+3V/5V  
SUPPLY  
VREF  
+
0.1µF  
10µF  
VREF  
VIN+  
VIN–  
VDD  
SCLK  
SDATA  
CS  
VREF(P-P)  
VREF(P-P)  
µP/µC  
GND  
SERIAL  
INTERFACE  
Pin Configuration  
ISL267450  
(8 LD SOIC, MSOP)  
TOP VIEW  
V
V
REF  
1
2
3
4
8
7
6
5
DD  
V
SCLK  
IN+  
V
SDATA  
CS  
IN-  
GND  
Pin Description  
ISL267450  
PIN NAME  
PIN NUMBER  
DESCRIPTION  
V
8
7
6
5
4
3
2
1
Supply voltage, +2.7V to 5.25V.  
DD  
SCLK  
SDATA  
CS  
Serial clock input. Controls digital I/O timing and clocks the conversion.  
Digital conversion output.  
Chip select input. Controls the start of a conversion when going low.  
GND  
Ground  
V
V
Negative analog input.  
Positive analog input.  
Reference voltage.  
IN–  
IN+  
REF  
V
FN8341.0  
August 10, 2012  
2
ISL267450  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
VDD RANGE  
(V)  
TEMP RANGE  
(°C)  
PACKAGE  
(PB-free)  
PKG.  
DWG. #  
PART MARKING  
ISL267450IBZ  
ISL267450IUZ  
NOTES:  
267450 IBZ  
67450  
2.7 to 5.25  
2.7 to 5.25  
-40 to +85  
-40 to +85  
8 Ld SOIC  
8 Ld MSOP  
M8.15  
M8.118  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL267450. For more information on MSL please see techbrief TB363.  
FN8341.0  
August 10, 2012  
3
ISL267450  
Table of Contents  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Typical Performance Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
ADC Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Voltage Reference Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Converter Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Acquisition Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Short Cycling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power vs Throughput Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Application Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Grounding and Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Signal-to-(Noise + Distortion) Ratio (SINAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Total Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Peak Harmonic or Spurious Noise (SFDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Intermodulation Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Aperture Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Aperture Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Full Power Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Common-Mode Rejection Ratio (CMRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Integral Nonlinearity (INL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Differential Nonlinearity (DNL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Zero-Code Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Positive Gain Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Negative Gain Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Track and Hold Acquisition Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Power Supply Rejection Ratio (PSRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Package Outline Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
FN8341.0  
August 10, 2012  
4
ISL267450  
Absolute Maximum Ratings  
Thermal Information  
Any Pin to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.0V  
Thermal Resistance (Typical)  
8 Ld SOIC Package (Notes 4, 5). . . . . . . . . .  
8 Ld MSOP Package (Notes 4, 5). . . . . . . . .  
θ
JA (°C/W)  
120  
θ
JC (°C/W)  
Analog Input to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to V +0.3V  
64  
64  
DD  
Digital I/O to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to V +0.3V  
DD  
165  
Digital Input Voltage to GND . . . . . . . . . . . . . . . . . . . . . . . -0.3V to V +0.3V  
Maximum Current In to Any Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA  
ESD Rating  
Human Body Model (Tested per JESD22-A114F) . . . . . . . . . . . . . . . . 8kV  
Machine Model (Tested per JESD22-A115B) . . . . . . . . . . . . . . . . . 400V  
Charged Device Model (Tested per JESD22-C101E). . . . . . . . . . . . 1.5kV  
Latch Up (Tested per JESD78C; Class 2, Level A) . . . . . . . . . . . . . . . 100mA  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
DD  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
5. For θ , the “case temp” location is taken at the package top center.  
JC  
Electrical Specifications  
V
= +3.0V to +3.3V, F  
= 15MHz, F = 833kSPS, V  
REF  
= 1.25V, F = 200kHz; V = +4.75V to  
IN DD  
DD  
SCLK  
S
+5.25V, F  
SCLK  
= 18MHz, F = 1MSPS, V  
= 2.5V, F = 300kHz; V = V , T = T  
to T  
unless otherwise noted. Typical values are at  
S
REF  
IN CM REF  
A
MIN  
MAX  
T
= +25°C. Boldface limits apply over the operating temperature range, -40°C to +85°C.  
A
MIN  
MAX  
SYMBOL  
DYNAMIC PERFORMANCE  
PARAMETER  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNITS  
SINAD  
Signal-to (Noise + Distortion) Ratio  
V
V
V
V
V
V
= 5V  
= 3V  
= 5V  
= 3V  
= 5V  
= 3V  
70  
67  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
ns  
DD  
DD  
DD  
DD  
DD  
DD  
THD  
Total Harmonic  
Distortion  
-80  
-78  
-82  
-80  
–89  
-85  
10  
-75  
-73  
-75  
-73  
SFDR  
IMD  
Spurious Free Dynamic Range  
Intermodulation Distortion  
2nd Order Terms  
