ISL21007CFB820ZT [RENESAS]

Three Terminal Voltage Reference, 1 Output, 2.048V, Trim/Adjustable, PDSO8;
ISL21007CFB820ZT
型号: ISL21007CFB820ZT
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Three Terminal Voltage Reference, 1 Output, 2.048V, Trim/Adjustable, PDSO8

光电二极管
文件: 总20页 (文件大小:1119K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision, Low Noise FGA™ Voltage References  
ISL21007  
Features  
The ISL21007 FGA™ voltage references are extremely low  
power, high precision, and low noise voltage references  
fabricated on Intersil’s proprietary Floating Gate Analog  
technology. The ISL21007 features very low noise (4.5µVP-P for  
0.1Hz to 10Hz) and very low operating current (150µA, Max). In  
addition, the ISL21007 family features guaranteed initial  
accuracy as low as ±0.5mV.  
• Reference Output Voltage . . . .1.250V, 2.048V, 2.500V,3.000V  
• Initial Accuracy. . . . . . . . . . . . . . . . . . . . . . . ±0.5mV (B grade)  
• Input Voltage Range  
ISL21007-12, 20, 25. . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.5V  
ISL21007-30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2V to 5.5V  
• Low Output Voltage Noise. . . . . . . . 4.5µVP-P (0.1Hz to 10Hz)  
• Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 150µA (Max)  
• Temperature Coefficient . . . . . . . . . . . . . . 3ppm/°C (B grade)  
• Operating Temperature Range. . . . . . . . . . .-40°C to +125°C  
• Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Ld SOIC  
• Pb-Free (RoHS Compliant)  
This combination of high initial accuracy, low drift, and low  
output noise performance of the ISL21007 enables versatile  
high performance control and data acquisition applications  
with low power consumption.  
Available Options  
Applications  
• High Resolution A/Ds and D/As  
• Digital Meters  
VOUT  
OPTION  
(V)  
INITIAL  
ACCURACY  
(mV)  
PART  
NUMBER  
TEMPCO.  
(ppm/°C)  
ISL21007BFB812Z  
(Note 1)  
1.250  
±0.5  
3
• Bar Code Scanners  
• Basestations  
ISL21007CFB812Z  
ISL21007DFB812Z  
1.250  
1.250  
2.048  
±1.0  
±2.0  
±0.5  
5
10  
3
• Battery Management/Monitoring  
• Industrial/Instrumentation Equipment  
ISL21007BFB820Z  
(Note 2)  
Related Literature  
AN1533, “X-Ray Effects on Intersil FGA References”  
ISL21007CFB820Z  
ISL21007DFB820Z  
2.048  
2.048  
2.500  
±1.0  
±2.0  
±0.5  
5
10  
3
AN1494, “Reflow and PC Board Assembly Effects on Intersil  
FGA References”  
ISL21007BFB825Z  
(Note 1)  
Pin Configuration  
ISL21007CFB825Z  
ISL21007DFB825Z  
2.500  
2.500  
3.000  
±1.0  
±2.0  
±0.5  
5
10  
3
ISL21007  
(8 LD SOIC)  
TOP VIEW  
ISL21007BFB830Z  
(Note 3)  
GND or NC  
VIN  
1
2
3
4
8
7
6
5
DNC  
ISL21007CFB830Z  
ISL21007DFB830Z  
NOTES:  
3.000  
3.000  
±1.0  
±2.0  
5
DNC  
10  
DNC  
VOUT  
TRIM  
GND  
1. Not recommended for new designs. Recommended replacement  
part ISL21009.  
2. Not recommended for new designs. Recommended replacement  
part ISL21007CFB820Z.  
3. Not recommended for new designs. Recommended replacement  
part ISL21007CFB830Z.  
March 27, 2012  
FN6326.10  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2007, 2011, 2012. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL21007  
Ordering Information  
PART NUMBER  
(Notes 4, 5, 6)  
PART  
MARKING  
VOUT OPTION  
(V)  
TEMP. RANGE  
(°C)  
PACKAGE  
(Pb-Free)  
GRADE  
PKG. DWG. #  
M8.15  
ISL21007BFB812Z  
(Note 7)  
21007BF Z12  
1.250  
±0.5mV, 3ppm/°C  
-40 to +125  
8 Ld SOIC  
ISL21007CFB812Z  
ISL21007DFB812Z  
21007CF Z12  
21007DF Z12  
21007BF Z20  
1.250  
1.250  
2.048  
±1.0mV, 5ppm/°C  
±2.0mV, 10ppm/°C  
±0.5mV, 3ppm/°C  
-40 to +125  
-40 to +125  
-40 to +125  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
M8.15  
M8.15  
M8.15  
ISL21007BFB820Z  
(Note 8)  
ISL21007CFB820Z  
ISL21007DFB820Z  
21007CF Z20  
21007DF Z20  
21007BF Z25  
2.048  
2.048  
2.500  
±1.0mV, 5ppm/°C  
±2.0mV, 10ppm/°C  
±0.5mV, 3ppm/°C  
-40 to +125  
-40 to +125  
-40 to +125  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
M8.15  
M8.15  
M8.15  
ISL21007BFB825Z  
(Note 7)  
ISL21007CFB825Z  
ISL21007DFB825Z  
21007CF Z25  
21007DF Z25  
21007BF Z30  
2.500  
2.500  
3.000  
±1.0mV, 5ppm/°C  
±2.0mV, 10ppm/°C  
±0.5mV, 3ppm/°C  
-40 to +125  
-40 to +125  
