ISL21007CFB825Z [INTERSIL]

Precision, Low Noise FGA⑩ Voltage References; 精密,低噪声FGA ™电压基准
ISL21007CFB825Z
型号: ISL21007CFB825Z
厂家: Intersil    Intersil
描述:

Precision, Low Noise FGA⑩ Voltage References
精密,低噪声FGA ™电压基准

文件: 总14页 (文件大小:353K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL21007  
®
Data Sheet  
April 12, 2007  
FN6326.1  
Precision, Low Noise FGA™ Voltage  
References  
Features  
• Reference Output Voltage . . . . . . . . . . . . . . .1.25V, 2.50V  
• Initial Accuracy. . . . . . . . . . . . . . . . . . . .±0.5mV (B grade)  
• Input Voltage Range: . . . . . . . . . . . . . . . . . . . 2.7V to 5.5V  
• Low Output Voltage Noise . . . . . . 4µVP-P (0.1Hz to 10Hz)  
• Supply Current . . . . . . . . . . . . . . . . . . . . . . . .150µA (Max)  
Temperature Coefficient. . . . . . . . . . . . 3ppm/°C (B grade)  
• Operating Temperature Range. . . . . . . . .-40°C to +125°C  
• Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Ld SOIC  
• Pb-Free Plus Anneal Available (RoHS Compliant)  
The ISL21007 FGA™ voltage references are extremely low  
power, high precision, and low noise voltage references  
fabricated on Intersil’s proprietary Floating Gate Analog  
technology. The ISL21007 features very low noise (4µVP-P  
for 0.1Hz to 10Hz) and very low operating current (150µA,  
Max). In addition, the ISL21007 family features guaranteed  
initial accuracy as low as ±0.5mV.  
This combination of high initial accuracy, low drift, and low  
output noise performance of the ISL21007 enables versatile  
high performance control and data acquisition applications  
with low power consumption.  
Applications  
Available Options  
• High Resolution A/Ds and D/As  
• Digital Meters  
VOUT  
OPTION  
(V)  
INITIAL  
ACCURACY  
(mV)  
TEMPCO.  
(ppm/°C)  
PART NUMBER  
ISL21007BFB812Z  
ISL21007CFB812Z  
ISL21007DFB812Z  
ISL21007BFB825Z  
ISL21007CFB825Z  
ISL21007DFB825Z  
• Bar Code Scanners  
1.250  
1.250  
1.250  
2.500  
2.500  
2.500  
±0.5  
±1.0  
±2.0  
±0.5  
±1.0  
±2.0  
3
5
• Basestations  
• Battery Management/Monitoring  
• Industrial/Instrumentation Equipment  
10  
3
5
10  
Pinout  
ISL21007  
(8 LD SOIC)  
TOP VIEW  
GND or NC  
VIN  
1
2
3
4
8
7
6
5
DNC  
DNC  
VOUT  
TRIM  
DNC  
GND  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2007. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
ISL21007  
Ordering Information  
PART NUMBER  
VOUT OPTION  
(V)  
TEMP. RANGE  
(°C)  
PACKAGE  
(Pb-Free)  
(Note)  
PART MARKING  
GRADE  
PKG. DWG. #  
M8.15  
ISL21007BFB812Z  
ISL21007CFB812Z  
ISL21007DFB812Z  
ISL21007BFB825Z  
ISL21007CFB825Z  
ISL21007DFB825Z  
21007BF Z12  
21007CF Z12  
21007DF Z12  
21007BF Z25  
21007CF Z25  
21007DF Z25  
1.250  
1.250  
1.250  
2.500  
2.500  
2.500  
±0.5mV, 3ppm/°C  
±1.0mV, 5ppm/°C  
±2.0mV, 10ppm/°C  
±0.5mV, 3ppm/°C  
±1.0mV, 5ppm/°C  
±2.0mV, 10ppm/°C  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
M8.15  
M8.15  
M8.15  
M8.15  
M8.15  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
*Add “-TK” suffix for tape and reel  
FN6326.1  
April 12, 2007  
2
ISL21007  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
GND or NC  
VIN  
DESCRIPTION  
1
Ground Connection  
2
Power Supply Input Connection  
4
GND  
Voltage Reference Output Connection  
5
6
TRIM  
Allows user trim ±2.5%  
VOUT  
DNC  
Do Not Connect; Internal Connection – Must Be Left Floating  
Do Not Connect; Internal Connection - Must Be Left Floating  
3, 7, 8  
Typical Application Circuit  
1
8
GND  