3rd Order Terms  
tpd  
Aperture Delay  
Δtpd  
β3dB  
Aperture Jitter  
50  
ps  
Full Power Bandwidth  
@ –3dB  
20  
MHz  
MHz  
dB  
@ –0.1dB  
2.5  
-87  
PSRR  
Power Supply Rejection Ratio  
DC ACCURACY  
N
INL  
Resolution  
12  
-1  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Zero-Code Error  
1
0.95  
3
DNL  
Guaranteed no missed codes to 12 bits  
-0.95  
-3  
OFFSET  
V
V
V
V
V
V
= 5V  
= 3V  
= 5V  
= 3V  
= 5V  
= 3V  
DD  
DD  
DD  
DD  
DD  
DD  
-6  
6
GAIN  
Positive Gain Error  
Negative Gain Error  
-3  
3
-6  
6
-3  
3
-6  
6
FN8341.0  
August 10, 2012  
5
ISL267450  
Electrical Specifications  
V
= +3.0V to +3.3V, F  
= 15MHz, F = 833kSPS, V  
REF  
= 1.25V, F = 200kHz; V = +4.75V to  
IN DD  
DD  
SCLK  
S
+5.25V, F  
SCLK  
= 18MHz, F = 1MSPS, V  
= 2.5V, F = 300kHz; V = V , T = T  
to T  
unless otherwise noted. Typical values are at  
S
REF  
IN CM REF  
A
MIN  
MAX  
T
= +25°C. Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)  
A
MIN  
MAX  
SYMBOL  
ANALOG INPUT (Note 7)  
|AIN| Full-Scale Input Span  
, V  
PARAMETER  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNITS  
2 x V  
REF  
V
- V  
V
V
V
IN+ IN–  
V
Absolute Input Voltage Range  
V
= V  
IN–  
CM REF  
IN+  
V
V
±
IN+  
CM  
V
/2  
REF  
VIN–  
V
±
V
CM  
V
/2  
REF  
I
Input Leakage Current  
Input Capacitance  
-1  
1
µA  
pF  
pF  
LEAK  
C
Track Mode  
Hold Mode  
12  
6
VIN  
REFERENCE INPUT  
V
V
Input Voltage Range  
V
= 5V (±1% tolerance for specified  
2.5  
V
V
REF  
REF  
DD  
performance)  
V
= 3V (±1% tolerance for specified  
1.25  
DD  
performance)  
I
DC Leakage Current  
Input Capacitance  
-1  
1
μA  
LEAK  
C
V
19  
pF  
VREF  
REF  
LOGIC INPUTS  
V
Input High Voltage  
Input Low Voltage  
Input Leakage Current  
Input Capacitance  
2.4  
-1  
V
V
IH  
V
0.8  
1
IL  
I
µA  
pF  
LEAK  
C
10  
IN  
LOGIC OUTPUTS  
V
Output High Voltage  
I
= 200µA  
V - 0.3  
DD  
V
V
OH  
SOURCE  
= 200µA  
SINK  
V
Output Low Voltage  
I
0.4  
1
OL  
I
Floating-State Leakage Current  
Floating-State Output Capacitance  
Output Coding  
-1  
µA  
pF  
LEAK  
C
10  
OUT  
Two’s Complement  
CONVERSION RATE  
t
Conversion Time  
888ns with F  
SCLK  
= 18MHz  
= 15MHz  
16  
16  
SCLK Cycles  
SCLK Cycles  
ns  
CONV  
1.07µs with F  
SCLK  
t
Acquisition Time (Note 8)  
Throughput Rate  
Sine Wave Input  
200  
1
ACQ  
F
V
V
= 5V  
= 3V  
MSPS  
max  
DD  
833  
kSPS  
DD  
POWER REQUIREMENTS  
V
Positive Supply Voltage Range  
3.3V ± 10%  
5V ± 5%  
3.0  
3.6  
V
V
DD  
4.75  
5.25  
FN8341.0  
August 10, 2012  
6
ISL267450  
Electrical Specifications  
V
= +3.0V to +3.3V, F  
= 15MHz, F = 833kSPS, V  
REF  
= 1.25V, F = 200kHz; V = +4.75V to  
IN DD  
DD  
SCLK  
S
+5.25V, F  
SCLK  
= 18MHz, F = 1MSPS, V  
= 2.5V, F = 300kHz; V = V , T = T  
to T  
unless otherwise noted. Typical values are at  
S
REF  
IN CM REF  
A
MIN  
MAX  
T
= +25°C. Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)  
A
MIN  
(Note 6)  
MAX  
(Note 6)  
SYMBOL  
PARAMETER  
Positive Supply Input Current  
Static  
TEST CONDITIONS  
TYP  
UNITS  
I
DD  
V
V
V
= 3V/5V; SCLK ON or OFF  
1
µA  
mA  
mA  
DD  
DD  
DD  
Dynamic  
= 5V; f = 1MSPS  
1.7  
S
= 3V; f = 833kSPS  
S
1.25  
P
Power Dissipation  
Static Mode  
Dynamic  
D
V
V
V
= 3V/5V; SCLK ON or OFF  
5
µW  
mW  
mW  
DD  
DD  
DD  
= 5V; f = 1MSPS  
8.5  
S
= 3V; f = 833kSPS  
3.75  
S
NOTES:  
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
7. The absolute voltage applied to each analog input must not exceed V  
.
DD  
8. Read about “Acquisition Time” on page 14 for a discussion of this parameter.  
Electrical Specifications Limits established by characterization and are not production tested. V = +4.75V to +5.25V,  
DD  
F
= 18MHz, F = 1MSPS, V  
REF  
= 2.5V, F = 300kHz; V = V , T = T  
IN CM REF  
to T  
unless otherwise noted. Typical values are at T = +25°C.  
SCLK  
S
A
MIN  
MAX  
A
Boldface limits apply over the operating temperature range, -40°C to +85°C.  
MIN  
MAX  
SYMBOL  
fSCLK  
PARAMETER  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNITS  
MHz  
ns  
Clock Frequency  
Clock Period  
0.05  
55  
18  
t
SCLK  
t
Conversion Time  
16 x t  
SCLK  
888  
ns  
CONVERT  
t
Quiet Time Before Sample  
CS Falling Edge to S Falling Edge Setup Time  
25  
10  
10  
ns  
QUIET  
t
ns  
CSS  
CLK  
t
CS Falling Edge to SDATA Disable Time (Note 9) Extrapolated back to true bus relinquish  
Data Access Time after SCLK Falling Edge  
SCLK High Pulsewidth  
35  
ns  
DISABLE  
t
0.4 x t  
0.6 x t  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SWH  
SCLK  
SCLK  
t
SCLK Low Pulsewidth  
0.4 x t  
0.6 x t  
SWL  
SCLK  
SCLK  
t
SCLK Falling Edge to SDATA Valid  
SCLK Falling Edge to SDATA Hold  
Acquisition Time (Note 8)  
40  
20  
CLKDV  
t
10  
10  
SDH  
t
ACQ  
t
CS Pulse Width  
CSW  
t
CS Falling Edge to SDATA Valid  
CDV  
Electrical Specifications Limits established by characterization and are not production tested. V = +3.0V to +3.3V, F  
= 15MHz,  
SCLK  
DD  
F
= 833kSPS, V  
= 1.25V, F = 200kHz; V  
IN REF  
= 2.5V; V = V , T = T  
CM REF  
to T  
unless otherwise noted. Typical values are at T = +25°C.  
S