-40 to +125  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
M8.15  
M8.15  
M8.15  
ISL21007BFB830Z  
(Note 9)  
ISL21007CFB830Z  
ISL21007DFB830Z  
NOTES:  
21007CF Z30  
21007DF Z30  
3.000  
3.000  
±1.0mV, 5ppm/°C  
±2.0mV, 10ppm/°C  
-40 to +125  
-40 to +125  
8 Ld SOIC  
8 Ld SOIC  
M8.15  
M8.15  
4. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin  
plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free  
products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
5. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
6. For Moisture Sensitivity Level (MSL), please see device information page for ISL21007. For more information on MSL please see techbrief TB363.  
7. Not recommended for new designs. Recommended replacement part ISL21009.  
8. Not recommended for new designs. Recommended replacement part ISL21007CFB820Z.  
9. Not recommended for new designs. Recommended replacement part ISL21007CFB830Z.  
FN6326.10  
March 27, 2012  
2
ISL21007  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
GND or NC  
VIN  
DESCRIPTION  
1
Ground or No Connection  
Power Supply Input Connection  
Ground  
2
4
5
GND  
TRIM  
Allows user trim VOUT ±2.5%  
6
VOUT  
Voltage Reference Output Connection  
3, 7, 8  
DNC  
Do Not Connect; Internal Connection - Must Be Left Floating  
Typical Application Circuit  
8
1
GND  
NC  
+3V  
7
6
5
VIN  
NC  
2
3
4
NC  
VOUT  
C1  
10µF  
GND  
TRIM  
ISL21007-12, 20, 25, 30  
SPI BUS  
X79000  
1
2
20  
CS  
SCK  
A0  
19  
18  
17  
16  
15  
14  
13  
12  
11  
CLR  
VCC  
VH  
3
A1  
4
A2  
5
SI  
VL  
C1  
0.001µF  
6
SO  
VREF  
VSS  
VOUT  
VBUF  
VFB  
7
RDY  
UP  
8
LOW NOISE DAC OUTPUT  
9
DOWN  
OE  
10  
FIGURE 1. TYPICAL APPLICATION PRECISION 12-BIT SUBRANGING DAC  
FN6326.10  
March 27, 2012  
3
ISL21007  
Absolute Voltage Ratings  
Thermal Information  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Max Voltage VIN to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to +6.5V  
Max Voltage VOUT to GND (10s). . . . . . . . . . . . . . . . . . . . . . -0.5V to VOUT + 1  
Voltage on “DNC” pins . . . . . . . . . No connections permitted to these pins.  
ESD Rating  
Human Body Model (HBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6kV  
Machine Model (MM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600V  
Charged Device Model (CDM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2kV  
Thermal Resistance (Typical, Note 11)  
θ
JA (°C/W)  
113.12  
8 Ld SOIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Continuous Power Dissipation (Note 11). . . . . . . . . . . . . . . . . . .TA = +70°C  
8 Ld SOIC Derate 5.88mW/°C above +70°C. . . . . . . . . . . . . . . . . .471mW  
Pb-Free Reflow Profile (Note 12) . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Recommended Operating Conditions  
Temperature Range (Full Range Industrial) . . . . . . . . . . .-40°C to +125°C  
Environmental Operating Conditions  
X-Ray Exposure (Note 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mRem  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted,  
all tests are at the specified temperature and are pulsed tests, therefore: TJ = TC = TA  
NOTES:  
10. Measured with no filtering, distance of 10” from source, intensity set to 55kV and 70mA current, 30s duration. Other exposure levels should be  
analyzed for Output Voltage drift effects. See “Applications Information” on page 16.  
11. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
12. Post-reflow drift for the ISL21007 devices will range from 100µV to 1.0mV based on experimental results with devices on FR4 double sided boards.  
The design engineer must take this into account when considering the reference voltage after assembly.  
Common Electrical Specifications (ISL21007-12, -20, -25, -30) TA = -40°C to +125°C, unless otherwise  
specified. Boldface limits apply over the operating temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
VOA  
DESCRIPTION  
CONDITIONS  
(Note 16) TYP (Note 16)  
UNIT  
mV  
VOUT Accuracy @ TA = +25°C  
ISL21007B  
ISL21007C  
ISL21007D  
ISL21007B  
ISL21007C  
ISL21007D  
-0.5  
-1.0  
-2.0  
+0.5  
+1.0  
+2.0  
3
mV  
mV  
TC VOUT  
Output Voltage Temperature  
Coefficient (Note NOTES:)  
ppm/°C  
ppm/°C  
ppm/°C  