VIN  
NC  
+3V  
2
3
4
7
6
5
NC  
VOUT  
C1  
10µF  
NC  
NC  
GND  
ISL21007-12, 25  
SPI BUS  
X79000  
1
SCK  
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
/CS  
A0  
3
CLR  
VCC  
VH  
A1  
4
A2  
5
SI  
VL  
C1  
0.001µF  
6
SO  
7
VREF  
VSS  
VOUT  
VBUF  
VFB  
/RDY  
8
UP  
9
LOW NOISE DAC OUTPUT  
DOWN  
10  
OE  
FIGURE 1. TYPICAL APPLICATION PRECISION 12-BIT SUBRANGING DAC  
FN6326.1  
April 12, 2007  
3
ISL21007  
Absolute Voltage Ratings  
Thermal Information  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Max Voltage VIN to Gnd. . . . . . . . . . . . . . . . . . . . . . . -0.5V to +6.5V  
Max Voltage VOUT to Gnd (10s). . . . . . . . . . . . . . .-0.5V to VOUT + 1  
Voltage on “DNC” pins . . . . No connections permitted to these pins.  
Lead Temperature, soldering (10s) . . . . . . . . . . . . . . . . . . . .+260°C  
ESD Rating  
Continuous Power Dissipation (TA = +70°C) (Note 1)  
8 Lead SOIC derate 5.88mW/°C above +70°C . . . . . .  
Pb-free reflow profile. . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
471mW  
Human Body Model (HBM) . . . . . . . . . . . . . . . . . . . . . . . . . . .6kV  
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .600V  
Charged Device Model (CDM) . . . . . . . . . . . . . . . . . . . . . . . . .2kV  
Recommended Operating Conditions  
Temperature Range (Industrial) . . . . . . . . . . . . . . . .-40°C to +125°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at  
the specified temperature and are pulsed tests, therefore: T = T = T  
J
C
A
NOTE:  
1. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
Common Electrical Specifications (ISL21007-12, -25)TA = -40°C to +125°C, unless otherwise specified.  
PARAMETER  
VIN  
DESCRIPTION  
Input Voltage Range  
CONDITIONS  
MIN  
2.7  
TYP  
MAX  
5.5  
+0.5  
+1.0  
+2.0  
3
UNIT  
V
VOA  
VOUT Accuracy @ TA = +25°C  
ISL21007B  
ISL21007C  
ISL21007D  
ISL21007B  
ISL21007C  
ISL21007D  
-0.5  
-1.0  
-2.0  
mV  
mV  
mV  
TC VOUT  
Output Voltage Temperature  
Coefficient (Note 2)  
ppm/°C  
ppm/°C  
ppm/°C  
µA  
5
10  
IIN  
Supply Current  
75  
TBD  
±2.5  
120  
60  
150  
ΔVOUT/Δt  
Long Term Stability (Note 4)  
Trim Range  
TA = +25°C  
ppm/1kHrs  
%
±2.0  
tR  
Turn on Settling Time  
Ripple Rejection  
VOUT = ±0.1%  
f = 10kHz  
µs  
dB  
eN  
VN  
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
4
µVP-P  
µVRMS  
nV/Hz  
2.2  
60  
Electrical Specifications (ISL21007-12, V  
= 1.250V) VIN = 3.0V, TA = -40°C to +125°C, unless otherwise specified.  
OUT  
PARAMETER  
VOUT  
DESCRIPTION  
Output Voltage  
CONDITIONS  
MIN  
TYP  
1.250  
100  
10  
MAX  
UNIT  
V
ΔVOUT /ΔVIN  
ΔVOUT/ΔIOUT  
Line Regulation  
Load Regulation  
2.7V < VIN < 5.5V  
700  
100  
150  
µV/V  
µV/mA  
µV/mA  
mA  
Sourcing: 0mA IOUT 7mA  
Sinking: -7mA IOUT 0mA  
TA = +25°C, VOUT tied to GND  
ΔTA = +165°C  
20  
ISC  
Short Circuit Current  
40  
ΔVOUT/ΔTA  
Thermal Hysteresis (Note 3)  
50  
ppm  
FN6326.1  
April 12, 2007  
4
ISL21007  
Electrical Specifications (ISL21007-25, V  
= 2.50V) VIN = 3.0V, TA = -40°C to +125°C, unless otherwise specified  
OUT  
PARAMETER  
VOUT  
DESCRIPTION  
Output Voltage  
CONDITIONS  
MIN  
TYP  
2.500  
50  
MAX  
UNIT  
V
ΔVOUT /ΔVIN  
ΔVOUT/ΔIOUT  
Line Regulation  
Load Regulation  
2.7V < VIN < 5.5V  
200  
100  
150  
µV/V  
µV/mA  
µV/mA  
mA  
Sourcing: 0mA IOUT 5mA  
Sinking: -5mA IOUT 0mA  
TA = +25°C, VOUT tied to GND  
ΔTA = +165°C  
10  
20  
ISC  
Short Circuit Current  
50  
