ISL21007CFB830Z [RENESAS]

Precision, Low Noise FGA™ Voltage References; SOIC8; Temp Range: -40° to 125°C;
ISL21007CFB830Z
型号: ISL21007CFB830Z
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Precision, Low Noise FGA™ Voltage References; SOIC8; Temp Range: -40° to 125°C

光电二极管
文件: 总20页 (文件大小:1312K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL21007  
Precision, Low Noise FGA Voltage References  
FN6326  
Rev.12.00  
Jun 9, 2017  
The ISL21007 FGA™ voltage references are extremely low  
power, high precision, and low noise voltage references  
fabricated on Intersil’s proprietary Floating Gate Analog (FGA)  
technology. The ISL21007 features very low noise (4.5µVP-P for  
0.1Hz to 10Hz) and very low operating current (150µA, Max). In  
addition, the ISL21007 family features guaranteed initial  
accuracy as low as ±0.5mV.  
Features  
• Reference Output Voltage . . . .1.250V, 2.048V, 2.500V, 3.000V  
• Input Voltage Range  
ISL21007-12, 20, 25. . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.5V  
ISL21007-30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2V to 5.5V  
• Low Output Voltage Noise. . . . . . . . 4.5µVP-P (0.1Hz to 10Hz)  
• Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 150µA (Max)  
• Temperature Coefficient . . . . . . . . . . . . . . 3ppm/°C (B grade)  
• Operating Temperature Range. . . . . . . . . . .-40°C to +125°C  
• Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Ld SOIC  
• Pb-Free (RoHS Compliant)  
This combination of high initial accuracy, low drift, and low  
output noise performance of the ISL21007 enables versatile  
high performance control and data acquisition applications  
with low power consumption.  
Applications  
• High Resolution A/Ds and D/As  
• Digital Meters  
Related Literature  
• For a full list of related documents, visit our website  
- ISL21007 product pages  
• Bar Code Scanners  
• Base Stations  
• Battery Management/Monitoring  
• Industrial/Instrumentation Equipment  
TABLE 1. AVAILABLE OPTIONS  
PART  
NUMBER  
V
OUT OPTION  
INITIAL ACCURACY  
(mV)  
TEMPCO.  
(ppm/°C)  
(V)  
ISL21007BFB812Z  
1.250  
±0.5  
3
(Obsolete. Recommended replacement part ISL21007CFB812Z)  
ISL21007CFB812Z  
1.250  
1.250  
2.048  
±1.0  
±2.0  
±0.5  
5
10  
3
ISL21007DFB812Z  
ISL21007BFB820Z  
(Obsolete. Recommended replacement part ISL21007CFB820Z)  
ISL21007CFB820Z  
2.048  
2.048  
±1.0  
±2.0  
5
ISL21007DFB820Z  
10  
(Obsolete. Recommended replacement ISL21007CFB820Z)  
ISL21007BFB825Z  
2.500  
±0.5  
3
(Obsolete. Recommended replacement part ISL21007CFB825Z)  
ISL21007CFB825Z  
ISL21007DFB825Z  
2.500  
2.500  
3.000  
±1.0  
±2.0  
±0.5  
5
10  
3
ISL21007BFB830Z  
(Obsolete. Recommended replacement ISL21007CFB825Z-TK)  
ISL21007CFB830Z  
(Obsolete. Recommended replacement ISL21007CFB825Z-TK)  
3.000  
3.000  
±1.0  
±2.0  
5
ISL21007DFB830Z  
10  
(Obsolete. Recommended replacement ISL21007CFB825Z-TK)  
FN6326 Rev.12.00  
Jun 9, 2017  
Page 1 of 20  
 
ISL21007  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
VOUT OPTION  
(V)  
TEMP. RANGE  
(°C)  
PACKAGE  
(RoHS COMPLIANT) PKG. DWG. #  
MARKING  
21007CF Z12  
21007DF Z12  
21007CF Z20  
21007DF Z20  
GRADE  
ISL21007CFB812Z  
1.250  
1.250  
2.048  
2.048  
±1.0mV, 5ppm/°C  
±2.0mV, 10ppm/°C  
±1.0mV, 5ppm/°C  
±2.0mV, 10ppm/°C  
-40 to +125 8 Ld SOIC  
-40 to +125 8 Ld SOIC  
-40 to +125 8 Ld SOIC  
-40 to +125 8 Ld SOIC  
M8.15  
M8.15  
M8.15  
M8.15  
ISL21007DFB812Z  
ISL21007CFB820Z  
ISL21007DFB820Z (Obsolete  
recommended replacement  
ISL21007CFB820Z)  
ISL21007CFB825Z  
ISL21007DFB825Z  
21007CF Z25  
21007DF Z25  
21007CF Z30  
2.500  
2.500  
3.000  
±1.0mV, 5ppm/°C  
±2.0mV, 10ppm/°C  
±1.0mV, 5ppm/°C  
-40 to +125 8 Ld SOIC  
-40 to +125 8 Ld SOIC  
-40 to +125 8 Ld SOIC  
M8.15  
M8.15  
M8.15  
ISL21007CFB830Z (Obsolete,  
recommended replacement  
ISL21007CFB825Z-TK)  
ISL21007DFB830Z (Obsolete,  
recommended replacement  
ISL21007CFB825Z-TK)  
21007DF Z30  
3.000  
±2.0mV, 10ppm/°C  
-40 to +125 8 Ld SOIC  
M8.15  
NOTES:  
1. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
2. Add “-TK” suffix for 1k unit tape and reel option. Refer to TB347 for details on reel specifications.  
3. For Moisture Sensitivity Level (MSL), see device information pages for ISL21007CFB812, ISL21007CFB820, ISL21007CFB825, ISL21007CFB830,  
ISL21007DFB812, ISL21007DFB820, ISL21007DFB825, ISL21007DFB830. For more information on MSL, see techbrief TB363.  
Pin Configuration  
ISL21007  
(8 LD SOIC)  
TOP VIEW  
GND or NC  
VIN  
1
2
3
4
8
7
6
5
DNC  
DNC  
DNC  
VOUT  
TRIM  
GND  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
DESCRIPTION  
1
GND or NC  
VIN  
Ground or No Connection  
Power Supply Input Connection  
Ground  
2
4
5
GND  
TRIM  
VOUT  
DNC  
Allows User Trim VOUT ±2.5%  
6
Voltage Reference Output Connection  
3, 7, 8  
Do Not Connect; Internal Connection - Must Be Left Floating  
FN6326 Rev.12.00  
Jun 9, 2017  
Page 2 of 20  
 