µA  
5
10  
IIN  
Supply Current  
75  
±2.5  
120  
60  
150  
Trim Range  
±2.0  
%
tR  
Turn-on Settling Time  
Ripple Rejection  
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
VOUT = ±0.1%  
f = 10kHz  
µs  
dB  
eN  
VN  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
4.5  
2.2  
60  
µVP-P  
µVRMS  
nV/Hz  
Electrical Specifications (ISL21007-12, V  
= 1.250V) VIN = 3.0V, TA = -40°C to +125°C, unless otherwise  
OUT  
specified. Boldface limits apply over the operating temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
VIN  
DESCRIPTION  
Input Voltage Range  
CONDITIONS  
(Note 16)  
TYP  
(Note 16)  
UNIT  
V
2.7  
5.5  
VOUT  
Output Voltage  
Line Regulation  
1.250  
100  
V
ΔVOUT /ΔVIN  
2.7V < VIN < 5.5V  
700  
µV/V  
FN6326.10  
March 27, 2012  
4
ISL21007  
Electrical Specifications (ISL21007-12, V  
= 1.250V) VIN = 3.0V, TA = -40°C to +125°C, unless otherwise  
OUT  
specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
(Note 16)  
MAX  
(Note 16)  
PARAMETER  
DESCRIPTION  
Load Regulation  
CONDITIONS  
Sourcing: 0mA IOUT 7mA  
Sinking: -7mA IOUT 0mA  
TA = +25°C, VOUT tied to GND  
ΔTA = +165°C  
TYP  
10  
UNIT  
µV/mA  
µV/mA  
mA  
ΔVOUT/ΔIOUT  
100  
150  
20  
ISC  
Short Circuit Current  
40  
ΔVOUT/ΔTA  
ΔVOUT/Δt  
Thermal Hysteresis (Note 14)  
Long Term Stability (Note 15)  
50  
ppm  
TA = +25°C  
100  
ppm  
Electrical Specifications (ISL21007-20, V  
= 2.048V) VIN = 3.0V, TA = -40°C to +125°C, unless otherwise specified.  
OUT  
Boldface limits apply over the operating temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
VIN  
DESCRIPTION  
Input Voltage Range  
CONDITIONS  
(Note 16)  
TYP  
(Note 16)  
UNIT  
V
2.7  
5.5  
VOUT  
Output Voltage  
Line Regulation  
Load Regulation  
2.048  
50  
V
ΔVOUT /ΔVIN  
ΔVOUT/ΔIOUT  
2.7V < VIN < 5.5V  
200  
100  
150  
µV/V  
µV/mA  
µV/mA  
mA  
Sourcing: 0mA IOUT 7mA  
Sinking: -7mA IOUT 0mA  
TA = +25°C, VOUT tied to GND  
ΔTA = +165°C  
10  
20  
ISC  
Short Circuit Current  
50  
ΔVOUT/ΔTA  
ΔVOUT/Δt  
Thermal Hysteresis (Note 14)  
Long Term Stability (Note 15)  
50  
ppm  
ppm  
TA = +25°C  
75  
Electrical Specifications (ISL21007-25, V  
= 2.500V) VIN = 3.0V, TA = -40°C to +125°C, unless otherwise specified.  
OUT  
Boldface limits apply over the operating temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
VIN  
DESCRIPTION  
Input Voltage Range  
CONDITIONS  
(Note 16)  
TYP  
(Note 16)  
UNIT  
V
2.7  
5.5  
VOUT  
Output Voltage  
Line Regulation  
Load Regulation  
2.500  
50  
V
ΔVOUT /ΔVIN  
ΔVOUT/ΔIOUT  
2.7V < VIN < 5.5V  
200  
100  
150  
µV/V  
µV/mA  
µV/mA  
mA  
Sourcing: 0mA IOUT 5mA  
Sinking: -5mA IOUT 0mA  
TA = +25°C, VOUT tied to GND  
ΔTA = +165°C  
10  
20  
ISC  
Short Circuit Current  
50  
ΔVOUT/ΔTA  
ΔVOUT/Δt  
Thermal Hysteresis (Note 14)  
Long Term Stability (Note 15)  
50  
ppm  
ppm  
TA = +25°C  
50  
Electrical Specifications (ISL21007-30, V  
= 3.000V) VIN = 5.0V, TA = -40°C to +125°C, unless otherwise specified.  
OUT  
Boldface limits apply over the operating temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
VIN  
DESCRIPTION  
Input Voltage Range  
CONDITIONS  
(Note 16)  
TYP  
(Note 16)  
UNIT  
V
3.2  
5.5  
VOUT  
Output Voltage  
Line Regulation  
Load Regulation  
3.000  
50  
V
ΔVOUT /ΔVIN  
ΔVOUT/ΔIOUT  
3.2V < VIN < 5.5V  
200  
100  
150  
µV/V  
µV/mA  
µV/mA  
Sourcing: 0mA IOUT 7mA  
Sinking: -7mA IOUT 0mA  
10  
20  
FN6326.10  
March 27, 2012  
5
ISL21007  
Electrical Specifications (ISL21007-30, V  
= 3.000V) VIN = 5.0V, TA = -40°C to +125°C, unless otherwise specified.  
OUT  
Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
ISC  
DESCRIPTION  
Short Circuit Current  
CONDITIONS  
TA = +25°C, VOUT tied to GND  
ΔTA = +165°C  
(Note 16)  
TYP  
50  
(Note 16)  
UNIT  
mA  
ΔVOUT/ΔTA  
ΔVOUT/Δt  
NOTES:  
Thermal Hysteresis (Note 14)  
Long Term Stability (Note 15)  
50  
ppm  
ppm  
TA = +25°C  
50  
13. Over the specified temperature range. Temperature coefficient is measured by the box method whereby the change in VOUT is divided by the  
temperature range; in this case, -40°C to +125°C = +165°C.  
14. Thermal Hysteresis is the change of VOUT measured at TA = +25°C after temperature cycling over a specified range, ΔTA. VOUT is read initially at  