REF  
A
MIN  
MAX  
A
Boldface limits apply over the operating temperature range, -40°C to +85°C.  
MIN  
MAX  
SYMBOL  
fSCLK  
PARAMETER  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNITS  
MHz  
ns  
Clock Frequency  
Clock Period  
0.05  
55  
15  
t
SCLK  
t
Conversion Time  
16 x t  
SCLK  
1.07  
µs  
CONVERT  
FN8341.0  
August 10, 2012  
7
ISL267450  
Electrical Specifications Limits established by characterization and are not production tested. V = +3.0V to +3.3V, F  
= 15MHz,  
SCLK  
DD  
F
= 833kSPS, V  
= 1.25V, F = 200kHz; V  
IN  
= 2.5V; V = V , T = T  
to T  
unless otherwise noted. Typical values are at T = +25°C.  
S
REF  
REF  
CM  
REF  
A
MIN  
MAX  
A
Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)  
MIN  
MAX  
SYMBOL  
PARAMETER  
Quiet Time Before Sample  
CS Falling Edge to S Falling Edge Setup Time  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNITS  
ns  
t
25  
10  
10  
QUIET  
t
ns  
CSS  
CLK  
t
CS Falling Edge to SDATA Disable Time (Note 9) Extrapolated back to true bus relinquish  
SCLK High Pulsewidth  
35  
µs  
DISABLE  
t
0.4 x t  
0.6 x t  
ns  
SWH  
SCLK  
SCLK  
t
SCLK Low Pulsewidth  
0.4 x t  
0.6 x t  
ns  
SWL  
SCLK  
SCLK  
t
SCLK Falling Edge to SDATA Valid  
SCLK Falling Edge to SDATA Hold  
Acquisition Time (Note 8)  
40  
ns  
CLKDV  
t
10  
10  
ns  
SDH  
t
ns  
ACQ  
t
CS Pulse Width  
ns  
CSW  
t
CS Falling Edge to SDATA Valid  
20  
ns  
CDV  
NOTE:  
9. During characterization, t  
is measured from the release point with a 10pF load (see Figure 2 on page 8) and the equivalent timing using the  
DISABLE  
AD7450 loading (50pF) is calculated.  
FIGURE 1. SERIAL INTERFACE TIMING DIAGRAM  
VDD  
RL  
2.85k  
OUTPUT  
PIN  
CL  
10 pF  
FIGURE 2. EQUIVALENT LOAD CIRCUIT  
FN8341.0  
August 10, 2012  
8
ISL267450  
Typical Performance Characteristics  
0
0
-20  
8192-POINT FFT  
8192-POINT FFT  
f
f
= 833kSPS  
f
f
= 1MSPS  
-20  
SAMPLE  
= 300kHz  
SAMPLE  
= 300kHz  
IN  
IN  
SINAD = 69.83dB  
THD = -82.02dB  
SFDR = 82.93dB  
SINAD = 71.55dB  
THD = -80.88dB  
SFDR = 84.08dB  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FIGURE 4. DYNAMIC PERFORMANCE AT 833KSPS WITH V = 3V  
DD  
FIGURE 3. DYNAMIC PERFORMANCE AT 1MSPS WITH V = 5V  
DD  
1.0  
0.8  
74  
72  
70  
68  
0.6  
0.4  
0.2  
2.7V  
3.3V  
0.0  
66  
64  
62  
60  
4.75V  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
5.25V  
0
1024  
2048  
3072  
4096  
10  
100  
1k  
TEST FREQUENCY (Hz)  
CODE  
FIGURE 5. SINAD vs ANALOG FREQUENCY FROM VARIOUS SUPPLY  
VOLTAGES  
FIGURE 6. TYPICAL DNL FOR V = 5V  
DD  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
CODE  
CODE  
FIGURE 7. TYPICAL DNL FOR V = 3V  
DD  
FIGURE 8. TYPICAL INL FOR V = 5V  
DD  
FN8341.0  
August 10, 2012  
9
ISL267450  
Typical Performance Characteristics (Continued)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
1.0  
0.8  
0.6  
0.4  
0.2  
POS DNL  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
NEG DNL  
2.0  
0.0  
0.5  
1.0  
1.5  
V
2.5  
3.0  
3.5  
0
1024  
2048  
3072  
4096  
CODE  
(V)  
REF  
FIGURE 9. TYPICAL INL FOR V = 3V  
DD  
FIGURE 10. CHANGE IN DNL vs V  
FOR V = 5V  
DD  
REF  
3.0  
2.0  
2.0  
1.5  
1.0  
1.0  
POS INL  
POS DNL  
NEG DNL  
0.5  
0.0  
0.0  
NEG INL  
-1.0  
-2.0  
-3.0  
-0.5  
-1.0  
-1.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
(V)  
2.5  
3.0  
3.5  
V
(V)  
V
REF  
REF  
FIGURE 11. CHANGE IN DNL vs V  
FOR V = 3.3V  
DD  
FIGURE 12. CHANGE IN INL vs V  
FOR V = 5V  
DD  
REF  
REF  
1.0  
0.0  
2.5  
3.3V VDD  
2.0  
1.5  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
-6.0  
-7.0  
-8.0  
-9.0  
1.0  
POS INL  
5V VDD  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
NEG INL  
0.0  
0.5  
1.0  
1.5  
V
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
V
(V)  
(V)  
REF  
REF  
FIGURE 13. CHANGE IN INL vs V  
FOR V = 3.3V  
DD  
FIGURE 14. CHANGE IN OFFSET ERROR vs V  
FOR V = 5V  
REF DD  
REF  
AND 3.3V  
FN8341.0  
August 10, 2012  
10  
ISL267450  
Typical Performance Characteristics (Continued)  
70000  
60000  
50000  
40000  
30000  
20000  
10000  
0
70000  
60000  
50000  
40000  
30000  
20000  
10000  
0
2044  
2045  
2046  
2047  
2048  
2049  
2050  
2044  
2045  
2046  
2047  
2048  
2049  
2050  
OUTPUT CODE  
OUTPUT CODE  
FIGURE 15. HISTOGRAM OF THE OUTPUT CODES WITH A DC INPUT  
FIGURE 16. HISTOGRAM OF THE OUTPUT CODES WITH A DC INPUT  
FOR V = 3V  
FOR V = 5V  
DD  
DD  
-40  
-50  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
-60  
5V VDD  
-70  
3.3V VDD  
-80  
9.0  
8.5  
-90  
8.0  
-100  
-110  
7.5  
7.0  
0.0  
0.5  
1.0  
1.5  
2.0  
(V)  
2.5  
3.0  
3.5  
10  
100  
1k  
10k  
FREQUENCY (kHz)  
V
REF  
FIGURE 18. CMRR vs INPUT FREQUENCY FOR V = 5V AND 3V  
DD  
FIGURE 17. CHANGE IN ENOB vs V  
FOR V = 5V AND 3.3V  
DD  
REF  
Functional Description  
The ISL267450 is based on a successive approximation register  
(SAR) architecture utilizing capacitive charge redistribution  
digital-to-analog converters (DACs). Figure 19 shows a simplified  
representation of the converter. During the acquisition phase  
(ACQ), the differential input is stored on the sampling capacitors  