ΔVOUT/ΔTA  
NOTES:  
Thermal Hysteresis (Note 3)  
50  
ppm  
2. Over the specified temperature range. Temperature coefficient is measured by the box method whereby the change in VOUT is divided by the  
temperature range; in this case, -40°C to +125°C = +165°C.  
3. Thermal Hysteresis is the change of VOUT measured @ TA = +25°C after temperature cycling over a specified range, ΔTA. VOUT is read initially  
at TA = +25°C for the device under test. The device is temperature cycled and a second VOUT measurement is taken at +25°C. The difference  
between the initial VOUT reading and the second VOUT reading is then expressed in ppm. For Δ TA = +165°C, the device under test is cycled  
from +25°C to +125°C to -40°C to +25°C.  
4. FGA voltage reference long term drift is a logarithmic characteristic. Changes that occur after the first few hundred hours of operation are  
significantly smaller with time, asymptotically approaching zero beyond 1,000 hours. Because of this decreasing characteristics, long term drift  
is specified in ppm/1kHrs.  
Typical Performance Curves (ISL21007-12) (REXT = 100kΩ)  
95  
90  
85  
80  
75  
70  
65  
60  
120  
100  
80  
60  
40  
20  
0
UNIT 3  
+125°C  
UNIT 2  
UNIT 1  
+25°C  
-40°C  
4.0  
2.5  
3.0  
3.5  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
6.0  
V
(V)  
IN  
V
IN  
FIGURE 2. IIN vs VIN (3 UNITS)  
FIGURE 3. IIN vs VIN OVER TEMPERATURE  
1.25015  
1.25010  
1.25005  
1.25000  
1.24995  
1.24990  
1.24985  
1.24980  
150  
100  
50  
+125°C  
UNIT 3  
0
+25°C  
-50  
-40°C  
UNIT 2  
-100  
-150  
-200  
-250  
-300  
UNIT 1  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
6.0  
V
V
IN  
IN  
FIGURE 5. LINE REGULATION OVER TEMPERATURE  
FIGURE 4. LINE REGULATION (3 UNITS)  
FN6326.1  
April 12, 2007  
5
ISL21007  
Typical Performance Curves (ISL21007-12) (REXT = 100kΩ) (Continued)  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
1.25010  
1.25005  
1.25000  
1.24995  
1.24990  
1.24985  
1.24980  
1.24975  
+125°C  
+25°C  
UNIT 1  
UNIT 2  
-40°C  
UNIT 3  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
SINKING OUTPUT CURRENT (mA)  
SOURCING  
TEMPERATURE (°C)  
FIGURE 6. LOAD REGULATION OVER TEMPERATURE  
FIGURE 7. VOUT vs TEMPERATURE (3 UNITS)  
X: 5µs/DIV  
X: 5µs/DIV  
Y: 500mV/DIV  
Y: 500mV/DIV  
FIGURE 9. LINE TRANSIENT RESPONSE, 0.001µF LOAD  
FIGURE 8. LINE TRANSIENT RESPONSE, NO CAPACITIVE  
LOAD  
CAPACITANCE  
X: 20µs/DIV  
Y: 1V/DIV  
120  
NO LOAD  
1nF LOAD  
100  
80  
60  
40  
20  
0
10nF LOAD  
V
IN  
V
= 1.25V (FOR TYP I )  
IN  
OUT  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 10. TURN ON TIME  
FIGURE 11. Z  
vs FREQUENCY  
OUT  
FN6326.1  
April 12, 2007  
6
ISL21007  
Typical Performance Curves (ISL21007-12) (REXT = 100kΩ) (Continued)  
GAIN IS x1000,  
NOISE IS 4µV  
NO OUTPUT CAPACITANCE  
X: 50µs/DIV  
p-p  
Y: 1V/DIV  
+7mA  
-7mA  
FIGURE 13. LOAD TRANSIENT RESPONSE  
FIGURE 12. VOUT NOISE, 0.1Hz to 10Hz  
0
V
(DC) = 3V  
NO LOAD  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
IN  
V
(AC) = 50mV  
IN  
P-P  
1nF LOAD  
10nF LOAD  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 14. PSRR vs CAPACITIVE LOADS  
FN6326.1  
April 12, 2007  
7
ISL21007  
Typical Performance Curves (ISL21007-25) (REXT = 100kΩ)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
120  
100  
80  
60  
40  
20  
0
UNIT 3  
+125°C  
UNIT 2  
UNIT 1  
+25°C  
-40°C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
(V)  
IN  
IN  