TA = +25°C for the device under test. The device is temperature cycled and a second VOUT measurement is taken at +25°C. The difference between  
the initial VOUT reading and the second VOUT reading is then expressed in ppm. For Δ TA = +165°C, the device under test is cycled from +25°C to  
+125°C to -40°C to +25°C.  
15. Long term drift is logarithmic in nature and diminishes over time. Drift after the first 1000 hours will be approximately 10ppm/(1kHrs).  
16. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
FN6326.10  
March 27, 2012  
6
ISL21007  
Typical Performance Curves (ISL21007-12) (REXT = 100kΩ)  
95  
90  
85  
80  
75  
70  
65  
60  
120  
100  
80  
60  
40  
20  
0
UNIT 3  
+125°C  
UNIT 2  
UNIT 1  
+25°C  
-40°C  
2.5  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
FIGURE 2. IIN vs VIN (3 UNITS)  
FIGURE 3. IIN vs VIN OVER TEMPERATURE  
1.25015  
1.25010  
1.25005  
1.25000  
1.24995  
1.24990  
1.24985  
1.24980  
150  
100  
50  
+125°C  
UNIT 3  
0
+25°C  
-40°C  
-50  
UNIT 2  
-100  
-150  
-200  
-250  
-300  
UNIT 1  
2.5  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
FIGURE 5. LINE REGULATION OVER TEMPERATURE  
FIGURE 4. LINE REGULATION (3 UNITS)  
0.15  
1.25010  
+125°C  
+25°C  
UNIT 1  
1.25005  
1.25000  
1.24995  
1.24990  
1.24985  
1.24980  
1.24975  
0.10  
0.05  
UNIT 2  
0.00  
-40°C  
-0.05  
-0.10  
-0.15  
UNIT 3  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
SINKING OUTPUT CURRENT (mA)  
SOURCING  
TEMPERATURE (°C)  
FIGURE 6. LOAD REGULATION OVER TEMPERATURE  
FIGURE 7. VOUT vs TEMPERATURE (3 UNITS)  
FN6326.10  
March 27, 2012  
7
ISL21007  
Typical Performance Curves (ISL21007-12) (REXT = 100kΩ) (Continued)  
X: 200mV/DIV  
Y: 10µs/DIV  
0
10nF LOAD  
100nF LOAD  
-20  
ΔV = +0.3V  
IN  
-40  
-60  
ΔV = -0.3V  
1µF LOAD  
1nF LOAD  
NO LOAD  
1.00E+02  
IN  
-80  
-100  
1.00E+00  
1.00E+04  
1.00E+0  
FREQUENCY (Hz)  
FIGURE 9. LINE TRANSIENT RESPONSE, NO CAPACITIVE LOAD  
FIGURE 8. PSRR vs CAPACITIVE LOADS  
X: 20µs/DIV  
Y: 1V/DIV  
X: 200mV/DIV  
Y: 10µs/DIV  
ΔV = +0.3V  
IN  
V
IN  
V
= 1.25V  
OUT  
ΔV = -0.3V  
IN  
FIGURE 11. TURN-ON TIME  
FIGURE 10. LINE TRANSIENT RESPONSE, 0.001µF LOAD  
CAPACITANCE  
GAIN IS x1000,  
NOISE IS 4.5µV  
P-P  
140  
1nF  
10nF  
NO LOAD  
120  
100  
80  
60  
40  
20  
0
100nF  
1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06  
FREQUENCY (Hz)  
FIGURE 12.  
Z
OUT vs FREQUENCY  
FIGURE 13. VOUT NOISE, 0.1Hz TO 10Hz  
FN6326.10  
March 27, 2012  
8
ISL21007  
Typical Performance Curves (ISL21007-12) (REXT = 100kΩ) (Continued)  
NO OUTPUT CAPACITANCE  
X: 50µs/DIV  
Y: 1V/DIV  
+7mA  
-7mA  
FIGURE 14. LOAD TRANSIENT RESPONSE  
Typical Performance Curves (ISL21007-20) (REXT = 100kΩ)  
95  
90  
85  
80  
75  
70  
65  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
UNIT 2  
+125°C  
-40°C  
UNIT 1  
+25°C  
UNIT 3  
3.5  
2.7  
3.1  
3.5  
3.9  
V
4.3  
(V)  
4.7  
5.1  
5.5  
2.7  
3.1  
3.9  
4.3  
(V)  
4.7  
5.1  
5.5  
V
IN  
IN  
FIGURE 15. IIN vs VIN (3 UNITS)  
FIGURE 16. IIN vs VIN OVER TEMPERATURE  
2.04815  
2.04810  
2.04805  
2.04800  
2.04795  
2.04790  
2.04815  
-40°C  
UNIT 2  
2.04810  
2.04805  
2.04800  
2.04795  
+125°C  
UNIT 1  
+25°C  
UNIT 3  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
FIGURE 17. LINE REGULATION (3 UNITS)  
FIGURE 18. LINE REGULATION OVER TEMPERATURE  
FN6326.10  
March 27, 2012  
9
ISL21007  
Typical Performance Curves (ISL21007-20) (REXT = 100kΩ) (Continued)  
2.0496  
2.0492  
2.0488  
2.0484  
2.0480  
2.0476  
2.0472  
1.6  
1.2  
+125°C  
0.0  
0.4  
UNIT 2  
UNIT 1  
-40°C  
0.0  
-0.4  
-0.8  
-1.2  
+25°C  
UNIT 3  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
SINKING OUTPUT CURRENT (mA)  
SOURCING  
FIGURE 19. LOAD REGULATION OVER TEMPERATURE  
FIGURE 20. VOUT vs TEMPERATURE (3 UNITS)  
X: 200mV/DIV  
Y: 10µs/DIV  
0
10nF LOAD  
100nF LOAD  
-20  
ΔV = +0.3V  
IN  
-40  
1µF LOAD  
-60  
ΔV = -0.3V  
IN  
-80  
NO LOAD  
-100  
1.0E+01  
1.0E+03  
1.0E+05  
FREQUENCY (Hz)  
FIGURE 21. PSRR vs CAPACITIVE LOADS  
FIGURE 22. LINE TRANSIENT RESPONSE, NO CAPACITIVE LOAD  
X: 200mV/DIV  
Y: 10µs/DIV  
X: 100µs/DIV  
Y: 2V/DIV  
ΔV = +0.3V  