(CS). The comparator is in a balanced state since the switch  
CONV  
CS  
VIN+  
VIN-  
ACQ  
ACQ  
SAR  
LOGIC  
ACQ CONV  
CS  
CONV  
VREF  
across its inputs is closed. The signal is fully acquired after t  
ACQ  
has elapsed, and the switches then transition to the conversion  
phase (CONV) so the stored voltage may be converted to digital  
format. The comparator will become unbalanced when the  
differential switch opens and the input switches transition  
(assuming that the stored voltage is not exactly at mid-scale).  
The comparator output reflects whether the stored voltage is  
above or below mid-scale, which sets the value of the MSB. The  
SAR logic then forces the capacitive DACs to adjust up or down by  
one quarter of full-scale by switching in binarily weighted  
capacitors. Again the comparator output reflects whether the  
stored voltage is above or below the new value, setting the value  
of the next lowest bit. This process repeats until all 12 bits have  
been resolved.  
FIGURE 19. SAR ADC ARCHITECTURAL BLOCK DIAGRAM  
FN8341.0  
August 10, 2012  
11  
ISL267450  
An external clock must be applied to the SCLK pin to generate a  
V
conversion result. The allowable frequency range for SCLK is  
50kHz to 18MHz. Serial output data is transmitted on the falling  
edge of SCLK. The receiving device (FPGA, DSP or  
Microcontroller) may latch the data on the rising edge of SCLK to  
maximize set-up and hold times.  
5.0  
4.0  
3.0  
2.0  
1.0  
V
IN-  
A stable, low-noise reference voltage must be applied to the V  
REF  
V
IN+  
pin to set the full-scale input range and common-mode voltage.  
See “Voltage Reference Input” on page 13 for more details.  
2.0V  
P-P  
VCM  
ADC Transfer Function  
The output coding for the ISL267450 is two’s complement. The  
first code transition occurs at successive LSB values (i.e., 1 LSB,  
2 LSB, and so on). The LSB size of the ISL267450 is  
2*V  
/4096. The ideal transfer characteristic of the ISL267450  
t
REF  
is shown in Figure 20.  
VREF = 2V  
1LSB = 2•VREF/4096  
V
011...111  
011...110  
5.0  
4.0  
3.0  
2.0  
1.0  
V
IN-  
000...001  
000...000  
111...111  
V
IN+  
2.5V  
P-P  
VCM  
100...010  
100...001  
100...000  
VREF  
+VREF +VREF  
1½LSB 1LSB  
0V  
ANALOG INPUT  
+ ½LSB  
V
IN+ – (VIN–)  
t
FIGURE 20. IDEAL TRANSFER CHARACTERISTICS  
VREF = 2.5V  
Analog Input  
The ISL267450 features a fully differential input with a nominal  
full-scale range equal to twice the applied V voltage. Each  
FIGURE 22. RELATIONSHIP BETWEEN V AND FULL-SCALE RANGE  
REF  
REF  
, 180° out-of-phase from one another for  
Figure 22 shows the relationship between the reference voltage  
input swings V  
V
REF P-P  
a total differential input of 2*V  
and the full-scale input range for two different values of V  
.
REF  
and the allowable  
(see Figure 21).  
REF  
Note that there is a trade-off between V  
REF  
common mode input voltage (VCM). The full-scale input range is  
proportional to V ; therefore the VCM range must be limited for  
REF  
VREF(P-P)  
VIN+  
larger values of V  
in order to keep the absolute maximum and  
and V pins within specification.  
REF  
minimum voltages on the V  
ISL267450  
IN+  
IN–  
Figures 23 and 24 illustrate this relationship for 5V and 3V  
operation, respectively. The dashed lines show the theoretical  
VCM  
VIN-  
VREF(P-P)  
VCM range based solely on keeping the V  
and V pins within  
IN+  
IN–  
the supply rails. Additional restrictions are imposed due to the  
required headroom of the input circuitry, resulting in practical  
limits shown by the shaded area.  
FIGURE 21. DIFFERENTIAL INPUT SIGNALING  
Differential signaling offers several benefits over a single-ended  
input, such as:  
• Doubling of the full-scale input range (and therefore the  
dynamic range)  
• Improved even order harmonic distortion  
• Better noise immunity due to common mode rejection  
FN8341.0  
August 10, 2012  
12  
ISL267450  
Voltage Reference Input  
VCM  
The voltage magnitude applied to the V  
pin defines the full  
REF  
5.0  
4.0  
3.0  
2.0  
1.0  
scale span of the ADC as 2* V . The device is specified with a  
REF  
voltage reference of 2.5V for 5V operation and with a voltage  
reference of 2.0V for 3V operation. But, V  
voltages ranging from 0.1V to 3.5V for operation from 5 V V  
and voltages ranging from 0.1V to 2.2V for operation from a 3V  
input accepts  
REF  
DD  
V
.
DD  
Figures 25 and 26 illustrate possible voltage reference options  
for the ISL267450. Figure 25 uses the ISL21090 precision  
voltage reference, which exhibits exceptionally low drift and low  
noise. The ISL21090 must use a power supply greater than 4.7V.  
VREF  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
FIGURE 23. RELATIONSHIP BETWEEN V  
AND VCM FOR V = 5V  
DD  
REF  
The V  
input pin on the ISL267450 uses very low current, so  
REF  
the decoupling capacitor can be small (0.1µF).  
VCM  
Figure 26 illustrates the ISL21010 voltage reference. The  
ISL21010 is available in various output voltages. It has higher  
noise and drift than the ISL26090, but consumes very low  