 
 
 
ISL21007  
Typical Application Circuit  
8
1
GND  
NC  
+3V  
7
6
5
VIN  
NC  
2
3
4
NC  
VOUT  
C1  
10µF  
GND  
TRIM  
ISL21007-12, 20, 25, 30  
SPI BUS  
X79000  
1
20  
CS  
SCK  
2
19  
18  
17  
16  
15  
14  
13  
12  
11  
CLR  
VCC  
VH  
A0  
3
A1  
4
A2  
5
6
SI  
VL  
C1  
0.001µF  
SO  
VREF  
VSS  
VOUT  
VBUF  
VFB  
7
RDY  
UP  
8
LOW NOISE DAC OUTPUT  
9
DOWN  
OE  
10  
FIGURE 1. TYPICAL APPLICATION PRECISION 12-BIT SUBRANGING DAC  
FN6326 Rev.12.00  
Jun 9, 2017  
Page 3 of 20  
ISL21007  
Absolute Voltage Ratings  
Thermal Information  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Max Voltage VIN to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to +6.5V  
Max Voltage VOUT to GND (10s) . . . . . . . . . . . . . . . . . . . . . -0.5V to VOUT + 1  
Voltage on “DNC” pins . . . . . . . . . No connections permitted to these pins.  
ESD Rating  
Thermal Resistance (Typical, Note 5)  
JA (°C/W)  
113.12  
8 Ld SOIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Continuous Power Dissipation (Note 5). . . . . . . . . . . . . . . . . . . .TA = +70°C  
8 Ld SOIC Derate 5.88mW/°C above +70°C. . . . . . . . . . . . . . . . . .471mW  
Pb-Free Reflow Profile (Note 6). . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
Human Body Model (HBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6kV  
Machine Model (MM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600V  
Charged Device Model (CDM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2kV  
Recommended Operating Conditions  
Temperature Range (Full Range Industrial) . . . . . . . . . . .-40°C to +125°C  
Environmental Operating Conditions  
X-Ray Exposure (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mRem  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted,  
all tests are at the specified temperature and are pulsed tests, therefore: TJ = TC = TA  
NOTES:  
4. Measured with no filtering, distance of 10” from source, intensity set to 55kV and 70mA current, 30s duration. Other exposure levels should be  
analyzed for Output Voltage drift effects. See “Applications Information” on page 16.  
5. JA is measured with the component mounted on a high-effective thermal conductivity test board in free air. See tech brief TB379 for details.  
6. Post-reflow drift for the ISL21007 devices will range from 100µV to 1.0mV based on experimental results with devices on FR4 double sided boards.  
The design engineer must take this into account when considering the reference voltage after assembly.  
Common Electrical Specifications (ISL21007-12, -20, -25, -30) TA = -40°C to +125°C, unless otherwise  
specified. Boldface limits apply across the operating temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
SYMBOL  
VOA  
CONDITIONS  
(Note 10) TYP (Note 10)  
UNIT  
mV  
V
OUT Accuracy at TA = +25°C  
ISL21007B  
ISL21007C  
ISL21007D  
ISL21007B  
ISL21007C  
ISL21007D  
-0.5  
-1.0  
-2.0  
+0.5  
+1.0  
+2.0  
3
mV  
mV  
Output Voltage Temperature  
Coefficient (Note 7)  
TC VOUT  
ppm/°C  
ppm/°C  
ppm/°C  
µA  
5
10  
Supply Current  
IIN  
75  
±2.5  
120  
60  
150  
Trim Range  
±2.0  
%
Turn-On Settling Time  
Ripple Rejection  
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
tR  
VOUT = ±0.1%  
f = 10kHz  
µs  
dB  
eN  
VN  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
4.5  
2.2  
60  
µVP-P  
µVRMS  
nV/Hz  
FN6326 Rev.12.00  
Jun 9, 2017  
Page 4 of 20  
 
 
 