IN  
V
IN  
V
= 2.048V  
OUT  
ΔV = -0.3V  
IN  
FIGURE 23. LINE TRANSIENT RESPONSE, 0.001µF LOAD  
CAPACITANCE  
FIGURE 24. TURN-ON TIME  
FN6326.10  
March 27, 2012  
10  
ISL21007  
Typical Performance Curves (ISL21007-20) (REXT = 100kΩ) (Continued)  
GAIN IS x1000,  
NOISE IS 4.5µV  
P-P  
140  
120  
100  
80  
1nF  
10nF  
NO LOAD  
100nF  
60  
40  
20  
0
1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06  
FREQUENCY (Hz)  
FIGURE 25. ZOUT VS FREQUENCY  
FIGURE 26. VOUT NOISE, 0.1Hz TO 10Hz  
X: 20µs/DIV  
Y: 200mV/DIV  
+7mA  
X: 20µs/DIV  
Y: 200mV/DIV  
+7mA  
-7mA  
-7mA  
FIGURE 27. LOAD TRANSIENT RESPONSE, 0.001µF LOAD  
CAPACITANCE  
FIGURE 28. LOAD TRANSIENT RESPONSE, NO CAPACITIVE LOAD  
Typical Performance Curves (ISL21007-25) (REXT = 100kΩ)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
120  
100  
80  
60  
40  
20  
0
UNIT 3  
+125°C  
UNIT 2  
UNIT 1  
+25°C  
-40°C  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
(V)  
IN  
IN  
FIGURE 29. IIN vs VIN (3 UNITS)  
FIGURE 30. IIN vs VIN OVER TEMPERATURE  
FN6326.10  
March 27, 2012  
11  
ISL21007  
Typical Performance Curves (ISL21007-25) (REXT = 100kΩ) (Continued)  
2.5002  
2.5001  
2.5000  
2.4999  
2.4998  
2.4997  
2.4996  
100  
50  
UNIT 1  
0
-50  
+25°C  
UNIT 2  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
+125°C  
UNIT 3  
-40°C  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
6.0  
V
V
IN  
IN  
FIGURE 31. LINE REGULATION (3 UNITS)  
FIGURE 32. LINE REGULATION OVER TEMPERATURE  
2.5003  
0.6  
0.4  
0.2  
0
UNIT 2  
+125°C  
2.5002  
2.5001  
2.5000  
2.4999  
2.4998  
2.4997  
2.4996  
2.4995  
2.4994  
2.4993  
-40°C  
UNIT 1  
+25°C  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
UNIT 3  
80  
-40  
-20  
0
20  
40  
60  
100 120 140  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
TEMPERATURE (°C)  
SINKING OUTPUT CURRENT (mA)  
SOURCING  
FIGURE 33. LOAD REGULATION OVER TEMPERATURE  
FIGURE 34. VOUT vs TEMPERATURE (3 UNITS)  
X: 200mV/DIV  
Y: 10µs/DIV  
10  
NO LOAD  
1nF  
0
ΔV = +0.3V  
IN  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
10nF  
100nF  
1µF  
ΔV = -0.3V  
IN  
1.E+00  
1.E+02  
1.E+04  
1.E+06  
FREQUENCY (Hz)  
FIGURE 35. PSRR vs CAPACITIVE LOADS  
FIGURE 36. LINE TRANSIENT RESPONSE, NO CAPACITIVE LOAD  
FN6326.10  
March 27, 2012  
12  
ISL21007  
Typical Performance Curves (ISL21007-25) (REXT = 100kΩ) (Continued)  
X: 200mV/DIV  
Y: 10µs/DIV  
X: 20µs/DIV  
Y: 1V/DIV  
ΔV = +0.3V  
IN  
V
IN  
V
= 2.5V  
ΔV = -0.3V  
OUT  
IN  
FIGURE 37. LINE TRANSIENT RESPONSE, 0.001µF LOAD  
CAPACITANCE  
FIGURE 38. TURN-ON TIME  
GAIN IS x1000,  
NOISE IS 4.5µV  
P-P  
140  
1nF  
10nF  
NO LOAD  
120  
100  
80  
60  
40  
20  
0
100nF  
1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06  
FREQUENCY (Hz)  
FIGURE 39. Z  
vs FREQUENCY  
FIGURE 40. VOUT NOISE, 0.1Hz TO 10Hz  
OUT  
NO OUTPUT CAPACITANCE  
X: 50µs/DIV  
Y: 500mV/DIV  
+5mA  
-5mA  
FIGURE 41. LOAD TRANSIENT RESPONSE  
FN6326.10  
March 27, 2012  
13  
ISL21007  
Typical Performance Curves (ISL21007-30) (REXT = 100kΩ)  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
UNIT 2  
+125°C  
UNIT 3  
UNIT 1  
+25°C  
-40°C  
3.2  
3.7  
4.2  
V
4.7  
5.2  
3.2  
3.7  
4.2  
V
4.7  
5.2  
(V)  
(V)  
IN  
IN  
FIGURE 42. IIN vs VIN (3 UNITS)  
FIGURE 43. IIN vs VIN OVER TEMPERATURE  
3.0005  
2.9995  
2.9985  
2.9975  
2.9965  
2.9955  
3.001  
UNIT 1  
3.000  
2.999  
2.998  
2.997  
2.996  
2.995  
2.994  
UNIT 2  
UNIT 3  
+125°C  
+25°C  
-40°C  
3.2  
3.6  
4.0  
4.4  
(V)  
4.8  
5.2  
5.6  
3.2  
3.6  
4.0  
4.4  
4.8  
5.2  
5.6  
V
V
(V)  
IN  
IN  
FIGURE 44. LINE REGULATION (3 UNITS)  
FIGURE 45. LINE REGULATION OVER TEMPERATURE  
0.10  
3.0006  
3.0004  
0.05  
0.00  
-40°C  
+25°C  
3.0002  
UNIT 3  
3.0000  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
UNIT 2  
2.9998  
+125°C  
2.9996  
UNIT 1  
2.9994  
2.9992  
2.9990  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
SINKING  
LOAD (mA)  
SOURCING  
FIGURE 46. LOAD REGULATION OVER TEMPERATURE  
FIGURE 47. VOUT vs TEMPERATURE (3 UNITS)  
FN6326.10  
March 27, 2012  
14  
ISL21007  
Typical Performance Curves (ISL21007-30) (REXT = 100kΩ) (Continued)  
X: 200mV/DIV  
Y: 10µs/DIV  
10  