operating current, which makes it an excellent choice for  
battery-powered applications.  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
VREF  
0.5  
1.0  
1.5  
2.0  
2.5  
FIGURE 24. RELATIONSHIP BETWEEN VREF AND VCM FOR V = 3V  
DD  
5V  
BULK  
+
0.1µF  
DNC  
VIN  
DNC  
DNC  
1
8
7
6
5
V
DD  
ISL267450  
2
3
4
V
REF  
2.5V  
COMP VOUT  
GND TRIM  
0.1µF  
0.1µF  
ISL21090  
FIGURE 25. PRECISION VOLTAGE REFERENCE FOR +5V SUPPLY  
+3.0V TO +3.3V  
OR +5V  
+
BULK  
0.1µF  
VIN  
1
2
0.1µF  
GND  
3
VDD  
ISL267450  
VREF  
VOUT  
1.25, 2.048 OR 2.5V  
ISL21010  
0.1µF  
FIGURE 26. VOLTAGE REFERENCE FOR +3.0V TO +3.3V, OR FOR +5V SUPPLY  
FN8341.0  
August 10, 2012  
13  
ISL267450  
FIGURE 27. NORMAL MODE OPERATION  
SCLK value than 18MHz, the minimum acquisition time is 200ns.  
CONVERTER OPERATION  
This minimum acquisition time also applies to the device when  
operated at 3V supply or if short cycling is utilized.  
The ISL267450 is designed to minimize power consumption by  
only powering up the SAR comparator during conversion time.  
When the converter is in track mode (its sample capacitors are  
tracking the input signal), the SAR comparator is powered down.  
The state of the converter is dictated by the logic state of CS.  
When CS is high, the SAR comparator is powered down while the  
sampling capacitor array is tracking the input. When CS  
transitions low, the capacitor array immediately captures the  
analog signal that is being tracked. After CS is taken low, the  
SCLK pin is toggled 16 times. For the first 3 clocks, the  
comparator is powered up and auto-zeroed, then the SAR  
decision process is begun. This process uses 12 SCLK cycles.  
Each SAR decision is presented to the SDATA output on the next  
clock cycle after the SAR decision is performed. The SAR process  
(12 bits) is completed on SCLK cycle 15. At this point in time, the  
SAR comparator is powered down and the capacitor array is  
placed back into Track mode. The last SAR comparator decision  
is output from SDATA on the 16th SCLK cycle. When the last data  
bit is output from SDATA, the output switches to a logic 0 until CS  
is taken high, at which time, the SDATA output enters a High-Z  
state.  
SHORT CYCLING  
In cases where a lower resolution conversion is acceptable, CS  
can be pulled high before all 12 bits are clocked out. This is  
referred to as short cycling, and it can be used to further optimize  
power dissipation. In this mode, a lower resolution result will be  
output, but the ADC will enter static mode sooner and exhibit a  
lower average power consumption than if the complete  
conversion cycle were carried out. The minimum acquisition time  
(tACQ) requirement of 200ns must be met for the next  
conversion to be valid.  
POWER vs THROUGHPUT RATE  
The ISL267450 provides reduced power consumption at lower  
conversion rates by automatically switching into a low-power  
mode after completing a conversion. The average power  
consumption of the ADC decreases at lower throughput rates.  
Figure 28 shows the typical power consumption over a wide  
range of throughput rates.  
100  
Figure 27 illustrates the serial port system timing for the  
ISL267450.  
POWER-ON RESET  
10  
When power is first applied, the ISL267450 performs a power-on  
reset that requires approximately 2.5ms to execute. After this is  
complete, a single dummy conversion must be executed (by  
taking CS low) in order to initialize the switched capacitor track  
and hold. The dummy conversion cycle will take 889ns with an  
18MHz SCLK. Once the dummy cycle is complete, the ADC mode  
will be determined by the state of CS. Regular conversions can be  
started immediately after this dummy cycle is completed and  
time has been allowed for proper acquisition.  
V
= 5V  
DD  
1
0.1  
V
= 3V  
150  
DD  
0.01  
0
50  
100  
200  
250  
300  
350  
ACQUISITION TIME  
THROUGHPUT (kSPS)  
To achieve the maximum sample rate (1MSps) in the ISL267450  
device, the maximum acquisition time is 200ns. For slower  
conversion rates, or for conversions performed using a slower  
FIGURE 28. POWER CONSUMPTION vs THROUGHPUT RATE  
FN8341.0  
August 10, 2012  
14  
ISL267450  
microstrip technique is by far the best but is not always possible  
with a double-sided board.  
Serial Interface  
Conversion data is accessed with an SPI-compatible serial  
interface. The interface consists of the serial clock (SCLK), serial  
data output (SDATA), and chip select (CS).  
In this technique, the component side of the board is dedicated  
to ground planes, while signals are placed on the solder side.  
Good decoupling is also important. All analog supplies should be  
decoupled with μF tantalum capacitors in parallel with 0.1μF  
capacitors to GND. To achieve the best from these decoupling  
components, they must be placed as close as possible to the  
device.  
A falling edge on the CS signal initiates a conversion by placing  
the part into the acquisition (ACQ) phase. After t  
has elapsed,  
ACQ  
the part enters the conversion (CONV) phase and begins  
outputting the conversion result starting with a null bit followed  