ISL21007  
Electrical Specifications (ISL21007-12, V  
= 1.250V) VIN = 3.0V, TA = -40°C to +125°C, unless otherwise  
OUT  
specified. Boldface limits apply across the operating temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
Input Voltage Range  
SYMBOL  
VIN  
CONDITIONS  
(Note 10)  
TYP  
(Note 10)  
UNIT  
V
2.7  
5.5  
Output Voltage  
Line Regulation  
Load Regulation  
VOUT  
1.250  
100  
10  
V
VOUT /VIN  
VOUT/IOUT  
2.7V VIN 5.5V  
700  
100  
150  
µV/V  
µV/mA  
µV/mA  
mA  
Sourcing: 0mA IOUT 7mA  
Sinking: -7mA IOUT0mA  
TA = +25°C, VOUT tied to GND  
TA = +165°C  
20  
Short-Circuit Current  
ISC  
40  
Thermal Hysteresis (Note 8)  
Long Term Stability (Note 9)  
VOUT/TA  
VOUT/t  
50  
ppm  
ppm  
TA = +25°C  
100  
Electrical Specifications (ISL21007-20, V  
= 2.048V) VIN = 3.0V, TA = -40°C to +125°C, unless otherwise specified.  
OUT  
Boldface limits apply across the operating temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
Input Voltage Range  
SYMBOL  
VIN  
CONDITIONS  
(Note 10)  
TYP  
(Note 10)  
UNIT  
V
2.7  
5.5  
Output Voltage  
Line Regulation  
Load Regulation  
VOUT  
2.048  
50  
V
VOUT /VIN  
VOUT/IOUT  
2.7V VIN 5.5V  
200  
100  
150  
µV/V  
µV/mA  
µV/mA  
mA  
Sourcing: 0mA IOUT 7mA  
Sinking: -7mA IOUT0mA  
TA = +25°C, VOUT tied to GND  
TA = +165°C  
10  
20  
Short-Circuit Current  
ISC  
50  
Thermal Hysteresis (Note 8)  
Long Term Stability (Note 9)  
VOUT/TA  
VOUT/t  
50  
ppm  
ppm  
TA = +25°C  
75  
Electrical Specifications (ISL21007-25, V  
= 2.500V) VIN = 3.0V, TA = -40°C to +125°C, unless otherwise specified.  
OUT  
Boldface limits apply across the operating temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
Input Voltage Range  
SYMBOL  
VIN  
CONDITIONS  
(Note 10)  
TYP  
(Note 10)  
UNIT  
V
2.7  
5.5  
Output Voltage  
Line Regulation  
Load Regulation  
VOUT  
2.500  
50  
V
VOUT /VIN  
VOUT/IOUT  
2.7V VIN 5.5V  
200  
100  
150  
µV/V  
µV/mA  
µV/mA  
mA  
Sourcing: 0mA IOUT 5mA  
Sinking: -5mA IOUT0mA  
TA = +25°C, VOUT tied to GND  
TA = +165°C  
10  
20  
Short-Circuit Current  
ISC  
50  
Thermal Hysteresis (Note 8)  
Long Term Stability (Note 9)  
VOUT/TA  
VOUT/t  
50  
ppm  
ppm  
TA = +25°C  
50  
FN6326 Rev.12.00  
Jun 9, 2017  
Page 5 of 20  
ISL21007  
Electrical Specifications (ISL21007-30, V  
= 3.000V) VIN = 5.0V, TA = -40°C to +125°C, unless otherwise specified.  
OUT  
Boldface limits apply over the operating temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
Input Voltage Range  
SYMBOL  
VIN  
CONDITIONS  
(Note 10)  
TYP  
(Note 10)  
UNIT  
V
3.2  
5.5  
Output Voltage  
Line Regulation  
Load Regulation  
VOUT  
3.000  
50  
V
VOUT /VIN  
VOUT/IOUT  
3.2V VIN 5.5V  
200  
100  
150  
µV/V  
µV/mA  
µV/mA  
mA  
Sourcing: 0mA IOUT 7mA  
Sinking: -7mA IOUT0mA  
TA = +25°C, VOUT tied to GND  
TA = +165°C  
10  
20  
Short-Circuit Current  
Thermal Hysteresis (Note 8)  
Long Term Stability (Note 9)  
NOTES:  
ISC  
50  
VOUT/TA  
VOUT/t  
50  
ppm  
ppm  
TA = +25°C  
50  
7. Over the specified temperature range. Temperature coefficient is measured by the box method whereby the change in VOUT is divided by the  
temperature range; in this case, -40°C to +125°C = +165°C.  
8. Thermal Hysteresis is the change of VOUT measured at TA = +25°C after temperature cycling over a specified range, TA. VOUT is read initially at  
TA = +25°C for the device under test. The device is temperature cycled and a second VOUT measurement is taken at +25°C. The difference between  
the initial VOUT reading and the second VOUT reading is then expressed in ppm. For TA = +165°C, the device under test is cycled from +25°C to  
+125°C to -40°C to +25°C.  
9. Long term drift is logarithmic in nature and diminishes over time. Drift after the first 1000 hours will be approximately 10ppm/(1kHrs).  
10. Compliance to datasheet limits is assured by one or more methods: production test, characterization, and/or design.  
Typical Performance Curves (ISL21007-12) (REXT = 100kΩ)  
95  
90  
85  
80  
75  
70  
65  
60  
120  
100  
80  
60  
40  
20  
0
UNIT 3  
+125°C  
UNIT 2  
UNIT 1  
+25°C  
-40°C  
2.5  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
FIGURE 2. IIN vs VIN (3 UNITS)  
FIGURE 3. IIN vs VIN OVER TEMPERATURE  
1.25015  
1.25010  
1.25005  
1.25000  
1.24995  
1.24990  
1.24985  
1.24980  
150  
100  
50  
+125°C  
UNIT 3  
0
+25°C  
-40°C  
-50  
UNIT 2  
-100  
-150  
-200  
-250  
-300  
UNIT 1  
2.5  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
FIGURE 5. LINE REGULATION OVER TEMPERATURE  
FIGURE 4. LINE REGULATION (3 UNITS)  
FN6326 Rev.12.00  
Jun 9, 2017  
Page 6 of 20  
 