NO LOAD  
V
V
(DC) = 5.0V  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
ΔV = +0.5V  
IN  
IN  
IN  
1nF  
10nF  
100nF  
(AC) = 50mV  
P-P  
1µF  
ΔV = -0.5V  
IN  
1.E+00  
1.E+02  
1.E+04  
1.E+06  
FREQUENCY (Hz)  
FIGURE 48. PSRR vs CAPACITIVE LOADS  
FIGURE 49. LINE TRANSIENT RESPONSE, NO CAPACITIVE LOAD  
X: 200mV/DIV  
Y: 10µs/DIV  
V
= 5.0V  
IN  
ΔV = +0.5V  
IN  
V
= 3.0V  
OUT  
ΔV = -0.5V  
IN  
20µs/DIV  
FIGURE 51. TURN-ON TIME  
FIGURE 50. LINE TRANSIENT RESPONSE, 0.001µF LOAD  
CAPACITANCE  
GAIN IS x1000,  
NOISE IS 4.5µV  
P-P  
140  
1nF  
10nF  
NO LOAD  
120  
100  
80  
60  
40  
20  
0
100nF  
1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06  
FREQUENCY (Hz)  
FIGURE 52. Z  
vs FREQUENCY  
FIGURE 53. VOUT NOISE, 0.1Hz TO 10Hz  
OUT  
FN6326.10  
March 27, 2012  
15  
ISL21007  
Typical Performance Curves (ISL21007-30) (REXT = 100kΩ) (Continued)  
+7mA  
-7mA  
100µs/DIV  
FIGURE 54. LOAD TRANSIENT RESPONSE  
max temperature profile should not be exceeded. Expect up to  
1mV drift from the solder reflow process.  
Applications Information  
FGA Technology  
FGA references are susceptible to excessive X-radiation like that  
used in PC board manufacturing. Initial accuracy can change  
10mV or more under extreme radiation. If an assembled board  
needs to be X-rayed, care should be taken to shield the FGA  
reference device.  
The ISL21007 voltage reference uses floating gate technology to  
create references with very low drift and supply current.  
Essentially, the charge stored on a floating gate cell is set  
precisely in manufacturing. The reference voltage output itself is  
a buffered version of the floating gate voltage. The resulting  
reference device has excellent characteristics which are unique  
in the industry: very low temperature drift, high initial accuracy,  
and almost zero supply current. Also, the reference voltage itself  
is not limited by voltage bandgaps or zener settings, so a wide  
range of reference voltages can be programmed (standard  
voltage settings are provided, but customer-specific voltages are  
available).  
Board Mounting Considerations  
For applications requiring the highest accuracy, board mounting  
location should be reviewed. Placing the device in areas subject to  
slight twisting can cause degradation of the accuracy of the  
reference voltage due to die stresses. It is normally best to place the  
device near the edge of a board, or the shortest side, as the axis of  
bending is most limited at that location. Obviously, mounting the  
device on flexprint or extremely thin PC material will likewise cause  
loss of reference accuracy.  
The process used for these reference devices is a floating gate  
CMOS process, and the amplifier circuitry uses CMOS transistors  
for amplifier and output transistor circuitry. While providing  
excellent accuracy, there are limitations in output noise level and  
load regulation due to the MOS device characteristics. These  
limitations are addressed with circuit techniques discussed in  
other sections.  
Board Assembly Considerations  
FGA references provide high accuracy and low temperature drift  
but some PC board assembly precautions are necessary. Normal  
Output voltage shifts of 100µV to 1mV can be expected with  
Pb-free reflow profiles or wave solder on multi-layer FR4 PC  
boards. Precautions should be taken to avoid excessive heat or  
extended exposure to high reflow or wave solder temperatures,  
this may reduce device initial accuracy.  
Micropower Operation  
The ISL21007 consumes extremely low supply current due to the  
proprietary FGA technology. Low noise performance is achieved  
using optimized biasing techniques. Supply current is typically  
75µA and noise is 4.5µVP-P benefitting precision, low noise  
portable applications such as handheld meters and instruments.  
Post-assembly x-ray inspection may also lead to permanent  
changes in device output voltage and should be minimized or  
avoided. If x-ray inspection is required, it is advisable to monitor  
the reference output voltage to verify excessive shift has not  
occurred. If large amounts of shift are observed, it is best to add  
an X-ray shield consisting of thin zinc (300µm) sheeting to allow  