FIGURE 15. IIN vs VIN (3 UNITS)  
FIGURE 16. IIN vs VIN OVER TEMPERATURE  
2.50020  
2.50010  
2.50000  
2.49990  
2.49980  
2.49970  
2.49960  
100  
50  
0
UNIT 1  
-50  
+25°C  
UNIT 2  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
+125°C  
UNIT 3  
-40°C  
2.5  
3.0  
3.5  
4.0  
V
4.5  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
(V)  
V
IN  
IN  
FIGURE 17. LINE REGULATION (3 UNITS)  
+125°C  
FIGURE 18. LINE REGULATION OVER TEMPERATURE  
2.5003  
UNIT 2  
0.60  
0.40  
2.5002  
2.5001  
2.5000  
2.4999  
2.4998  
2.4997  
2.4996  
2.4995  
2.4994  
2.4993  
NORMALIZED TO +25°C  
UNIT 1  
0.20  
0.00  
-0.20  
-0.40  
-0.60  
-0.80  
-1.00  
+25°C  
-40°C  
UNIT 3  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
TEMPERATURE (°C)  
SINKING OUTPUT CURRENT (mA)  
SOURCING  
FIGURE 20. VOUT vs TEMPERATURE (3 UNITS)  
FIGURE 19. LOAD REGULATION OVER TEMPERATURE  
FN6326.1  
April 12, 2007  
8
ISL21007  
Typical Performance Curves (ISL21007-25) (REXT = 100kΩ) (Continued)  
X: 5µs/DIV  
Y: 500mV/DIV  
X: 5µs/DIV  
Y: 500mV/DIV  
FIGURE 21. LINE TRANSIENT RESPONSE, NO CAPACITIVE  
LOAD  
FIGURE 22. LINE TRANSIENT RESPONSE, 0.001µF LOAD  
CAPACITANCE  
X: 20µs/DIV  
Y: 1V/DIV  
160  
1nF LOAD  
NO LOAD  
140  
120  
10nF LOAD  
100  
80  
60  
40  
20  
0
V
IN  
V
= 2.5V (FOR TYP I )  
IN  
OUT  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 24. Z  
vs FREQUENCY  
FIGURE 23. TURN ON TIME  
OUT  
GAIN IS x1000,  
NOISE IS 4µV  
P-P  
NO OUTPUT CAPACITANCE  
X: 50µs/DIV  
Y: 500mV/DIV  
+5mA  
-5mA  
FIGURE 25. VOUT NOISE, 0.1Hz to 10Hz  
FIGURE 26. LOAD TRANSIENT RESPONSE  
FN6326.1  
April 12, 2007  
9
ISL21007  
Typical Performance Curves (ISL21007-25) (REXT = 100kΩ) (Continued)  
0
V
(DC) = 3V  
NO LOAD  
1nF LOAD  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
IN  
V
(AC) = 50mV  
IN  
P-P  
10nF LOAD  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 27. PSRR vs CAPACITIVE LOADS  
Board Mounting Considerations  
Applications Information  
For applications requiring the highest accuracy, board  
mounting location should be reviewed. The device uses a  
plastic SOIC package which will subject the die to mild  
stresses when the PC board is heated and cooled and  
slightly changes shape. Placing the device in areas subject  
to slight twisting can cause degradation of the accuracy of  
the reference voltage due to these die stresses. It is normally  
best to place the device near the edge of a board, or the  
shortest side, as the axis of bending is most limited at that  
location. Mounting the device in a cutout also minimizes flex.  
Obviously mounting the device on flexprint or extremely thin  
PC material will likewise cause loss of reference accuracy.  
FGA Technology  
The ISL21007 voltage reference uses floating gate  
technology to create references with very low drift and  
supply current. Essentially the charge stored on a floating  
gate cell is set precisely in manufacturing. The reference  
voltage output itself is a buffered version of the floating gate  
voltage. The resulting reference device has excellent  
characteristics which are unique in the industry: very low  
temperature drift, high initial accuracy, and almost zero  
supply current. Also, the reference voltage itself is not limited  
by voltage bandgaps or zener settings, so a wide range of  
reference voltages can be programmed (standard voltage  
settings are provided, but customer-specific voltages are  
available).  
Noise Performance and Reduction  