 
 
ISL21007  
Typical Performance Curves (ISL21007-12) (REXT = 100kΩ) (Continued)  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
1.25010  
1.25005  
1.25000  
1.24995  
1.24990  
1.24985  
1.24980  
1.24975  
+25°C  
+125°C  
UNIT 1  
UNIT 2  
-40°C  
UNIT 3  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
SINKING OUTPUT CURRENT (mA)  
SOURCING  
TEMPERATURE (°C)  
FIGURE 6. LOAD REGULATION OVER TEMPERATURE  
FIGURE 7. VOUT vs TEMPERATURE (3 UNITS)  
X: 200mV/DIV  
Y: 10µs/DIV  
0
10nF LOAD  
100nF LOAD  
-20  
V = +0.3V  
IN  
-40  
-60  
-80  
V = -0.3V  
IN  
1µF LOAD  
1nF LOAD  
NO LOAD  
1.00E+02  
-100  
1.00E+00  
1.00E+04  
1.00E+0  
FREQUENCY (Hz)  
FIGURE 9. LINE TRANSIENT RESPONSE, NO CAPACITIVE LOAD  
FIGURE 8. PSRR vs CAPACITIVE LOADS  
X: 20µs/DIV  
Y: 1V/DIV  
X: 200mV/DIV  
Y: 10µs/DIV  
V = +0.3V  
IN  
V
IN  
V
= 1.25V  
OUT  
V = -0.3V  
IN  
FIGURE 10. LINE TRANSIENT RESPONSE, 0.001µF LOAD  
CAPACITANCE  
FIGURE 11. TURN-ON TIME  
FN6326 Rev.12.00  
Jun 9, 2017  
Page 7 of 20  
 