clear imaging, yet block x-ray energy that affects the FGA  
reference.  
Data Converters in particular can utilize the ISL21007 as an  
external voltage reference. Low power DAC and ADC circuits will  
realize maximum resolution with lowest noise.  
Handling and Board Mounting  
FGA references provide excellent initial accuracy and low  
temperature drift at the expense of very little power drain. There  
are some precautions to take to insure this accuracy is not  
compromised. Excessive heat during solder reflow can cause  
excessive initial accuracy drift, so the recommended +260°C  
Special Applications Considerations  
In addition to post-assembly examination, there are also other X-  
ray sources that may affect the FGA reference long term  
accuracy. Airport screening machines contain X-rays and will  
FN6326.10  
March 27, 2012  
16  
ISL21007  
have a cumulative effect on the voltage reference output  
Turn-On Time  
accuracy. Carry-on luggage screening uses low level X-rays and is  
not a major source of output voltage shift, however, if a product is  
expected to pass through that type of screening over 100 times,  
it may need to consider shielding with copper or aluminum.  
Checked luggage X-rays are higher intensity and can cause  
output voltage shift in much fewer passes, thus devices expected  
to go through those machines should definitely consider  
The ISL21007 devices have low supply current and thus the time  
to bias up internal circuitry to final values will be longer than with  
higher power references. Normal turn-on time is typically 120µs.  
This is shown in Figure 10. Circuit design must take this into  
account when looking at power-up delays or sequencing.  
Temperature Coefficient  
shielding. Note that just two layers of 1/2 ounce copper planes  
will reduce the received dose by over 90%. The leadframe for the  
device which is on the bottom also provides similar shielding.  
The limits stated for temperature coefficient (tempco) are governed  
by the method of measurement. The overwhelming standard for  
specifying the temperature drift of a reference is to measure the  
reference voltage at two temperatures, take the total variation,  
(VHIGH – VLOW), and divide by the temperature extremes of  
measurement (THIGH – TLOW). The result is divided by the nominal  
reference voltage (at T = +25°C) and multiplied by 106 to yield  
ppm/°C. This is the “Box” method for specifying temperature  
coefficient.  
If a device is expected to pass through luggage X-ray machines  
numerous times, it is advised to mount a 2-layer (minimum) PC  
board on the top, along with a ground plane underneath, which will  
effectively shield it from 50 to 100 passes through the machine.  
Since these machines vary in X-ray dose delivered, it is difficult to  
produce an accurate maximum pass recommendation.  
Noise Performance and Reduction  
Output Voltage Adjustment  
The output noise voltage in a 0.1Hz to 10Hz bandwidth is typically  
4.5µVP-P. The noise measurement is made with a bandpass filter  
made of a 1-pole high-pass filter with a corner frequency at 0.1Hz  
and a 2-pole low-pass filter with a corner frequency at 12.6Hz to  
create a filter with a 9.9Hz bandwidth. Noise in the 10kHz to 1MHz  
bandwidth is approximately 40µVP-P with no capacitance on the  
output. This noise measurement is made with a 2 decade  
bandpass filter made of a 1-pole high-pass filter with a corner  
frequency at 1/10 of the center frequency and 1-pole low-pass  
filter with a corner frequency at 10 times the center frequency.  
Load capacitance up to 1000pF can be added but will result in  
only marginal improvements in output noise and transient  
response. The output stage of the ISL21007 is not designed to  
drive heavily capacitive loads, so for load capacitances above  
0.001µF, the noise reduction network shown in Figure 55 is  
recommended. This network reduces noise significantly over the  
full bandwidth. Noise is reduced to less than 20µVP-P from 1Hz to  
1MHz using this network with a 0.01µF capacitor and a 2kΩ  
resistor in series with a 10µF capacitor. Also, transient response is  
improved with higher value output capacitor. The 0.01µF value can  