The output noise voltage in a 0.1Hz to 10Hz bandwidth is  
typically 4µVP-P. The noise measurement is made with a  
bandpass filter made of a 1 pole high-pass filter with a corner  
frequency at 0.1Hz and a 2-pole low-pass filter with a corner  
frequency at 12.6Hz to create a filter with a 9.9Hz bandwidth.  
Noise in the 10kHz to 1MHz bandwidth is approximately  
40µVP-P with no capacitance on the output. This noise  
measurement is made with a 2 decade bandpass filter made  
of a 1 pole high-pass filter with a corner frequency at 1/10 of  
the center frequency and 1-pole low-pass filter with a corner  
frequency at 10 times the center frequency. Load capacitance  
up to 1000pF can be added but will result in only marginal  
improvements in output noise and transient response. The  
output stage of the ISL21007 is not designed to drive heavily  
capactive loads, so for load capacitances above 0.001µF the  
noise reduction network shown in Figure 28 is recommended.  
This network reduces noise significantly over the full  
The process used for these reference devices is a floating  
gate CMOS process, and the amplifier circuitry uses CMOS  
transistors for amplifier and output transistor circuitry. While  
providing excellent accuracy, there are limitations in output  
noise level and load regulation due to the MOS device  
characteristics. These limitations are addressed with circuit  
techniques discussed in other sections.  
Micropower Operation  
The ISL21007 consumes extremely low supply current due  
to the proprietary FGA technology. Low noise performance is  
achieved using optimized biasing techniques. Supply current  
is typically 75µA and noise is 4µVP-P benefitting precision,  
low noise portable applications such as handheld meters  
and instruments.  
Data Converters in particular can utilized the ISL21007 as an  
external voltage reference. Low power DAC and ADC  
circuits will realize maximum resolution with lowest noise.  
bandwidth. Noise is reduced to less than 20µVP-P from 1Hz to  
1MHz using this network with a 0.01µF capacitor and a 2kΩ  
resistor in series with a 10µF capacitor. Also, transient  
response is improved with higher value output capacitor. The  
FN6326.1  
April 12, 2007  
10  
ISL21007  
0.01µF value can be increased for better load transient  
response with little sacrifice in output stability.  
V
= 3.0V  
IN  
V
10µF  
IN  
V
O
0.1µF  
ISL21007  
GND  
2kΩ  
0.01µF  
10µF  
FIGURE 28. HANDLING HIGH LOAD CAPACITANCE  
Turn-On Time  
The ISL21007 devices have low supply current and thus the  
time to bias up internal circuitry to final values will be longer  
than with higher power references. Normal turn-on time is  
typically 120µs. This is shown in Figure 10. Circuit design  
must take this into account when looking at power up delays  
or sequencing.  
Temperature Coefficient  
The limits stated for temperature coefficient (tempco) are  
governed by the method of measurement. The overwhelming  
standard for specifying the temperature drift of a reference is to  
measure the reference voltage at two temperatures, take the  
total variation, (VHIGH – VLOW), and divide by the temperature  
extremes of measurement (THIGH – TLOW). The result is  
divided by the nominal reference voltage (at T = +25°C) and  
multiplied by 106 to yield ppm/°C. This is the “Box” method for  
specifying temperature coefficient.  
Output Voltage Adjustment  
The output voltage can be adjusted up or down by 2.5% by  