by the most significant bit (MSB) and ending with the least  
significant bit (LSB). The CS pin can be pulled high at this point to  
put the device into Standby mode and reduce the power  
consumption. If CS is held low after the LSB bit has been output,  
the conversion result will be repeated in reverse order until the  
MSB is transmitted, after which the serial output enters a high  
impedance state. The ISL267450 will remain in this state,  
dissipating typical dynamic power levels, until CS transitions high  
then low to initiate the next conversion.  
Terminology  
Signal-to-(Noise + Distortion) Ratio (SINAD)  
This is the measured ratio of signal-to-(noise + distortion) at the  
output of the ADC. The signal is the rms amplitude of the  
fundamental. Noise is the sum of all nonfundamental signals up  
to half the sampling frequency (f /2), excluding DC. The ratio is  
s
dependent on the number of quantization levels in the  
digitization process; the more levels, the smaller the quantization  
noise. The theoretical signal-to-(noise + distortion) ratio for an  
ideal N-bit converter with a sine wave input is given by  
Equation 1:  
Data Format  
Output data is encoded in two’s complement format as shown in  
Table 1. The voltage levels in the table are idealized and don’t  
account for any gain/offset errors or noise.  
(EQ. 1)  
Signal-to-(Noise + Distortion) = (6.02 N + 1.76)dB  
TABLE 1. TWO’S COMPLEMENT DATA FORMATTING  
INPUT  
–Full Scale  
VOLTAGE  
DIGITAL OUTPUT  
1000 0000 0000  
1000 0000 0001  
0000 0000 0000  
0111 1111 1110  
0111 1111 1111  
Thus, for a 12-bit converter this is 74dB, and for a 10-bit it is  
62dB.  
–V  
REF  
–Full Scale + 1LSB  
Midscale  
–V  
+V  
+ 1LSB  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the rms sum of  
harmonics to the fundamental. For the ISL267450, it is defined  
as Equation 2:  
REF  
0
+Full Scale – 1LSB  
+Full Scale  
– 1LSB  
REF  
REF  
+V  
2
2
2
2
2
V
+ V + V + V + V  
2
3 4 5 6  
THD(dB) = 20log -----------------------------------------------------------------------  
(EQ. 2)  
2
V
Application Hints  
Grounding and Layout  
1
where V is the rms amplitude of the fundamental and V , V ,  
1
2
3
V , V , and V are the rms amplitudes of the second to the sixth  
4
5
6
The printed circuit board that houses the ISL267450 should be  
designed so that the analog and digital sections are separated  
and confined to certain areas of the board. This facilitates the  
use of ground planes that can be easily separated. A minimum  
etch technique is generally best for ground planes since it gives  
the best shielding. Digital and analog ground planes should be  
joined in only one place, and the connection should be a star  
ground point established as close to the GND pin on the  
ISL267450 as possible. Avoid running digital lines under the  
device, as this will couple noise onto the die. The analog ground  
plane should be allowed to run under the ISL267450 to avoid  
noise coupling.  
harmonics.  
Peak Harmonic or Spurious Noise (SFDR)  
Peak harmonic or spurious noise is defined as the ratio of the  
rms value of the next largest component in the ADC output  
spectrum (up to fS/2 and excluding DC) to the rms value of the  
fundamental. It is also referred to as Spurious Free Dynamic  
Range (SFDR). Normally, the value of this specification is  
determined by the largest harmonic in the spectrum, but for  
ADCs where the harmonics are buried in the noise floor, it will be  
a noise peak.  
The power supply lines to the device should use as large a trace  
as possible to provide low impedance paths and reduce the  
effects of glitches on the power supply line.  
Intermodulation Distortion  
With inputs consisting of sine waves at two frequencies, fa and  
fb, any active device with nonlinearities will create distortion  
products at sum and difference frequencies of mfa ± nfb where  
m and n = 0, 1, 2 or 3. Intermodulation distortion terms are those  
for which neither m nor n are equal to zero. For example, the  
second order terms include (fa + fb) and (fa – fb), while the third  
order terms include (2fa + fb), (2fa – fb), (fa + 2fb), and (fa –2fb).  
Fast switching signals, such as clocks, should be shielded with  
digital ground to avoid radiating noise to other sections of the  
board, and clock signals should never run near the analog inputs.  
Avoid crossover of digital and analog signals. Traces on opposite  
sides of the board should run at right angles to each other. This  
reduces the effects of feed-through through the board. A  
FN8341.0  
August 10, 2012  
15  
ISL267450  
The ISL267450 is tested using the CCIF standard, where two  
Differential Nonlinearity (DNL)  
input frequencies near the top end of the input bandwidth are  
used. In this case, the second order terms are usually distanced  
in frequency from the original sine waves, while the third order  
terms are usually at a frequency close to the input frequencies.  
As a result, the second and third order terms are specified  
separately. The calculation of the intermodulation distortion is as  
per the THD specification, where it is the ratio of the rms sum of  