ISL21007  
Typical Performance Curves (ISL21007-12) (REXT = 100kΩ) (Continued)  
GAIN IS x1000,  
NOISE IS 4.5µV  
P-P  
140  
1nF  
10nF  
NO LOAD  
120  
100  
80  
60  
40  
20  
0
100nF  
1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06  
FREQUENCY (Hz)  
FIGURE 13. VOUT NOISE, 0.1Hz TO 10Hz  
FIGURE 12. ZOUT vs FREQUENCY  
NO OUTPUT CAPACITANCE  
X: 50µs/DIV  
Y: 1V/DIV  
+7mA  
-7mA  
FIGURE 14. LOAD TRANSIENT RESPONSE  
FN6326 Rev.12.00  
Jun 9, 2017  
Page 8 of 20  
ISL21007  
Typical Performance Curves (ISL21007-20) (REXT = 100kΩ)  
95  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
UNIT 2  
+125°C  
-40°C  
UNIT 1  
+25°C  
UNIT 3  
3.5  
2.7  
3.1  
3.5  
3.9  
V
4.3  
(V)  
4.7  
5.1  
5.5  
2.7  
3.1  
3.9  
4.3  
(V)  
4.7  
5.1  
5.5  
V
IN  
IN  
FIGURE 15. IIN vs VIN (3 UNITS)  
FIGURE 16. IIN vs VIN OVER TEMPERATURE  
2.04815  
2.04810  
2.04805  
2.04800  
2.04795  
2.04790  
2.04815  
2.04810  
2.04805  
2.04800  
2.04795  
-40°C  
UNIT 2  
+125°C  
UNIT 1  
+25°C  
UNIT 3  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
FIGURE 17. LINE REGULATION (3 UNITS)  
FIGURE 18. LINE REGULATION OVER TEMPERATURE  
2.0496  
1.6  
1.2  
2.0492  
2.0488  
2.0484  
2.0480  
2.0476  
2.0472  
+125°C  
0.0  
0.4  
UNIT 2  
UNIT 1  
-40°C  
0.0  
-0.4  
-0.8  
-1.2  
+25°C  
UNIT 3  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
SINKING OUTPUT CURRENT (mA)  
SOURCING  
FIGURE 19. LOAD REGULATION OVER TEMPERATURE  
FIGURE 20. VOUT vs TEMPERATURE (3 UNITS)  
FN6326 Rev.12.00  
Jun 9, 2017  
Page 9 of 20  
ISL21007  
Typical Performance Curves (ISL21007-20) (REXT = 100kΩ) (Continued)  
X: 200mV/DIV  
Y: 10µs/DIV  
0
10nF LOAD  
100nF LOAD  
-20  
V = +0.3V  
IN  
-40  
1µF LOAD  
-60  
V = -0.3V  
IN  
-80  
NO LOAD  
-100  
1.0E+01  
1.0E+03  
1.0E+05  
FREQUENCY (Hz)  
FIGURE 22. LINE TRANSIENT RESPONSE, NO CAPACITIVE LOAD  
FIGURE 21. PSRR vs CAPACITIVE LOADS  
X: 200mV/DIV  
Y: 10µs/DIV  
X: 100µs/DIV  
Y: 2V/DIV  
V = +0.3V  
IN  
V
IN  
V
OUT = 2.048V  
V = -0.3V  
IN  
FIGURE 23. LINE TRANSIENT RESPONSE, 0.001µF LOAD  
CAPACITANCE  
FIGURE 24. TURN-ON TIME  
GAIN IS x1000,  
NOISE IS 4.5µV  
P-P  
140  
1nF  
10nF  
NO LOAD  
120  
100  
80  
60  
40  
20  
0
100nF  
1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06  
FREQUENCY (Hz)  
FIGURE 25.  
ZOUT VS FREQUENCY  
FIGURE 26. VOUT NOISE, 0.1Hz TO 10Hz  
FN6326 Rev.12.00  
Jun 9, 2017  
Page 10 of 20  
ISL21007  
Typical Performance Curves (ISL21007-20) (REXT = 100kΩ) (Continued)  
X: 20µs/DIV  
X: 20µs/DIV  
Y: 200mV/DIV  
Y: 200mV/DIV  
+7mA  
+7mA  
-7mA  
-7mA  
FIGURE 27. LOAD TRANSIENT RESPONSE, 0.001µF LOAD  
CAPACITANCE  
FIGURE 28. LOAD TRANSIENT RESPONSE, NO CAPACITIVE LOAD  
Typical Performance Curves (ISL21007-25) (REXT = 100kΩ)  
100  
120  
100  
80  
60  
40  
20  
0
UNIT 3  
95  
90  
85  
80  
75  
70  
65  
60  
+125°C  
UNIT 2  
UNIT 1  
+25°C  
-40°C  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
(V)  
IN  
IN  
FIGURE 30. IIN vs VIN OVER TEMPERATURE  
FIGURE 29. IIN vs VIN (3 UNITS)  
2.5002  
2.5001  
2.5000  
2.4999  
2.4998  
2.4997  
2.4996  
100  
50  
UNIT 1  
0
-50  
+25°C  
UNIT 2  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
+125°C  
UNIT 3  
-40°C  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
6.0  
V
V
IN  
IN  
FIGURE 31. LINE REGULATION (3 UNITS)  
FIGURE 32. LINE REGULATION OVER TEMPERATURE  
FN6326 Rev.12.00  
Jun 9, 2017  
Page 11 of 20  
ISL21007  
Typical Performance Curves (ISL21007-25) (REXT = 100kΩ) (Continued)  
2.5003  
2.5002  
2.5001  
2.5000  
2.4999  
2.4998  
2.4997  
2.4996  
2.4995  
2.4994  
2.4993  
0.6  
0.4  
0.2  
0
+125°C  
UNIT 2  
-40°C  
UNIT 1  
+25°C  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
UNIT 3  
80  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
-40  
-20  
0
20  
40  
60  
100  
120 140  
SINKING OUTPUT CURRENT (mA)  
SOURCING  
TEMPERATURE (°C)  
FIGURE 33. LOAD REGULATION OVER TEMPERATURE  
FIGURE 34. VOUT vs TEMPERATURE (3 UNITS)  
X: 200mV/DIV  
Y: 10µs/DIV  
10  
NO LOAD  
1nF  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
10nF  
100nF  
V = +0.3V  
IN  
1µF  
V = -0.3V  
IN  
1.E+00  
1.E+02  
1.E+04  
1.E+06  
FREQUENCY (Hz)  
FIGURE 35. PSRR vs CAPACITIVE LOADS  
FIGURE 36. LINE TRANSIENT RESPONSE, NO CAPACITIVE LOAD  
X: 200mV/DIV  
Y: 10µs/DIV  
X: 20µs/DIV  
Y: 1V/DIV  
V = +0.3V  
IN  
V
IN  
V
= 2.5V  
V = -0.3V  
OUT  
IN  
FIGURE 37. LINE TRANSIENT RESPONSE, 0.001µF LOAD  
CAPACITANCE  
FIGURE 38. TURN-ON TIME  
FN6326 Rev.12.00  
Jun 9, 2017  
Page 12 of 20  
ISL21007  
Typical Performance Curves (ISL21007-25) (REXT = 100kΩ) (Continued)  
GAIN IS x1000,  
NOISE IS 4.5µV  
P-P  
140  
1nF  
10nF  
NO LOAD  
120  
100  
80  
60  
40  
20  
0
100nF  
1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06  
FREQUENCY (Hz)  
FIGURE 39. Z  
vs FREQUENCY  
FIGURE 40. VOUT NOISE, 0.1Hz TO 10Hz  
OUT  
NO OUTPUT CAPACITANCE  
X: 50µs/DIV  
Y: 500mV/DIV  
+5mA  
-5mA  
FIGURE 41. LOAD TRANSIENT RESPONSE  
Typical Performance Curves (ISL21007-30) (REXT = 100kΩ)  
120  
120  
100  
80  
60  
40  
20  
0
UNIT 2  
+125°C  
100  
80  
60  
40  
20  
0
UNIT 3  
UNIT 1  
+25°C  
-40°C  
3.2  
3.7  
4.2  
V
4.7  
5.2  
3.2  
3.7  
4.2  
4.7  
5.2  
(V)  
V
(V)  
IN  
IN  