be increased for better load transient response with little sacrifice  
in output stability.  
The output voltage can be adjusted up or down by 2.5% by placing a  
potentiometer from VOUT to ground, and connecting the wiper to the  
TRIM pin. The TRIM input is high impedance, so no series resistance  
is needed. The resistor in the potentiometer should be a low tempco  
(<50ppm/°C) and the resulting voltage divider should have very low  
tempco <5ppm/°C. A digital potentiometer such as the ISL95810  
provides a low tempco resistance and excellent resistor and tempco  
matching for trim applications. See Figure 59 and TB473 for further  
information.  
V
= 5.0V  
IN  
V
10µF  
IN  
V
O
0.1µF  
ISL21007  
GND  
2kΩ  
0.01µF  
10µF  
FIGURE 55. HANDLING HIGH LOAD CAPACITANCE  
FN6326.10  
March 27, 2012  
17  
ISL21007  
Typical Application Circuits  
V
= +5.0V  
IN  
R = 200Ω  
2N2905  
V
IN  
V
2.5V/50mA  
OUT  
ISL21007  
V
= 2.500V  
OUT  
0.001µF  
GND  
FIGURE 56. PRECISION 2.500V 50mA REFERENCE  
+2.7 TO 5.5V  
0.1µF  
10µF  
V
IN  
V
OUT  
ISL21007-25  
V
= 2.500V  
OUT  
GND  
0.001µF  
V
R
CC  
V
H
OUT  
X9119  
SDA  
SCL  
(UNBUFFERED)  
+
2-WIRE BUS  
EL8178  
V
OUT  
(BUFFERED)  
V
R
L
SS  
FIGURE 57. 2.500V FULL SCALE LOW-DRIFT, LOW NOISE, 10-BIT ADJUSTABLE VOLTAGE SOURCE  
+2.7 TO 5.5V  
0.1µF  
10µF  
V
IN  
EL8178  
+
V
SENSE  
OUT  
V
OUT  
ISL21007-12  
GND  
LOAD  
FIGURE 58. KELVIN SENSED LOAD  
FN6326.10  
March 27, 2012  
18  
ISL21007  
Typical Application Circuits(Continued)  
10µF  
+2.7 TO 5.5V  
0.1µF  
V
2.5V ±2.5%  
IN  
V
OUT  
ISL21007-12  
TRIM  
GND  
R
V
H
CC  
SDA  
SCL  
I2C BUS  
ISL95810  
R
L
V
SS  
FIGURE 59. OUTPUT ADJUSTMENT USING THE TRIM PIN  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6326.10  
March 27, 2012  
19  
ISL21007  
Package Outline Drawing  
M8.15  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 4, 1/12  
DETAIL "A"  
1.27 (0.050)  
0.40 (0.016)  
INDEX  
AREA  
6.20 (0.244)  
5.80 (0.228)  
0.50 (0.20)  
x 45°  
0.25 (0.01)  
4.00 (0.157)  
3.80 (0.150)  
8°  
0°  
1
2
3
0.25 (0.010)  
0.19 (0.008)  
SIDE VIEW “B”  
TOP VIEW  
2.20 (0.087)  
1
8
SEATING PLANE  
0.60 (0.023)  
1.27 (0.050)  
1.75 (0.069)  
5.00 (0.197)  
4.80 (0.189)  
2
3
7
6
1.35 (0.053)  
-C-  
4
5
0.25(0.010)  
0.10(0.004)  
1.27 (0.050)  
0.51(0.020)  
0.33(0.013)  
5.20(0.205)  
SIDE VIEW “A  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
2. Package length does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
3. Package width does not include interlead flash or protrusions. Interlead  
flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.  
4. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
5. Terminal numbers are shown for reference only.  
6. The lead width as measured 0.36mm (0.014 inch) or greater above the  
seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).  
7. Controlling dimension: MILLIMETER. Converted inch dimensions are not  
necessarily exact.  
8. This outline conforms to JEDEC publication MS-012-AA ISSUE C.  
FN6326.10  
March 27, 2012  
20  

相关型号:

ISL21007CFB825Z

Precision, Low Noise FGA⑩ Voltage References
INTERSIL

ISL21007CFB825Z-TK

Precision, Low Noise FGA&trade; Voltage References; SOIC8; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL21007CFB830Z

5-Channel Integrated LCD Supply
INTERSIL

ISL21007CFB830Z

Precision, Low Noise FGA&trade; Voltage References; SOIC8; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL21007CFB830Z-T

IC THREE TERM VOLTAGE REFERENCE, Voltage Reference
RENESAS

ISL21007CFB830ZT

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 3V, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
RENESAS

ISL21007D

Providing high-performance solutions for every link in the signal chain
INTERSIL

ISL21007DFB812Z

Precision, Low Noise FGA⑩ Voltage References
INTERSIL

ISL21007DFB812Z-T

IC THREE TERM VOLTAGE REFERENCE, Voltage Reference
RENESAS

ISL21007DFB812Z-TK

Precision, Low Noise FGA&trade; Voltage References; SOIC8; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL21007DFB812ZT

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 1.25V, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
RENESAS

ISL21007DFB820Z

5-Channel Integrated LCD Supply
INTERSIL