the individual distortion products to the rms amplitude of the  
sum of the fundamentals expressed in dBs.  
This is the difference between the measured and the ideal 1 LSB  
change between any two adjacent codes in the ADC.  
Zero-Code Error  
This is the deviation of the midscale code transition (111...111 to  
000...000) from the ideal V  
– V  
(i.e., 0 LSB).  
IN+  
IN–  
Positive Gain Error  
This is the deviation of the last code transition (011...110 to  
011...111) from the ideal V – V (i.e., +V – 1 LSB), after  
the zero code error has been adjusted out.  
Aperture Delay  
This is the amount of time from the leading edge of the sampling  
clock until the ADC actually takes the sample.  
IN+  
IN–  
REF  
Negative Gain Error  
Aperture Jitter  
This is the sample-to-sample variation in the effective point in  
time at which the actual sample is taken.  
This is the deviation of the first code transition (100...000 to  
100...001) from the ideal V – VIN– (i.e., -V + 1 LSB), after  
IN+  
the zero code error has been adjusted out.  
REF  
Track and Hold Acquisition Time  
Full Power Bandwidth  
The track and hold acquisition time is the minimum time  
required for the track and hold amplifier to remain in track mode  
for its output to reach and settle to within 0.5 LSB of the applied  
input signal.  
The full power bandwidth of an ADC is that input frequency at  
which the amplitude of the reconstructed fundamental is  
reduced by 0.1dB or 3dB for a full-scale input.  
Common-Mode Rejection Ratio (CMRR)  
The common-mode rejection ratio is defined as the ratio of the  
power in the ADC output at full-scale frequency, f, to the power of  
Power Supply Rejection Ratio (PSRR)  
The power supply rejection ratio is defined as the ratio of the  
power in the ADC output at full-scale frequency, f, to ADC V  
supply of frequency f . The frequency of this input varies from  
S
a 200mV  
sine wave applied to the common-mode voltage of  
of frequency fs as shown by Equation 3.:  
IN–  
DD  
P-P  
and V  
V
IN+  
1kHz to 1MHz.  
CMRR(dB) = 10log(Pfl Pfs)  
(EQ. 3)  
PSRR(dB) = 10log(Pf Pfs)  
(EQ. 4)  
Pf is the power at the frequency f in the ADC output; Pfs is the  
power at frequency fs in the ADC output.  
Pf is the power at frequency f in the ADC output; Pfs is the power  
at frequency f in the ADC output.  
s
Integral Nonlinearity (INL)  
This is the maximum deviation from a straight line passing  
through the endpoints of the ADC transfer function.  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8341.0  
August 10, 2012  
16  
ISL267450  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest revision.  
DATE  
REVISION  
FN8341.0  
CHANGE  
August 10, 2012  
Initial Release.  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISL267450  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
FITs are available from our website at: http://rel.intersil.com/reports/search.php  
FN8341.0  
August 10, 2012  
17  
ISL267450  
Package Outline Drawing  
M8.15  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 4, 1/12  
DETAIL "A"  
1.27 (0.050)  
0.40 (0.016)  
INDEX  
AREA  
6.20 (0.244)  
5.80 (0.228)  
0.50 (0.20)  
x 45°  
0.25 (0.01)  
4.00 (0.157)  
3.80 (0.150)  
8°  
0°  
1
2
3
0.25 (0.010)  
0.19 (0.008)  
SIDE VIEW “B”  
TOP VIEW  
2.20 (0.087)  
1
8
SEATING PLANE  
0.60 (0.023)  
1.27 (0.050)  
1.75 (0.069)  
5.00 (0.197)  
4.80 (0.189)  
2
3
7
6
1.35 (0.053)  
-C-  
4
5
0.25(0.010)  
0.10(0.004)  
1.27 (0.050)  
0.51(0.020)  
0.33(0.013)  
5.20(0.205)  
SIDE VIEW “A  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
2. Package length does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
3. Package width does not include interlead flash or protrusions. Interlead  
flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.  
4. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
5. Terminal numbers are shown for reference only.  
6. The lead width as measured 0.36mm (0.014 inch) or greater above the  
seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).  
7. Controlling dimension: MILLIMETER. Converted inch dimensions are not  
necessarily exact.  
8. This outline conforms to JEDEC publication MS-012-AA ISSUE C.  
FN8341.0  
August 10, 2012  
18  
ISL267450  
Package Outline Drawing  
M8.118  
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE  
Rev 4, 7/11  
5
3.0±0.05  
A
DETAIL "X"  
D
8
1.10 MAX  
SIDE VIEW 2  
0.09 - 0.20  
4.9±0.15  
3.0±0.05  
5
0.95 REF  
PIN# 1 ID  
1
2
B
0.65 BSC  
GAUGE  
PLANE  
TOP VIEW  
0.25  
3°±3°  
0.55 ± 0.15  
DETAIL "X"  
0.85±010  
H
C
SEATING PLANE  
0.10 C  
0.25 - 0.36  
0.10 ± 0.05  
0.08  
C A-B D  
M
SIDE VIEW 1  
(5.80)  
NOTES:  
1. Dimensions are in millimeters.  
(4.40)  
(3.00)  
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA  
and AMSEY14.5m-1994.  
3. Plastic or metal protrusions of 0.15mm max per side are not  
included.  
(0.65)  
4. Plastic interlead protrusions of 0.15mm max per side are not  
included.  
(0.40)  
(1.40)  
5. Dimensions are measured at Datum Plane "H".  
6. Dimensions in ( ) are for reference only.  
TYPICAL RECOMMENDED LAND PATTERN  
FN8341.0  
August 10, 2012  
19  