FIGURE 42. IIN vs VIN (3 UNITS)  
FIGURE 43. IIN vs VIN OVER TEMPERATURE  
FN6326 Rev.12.00  
Jun 9, 2017  
Page 13 of 20  
ISL21007  
Typical Performance Curves (ISL21007-30) (REXT = 100kΩ) (Continued)  
3.001  
3.000  
2.999  
2.998  
2.997  
2.996  
2.995  
2.994  
3.0005  
2.9995  
2.9985  
2.9975  
2.9965  
2.9955  
UNIT 1  
UNIT 2  
+125°C  
+25°C  
UNIT 3  
-40°C  
3.2  
3.6  
4.0  
4.4  
4.8  
5.2  
5.6  
3.2  
3.6  
4.0  
4.4  
(V)  
4.8  
5.2  
5.6  
V
(V)  
IN  
V
IN  
FIGURE 45. LINE REGULATION OVER TEMPERATURE  
FIGURE 44. LINE REGULATION (3 UNITS)  
0.10  
3.0006  
3.0004  
0.05  
0.00  
-40°C  
+25°C  
3.0002  
UNIT 3  
3.0000  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
UNIT 2  
2.9998  
+125°C  
2.9996  
UNIT 1  
2.9994  
2.9992  
2.9990  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
SINKING  
LOAD (mA)  
SOURCING  
FIGURE 46. LOAD REGULATION OVER TEMPERATURE  
FIGURE 47. VOUT vs TEMPERATURE (3 UNITS)  
X: 200mV/DIV  
Y: 10µs/DIV  
10  
NO LOAD  
V
V
(DC) = 5.0V  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
IN  
IN  
V = +0.5V  
IN  
1nF  
10nF  
100nF  
(AC) = 50mV  
P-P  
1µF  
V = -0.5V  
IN  
1.E+00  
1.E+02  
1.E+04  
1.E+06  
FREQUENCY (Hz)  
FIGURE 48. PSRR vs CAPACITIVE LOADS  
FIGURE 49. LINE TRANSIENT RESPONSE, NO CAPACITIVE LOAD  
FN6326 Rev.12.00  
Jun 9, 2017  
Page 14 of 20  
ISL21007  
Typical Performance Curves (ISL21007-30) (REXT = 100kΩ) (Continued)  
X: 200mV/DIV  
Y: 10µs/DIV  
V
IN = 5.0V  
V = +0.5V  
IN  
V
= 3.0V  
OUT  
V = -0.5V  
IN  
20µs/DIV  
FIGURE 50. LINE TRANSIENT RESPONSE, 0.001µF LOAD  
CAPACITANCE  
FIGURE 51. TURN-ON TIME  
GAIN IS x1000,  
NOISE IS 4.5µV  
P-P  
140  
120  
100  
80  
1nF  
10nF  
NO LOAD  
100nF  
60  
40  
20  
0
1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06  
FREQUENCY (Hz)  
FIGURE 52. Z  
vs FREQUENCY  
FIGURE 53. VOUT NOISE, 0.1Hz TO 10Hz  
OUT  
+7mA  
-7mA  
100µs/DIV  
FIGURE 54. LOAD TRANSIENT RESPONSE  
FN6326 Rev.12.00  
Jun 9, 2017  
Page 15 of 20  
ISL21007  
Board Assembly Considerations  
Applications Information  
FGA Technology  
FGA references provide high accuracy and low temperature drift  
but some PC board assembly precautions are necessary. Normal  
Output voltage shifts of 100µV to 1mV can be expected with  
Pb-free reflow profiles or wave solder on multi-layer FR4 PC  
boards. Precautions should be taken to avoid excessive heat or  
extended exposure to high reflow or wave solder temperatures,  
this may reduce device initial accuracy.  
The ISL21007 voltage reference uses floating gate technology to  
create references with very low drift and supply current.  
Essentially, the charge stored on a floating gate cell is set  
precisely in manufacturing. The reference voltage output itself is  
a buffered version of the floating gate voltage. The resulting  
reference device has excellent characteristics that are unique in  
the industry: very low temperature drift, high initial accuracy, and  
almost zero supply current. Also, the reference voltage itself is  
not limited by voltage bandgaps or zener settings, so a wide  
range of reference voltages can be programmed (standard  
voltage settings are provided, but customer-specific voltages are  
available).  
Post-assembly X-ray inspection may also lead to permanent  
changes in device output voltage and should be minimized or  
avoided. If X-ray inspection is required, it is advisable to monitor  
the reference output voltage to verify excessive shift has not  
occurred. If large amounts of shift are observed, it is best to add  
an X-ray shield consisting of thin zinc (300µm) sheeting to allow  
clear imaging, yet block X-ray energy that affects the FGA  
reference.  
The process used for these reference devices is a floating gate  
CMOS process, and the amplifier circuitry uses CMOS transistors  
for amplifier and output transistor circuitry. While providing  
excellent accuracy, there are limitations in output noise level and  
load regulation due to the MOS device characteristics. These  
limitations are addressed with circuit techniques discussed in  
other sections.  
Special Applications Considerations  
In addition to post-assembly examination, there are also other  
X-ray sources that may affect the FGA reference long term  
accuracy. Airport screening machines contain X-rays and will  
have a cumulative effect on the voltage reference output  
accuracy. Carry-on luggage screening uses low level X-rays and is  
not a major source of output voltage shift, however, if a product is  
expected to pass through that type of screening over 100 times,  
it may need to consider shielding with copper or aluminum.  
Checked luggage X-rays are higher intensity and can cause  
output voltage shift in much fewer passes, thus devices expected  
to go through those machines should definitely consider  
shielding. Note that just two layers of 1/2 ounce copper planes  
will reduce the received dose by over 90%. The leadframe for the  
device which is on the bottom also provides similar shielding.  
Micropower Operation  
The ISL21007 consumes extremely low supply current due to the  
proprietary FGA technology. Low noise performance is achieved  
using optimized biasing techniques. Supply current is typically  