placing a potentiometer from Vout to ground, and connecting  
the wiper to the TRIM pin. The TRIM input is high impedance,  
so no series resistance is needed. The resistor in the  
potentiometer should be a low tempco (<50ppm/°C) and the  
resulting voltage divider should have very low tempco  
<5ppm/°C. A digital potentiometer such as the ISL95810  
provides a low tempco resistance and excellent resistor and  
tempco matching for trim applications.  
FN6326.1  
April 12, 2007  
11  
ISL21007  
Typical Application Circuits  
V
= +5.0V  
IN  
R = 200Ω  
2N2905  
V
IN  
V
2.5V/50mA  
OUT  
ISL21007  
V
= 2.50V  
OUT  
0.001µF  
GND  
FIGURE 29. PRECISION 2.5V 50mA REFERENCE  
+2.7 to 5.5V  
0.1µF  
10µF  
V
IN  
V
OUT  
ISL21007-25  
V
= 2.50V  
OUT  
GND  
0.001µF  
V
R
CC  
V
H
OUT  
X9119  
SDA  
SCL  
(UNBUFFERED)  
+
2-WIRE BUS  
EL8178  
V
OUT  
(BUFFERED)  
V
R
L
SS  
FIGURE 30. 2.5V FULL SCALE LOW-DRIFT, LOW NOISE, 10-BIT ADJUSTABLE VOLTAGE SOURCE  
FN6326.1  
April 12, 2007  
12  
ISL21007  
Typical Application Circuits  
10µF  
+2.7 to 5.5V  
0.1µF  
V
2.5V ±2.5%  
IN  
V
OUT  
ISL21007-12  
TRIM  
GND  
R
V
H
CC  
SDA  
SCL  
I2C BUS  
ISL95810  
R
L
V
SS  
FIGURE 31. OUTPUT ADJUSTMENT USING THE TRIM PIN  
+2.7 to 5.5V  
0.1µF  
10µF  
V
IN  
EL8178  
+
V
SENSE  
OUT  
V
OUT  
ISL21007-12  
GND  
LOAD  
FIGURE 32. KELVIN SENSED LOAD  
FN6326.1  
April 12, 2007  
13  
ISL21007  
Small Outline Plastic Packages (SOIC)  
M8.15 (JEDEC MS-012-AA ISSUE C)  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
N
INDEX  
AREA  
0.25(0.010)  
M
B M  
H
INCHES MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
NOTES  
-B-  
A
A1  
B
C
D
E
e
0.0532  
0.0040  
0.013  
0.0688  
0.0098  
0.020  
-
-
1
2
3
L
9
SEATING PLANE  
A
0.0075  
0.1890  
0.1497  
0.0098  
0.1968  
0.1574  
-
-A-  
3
h x 45°  
D
4
-C-  
0.050 BSC  
1.27 BSC  
-
α
H
h
0.2284  
0.0099  
0.016  
0.2440  
0.0196  
0.050  
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
-
e
A1  
C
5
B
0.10(0.004)  
L
6
0.25(0.010) M  
C
A M B S  
N
α
8
8
7
NOTES:  
0°  
8°  
0°  
8°  
-
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication Number 95.  
Rev. 1 6/05  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.25mm (0.010 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6326.1  
April 12, 2007  
14  

相关型号:

ISL21007CFB825Z-TK

Precision, Low Noise FGA&trade; Voltage References; SOIC8; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL21007CFB830Z

5-Channel Integrated LCD Supply
INTERSIL

ISL21007CFB830Z

Precision, Low Noise FGA&trade; Voltage References; SOIC8; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL21007CFB830Z-T

IC THREE TERM VOLTAGE REFERENCE, Voltage Reference
RENESAS

ISL21007CFB830ZT

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 3V, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
RENESAS

ISL21007D

Providing high-performance solutions for every link in the signal chain
INTERSIL

ISL21007DFB812Z

Precision, Low Noise FGA⑩ Voltage References
INTERSIL

ISL21007DFB812Z-T

IC THREE TERM VOLTAGE REFERENCE, Voltage Reference
RENESAS

ISL21007DFB812Z-TK

Precision, Low Noise FGA&trade; Voltage References; SOIC8; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL21007DFB812ZT

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 1.25V, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
RENESAS

ISL21007DFB820Z

5-Channel Integrated LCD Supply
INTERSIL

ISL21007DFB825Z

Precision, Low Noise FGA⑩ Voltage References
INTERSIL