相关型号:

ISL267452

12-Bit, 555kSPS SAR ADC
INTERSIL

ISL267452IHZ-T

12-Bit, 555kSPS SAR ADC
INTERSIL

ISL267452IHZ-T7A

12-Bit, 555kSPS SAR ADC
INTERSIL

ISL267817

Intersil’s Solutions for Industrial Process Control
INTERSIL

ISL267817IBZ

12-Bit Differential Input 200kSPS SAR ADC
INTERSIL

ISL267817IBZ-T7

ADC, Successive Approximation
RENESAS

ISL267817IBZ-T7A

ADC, Successive Approximation
RENESAS

ISL267817IUZ

12-Bit Differential Input 200kSPS SAR ADC
INTERSIL

ISL267817IUZ

12-Bit Differential Input 200kSPS SAR ADC; MSOP8, SOIC8; Temp Range: -40° to 85°C
RENESAS

ISL267817IUZ-T

12-Bit Differential Input 200kSPS SAR ADC; MSOP8, SOIC8; Temp Range: -40° to 85°C
RENESAS

ISL267817IUZ-T7A

12-Bit Differential Input 200kSPS SAR ADC; MSOP8, SOIC8; Temp Range: -40° to 85°C
RENESAS

ISL28005

Micropower, Rail-to-Rail Input Current Sense Amplifier with Voltage Output
INTERSIL