75µA and noise is 4.5µVP-P benefitting precision, low noise  
portable applications such as handheld meters and instruments.  
Data Converters in particular can use the ISL21007 as an  
external voltage reference. Low power DAC and ADC circuits will  
realize maximum resolution with lowest noise.  
If a device is expected to pass through luggage X-ray machines  
numerous times, it is advised to mount a 2-layer (minimum) PC  
board on the top, along with a ground plane underneath, which will  
effectively shield it from 50 to 100 passes through the machine.  
Because these machines vary in X-ray dose delivered, it is difficult to  
produce an accurate maximum pass recommendation.  
Handling and Board Mounting  
FGA references provide excellent initial accuracy and low  
temperature drift at the expense of very little power drain. There  
are some precautions to take to ensure this accuracy is not  
compromised. Excessive heat during solder reflow can cause  
excessive initial accuracy drift, so the recommended +260°C  
max temperature profile should not be exceeded. Expect up to  
1mV drift from the solder reflow process.  
FGA references are susceptible to excessive X-radiation like that  
used in PC board manufacturing. Initial accuracy can change  
10mV or more under extreme radiation. If an assembled board  
needs to be X-rayed, care should be taken to shield the FGA  
reference device.  
Board Mounting Considerations  
For applications requiring the highest accuracy, board mounting  
location should be reviewed. Placing the device in areas subject  
to slight twisting can cause degradation of the accuracy of the  
reference voltage due to die stresses. It is normally best to place  
the device near the edge of a board, or the shortest side, as the  
axis of bending is most limited at that location. Obviously,  
mounting the device on flexprint or extremely thin PC material  
will likewise cause loss of reference accuracy.  
FN6326 Rev.12.00  
Jun 9, 2017  
Page 16 of 20  
ISL21007  
Noise Performance and Reduction  
Temperature Coefficient  
The output noise voltage in a 0.1Hz to 10Hz bandwidth is typically  
4.5µVP-P. The noise measurement is made with a bandpass filter  
made of a 1-pole high-pass filter with a corner frequency at 0.1Hz  
and a 2-pole low-pass filter with a corner frequency at 12.6Hz to  
create a filter with a 9.9Hz bandwidth. Noise in the 10kHz to 1MHz  
bandwidth is approximately 40µVP-P with no capacitance on the  
output. This noise measurement is made with a 2 decade  
bandpass filter made of a 1-pole high-pass filter with a corner  
frequency at 1/10 of the center frequency and 1-pole low-pass  
filter with a corner frequency at 10 times the center frequency.  
Load capacitance up to 1000pF can be added but will result in  
only marginal improvements in output noise and transient  
response. The output stage of the ISL21007 is not designed to  
drive heavily capacitive loads, so for load capacitances above  
0.001µF, the noise reduction network shown in Figure 55 on  
page 17 is recommended. This network reduces noise significantly  
over the full bandwidth. Noise is reduced to less than 20µVP-P from  
1Hz to 1MHz using this network with a 0.01µF capacitor and a 2kΩ  
resistor in series with a 10µF capacitor. Also, transient response is  
improved with higher value output capacitor. The 0.01µF value can  
be increased for better load transient response with little sacrifice  
in output stability.  
The limits stated for temperature coefficient (tempco) are governed  
by the method of measurement. The overwhelming standard for  
specifying the temperature drift of a reference is to measure the  
reference voltage at two temperatures, take the total variation,  
(VHIGH – VLOW), and divide by the temperature extremes of  
measurement (THIGH – TLOW). The result is divided by the nominal  
reference voltage (at T = +25°C) and multiplied by 106 to yield  
ppm/°C. This is the “Box” method for specifying temperature  
coefficient.  
Output Voltage Adjustment  
The output voltage can be adjusted up or down by 2.5% by placing a  
potentiometer from VOUT to ground, and connecting the wiper to the  
TRIM pin. The TRIM input is high impedance, so no series resistance  
is needed. The resistor in the potentiometer should be a low tempco  
(<50ppm/°C) and the resulting voltage divider should have very low  
tempco <5ppm/°C. A digital potentiometer such as the ISL95810  
provides a low tempco resistance and excellent resistor and tempco  
matching for trim applications. See Figure 59 and TB473 for further  
information.  
V
= 5.0V  
IN  
V
10µF  
IN  
V
O
Turn-On Time  
0.1µF  
ISL21007  
GND  
The ISL21007 devices have low supply current and thus the time  
to bias up internal circuitry to final values will be longer than with  
higher power references. Normal turn-on time is typically 120µs.  
This is shown in Figure 10. Circuit design must take this into  
account when looking at power-up delays or sequencing.  
2kΩ  
0.01µF  
10µF  
FIGURE 55. HANDLING HIGH LOAD CAPACITANCE  
Typical Application Circuits  
V
= +5.0V  
IN  
R = 200Ω  
2N2905  
V
IN  
V
2.5V/50mA  
OUT  
ISL21007  
V
= 2.500V  
OUT  
0.001µF  
GND  
FIGURE 56. PRECISION 2.500V 50mA REFERENCE  
FN6326 Rev.12.00  
Jun 9, 2017  
Page 17 of 20  
 
ISL21007  
Typical Application Circuits(Continued)  
+2.7 TO 5.5V  
0.1µF  
10µF  
V
IN  
V
OUT  
ISL21007-25  
V
= 2.500V  
OUT  
GND  
0.001µF  
V
R
CC  
V
H
OUT  
X9119  
SDA  
SCL  
(UNBUFFERED)  
+
2-WIRE BUS  
EL8178  
V
OUT  
(BUFFERED)  
V
R
L
SS  
FIGURE 57. 2.500V FULL SCALE LOW-DRIFT, LOW NOISE, 10-BIT ADJUSTABLE VOLTAGE SOURCE  
+2.7 TO 5.5V  
0.1µF  
10µF  
V
IN  
EL8178  
+
V
SENSE  
OUT  
V
OUT  
ISL21007-12  
GND  
LOAD  
FIGURE 58. KELVIN SENSED LOAD  
10µF  
+2.7 TO 5.5V  
0.1µF  
V
2.5V ±2.5%  
IN  
V
OUT  
ISL21007-12  
TRIM  
GND  
R
V
H
CC  
SDA  
SCL  
I2C BUS  
ISL95810  
R
L
V
SS  
FIGURE 59. OUTPUT ADJUSTMENT USING THE TRIM PIN  
FN6326 Rev.12.00  
Jun 9, 2017  
Page 18 of 20  
ISL21007  
Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted.  
Please visit our website to make sure that you have the latest revision.  
DATE  
REVISION  
CHANGE  
Jun 9, 2017  
FN6326.12  
Applied new header/footer.  
Updated Table 1 on page 1.  
Updated Related Literature section.  
Updated Ordering information table.  
Updated Note 2.  
Updated About Intersil section.  
Sept 2, 2015  
FN6326.11  
Added Rev History beginning with Revision 11.  
Added About Intersil verbiage.  
Removed Initial Accuracy from Features on page 1.  
Updated Available Options Table on page 1.  
Updated Ordering Information on page 2.  
Moved Pin Configuration from page 1 to page 3.  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
For a listing of definitions and abbreviations of common terms used in our documents, visit www.intersil.com/glossary.  
You can report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support.  
© Copyright Intersil Americas LLC 2007-2017. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6326 Rev.12.00  
Jun 9, 2017  
Page 19 of 20  
ISL21007  
For the most recent package outline drawing, see M8.15.  
Package Outline Drawing  
M8.15  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 4, 1/12  
DETAIL "A"  
1.27 (0.050)  
0.40 (0.016)  
INDEX  
AREA  
6.20 (0.244)  
5.80 (0.228)  
0.50 (0.20)  
x 45°  
0.25 (0.01)  
4.00 (0.157)  
3.80 (0.150)  
8°  
0°  
1
2
3
0.25 (0.010)  
0.19 (0.008)  
SIDE VIEW “B”  
TOP VIEW  
2.20 (0.087)  
1
8
SEATING PLANE  
0.60 (0.023)  
1.27 (0.050)  
1.75 (0.069)  
5.00 (0.197)  
4.80 (0.189)  
2
3
7
6
1.35 (0.053)  
-C-  
4
5
0.25(0.010)  
0.10(0.004)  
1.27 (0.050)  
0.51(0.020)  
0.33(0.013)  
5.20(0.205)  
SIDE VIEW “A  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
2. Package length does not include mold flash, protrusions or gate burrs. Mold  
flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per  
side.  
3. Package width does not include interlead flash or protrusions. Interlead flash  
and protrusions shall not exceed 0.25mm (0.010 inch) per side.  
4. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
5. Terminal numbers are shown for reference only.  
6. The lead width as measured 0.36mm (0.014 inch) or greater above the  
seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).  
FN6326 Rev.12.00  
Jun 9, 2017  
Page 20 of 20  

相关型号:

ISL21007CFB830Z-T

IC THREE TERM VOLTAGE REFERENCE, Voltage Reference
RENESAS

ISL21007CFB830ZT

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 3V, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
RENESAS

ISL21007D

Providing high-performance solutions for every link in the signal chain
INTERSIL

ISL21007DFB812Z

Precision, Low Noise FGA⑩ Voltage References
INTERSIL

ISL21007DFB812Z-T

IC THREE TERM VOLTAGE REFERENCE, Voltage Reference
RENESAS

ISL21007DFB812Z-TK

Precision, Low Noise FGA&trade; Voltage References; SOIC8; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL21007DFB812ZT

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 1.25V, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
RENESAS

ISL21007DFB820Z

5-Channel Integrated LCD Supply
INTERSIL

ISL21007DFB825Z

Precision, Low Noise FGA⑩ Voltage References
INTERSIL

ISL21007DFB825Z-TK

Precision, Low Noise FGA&trade; Voltage References; SOIC8; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL21007DFB825ZT

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5V, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
RENESAS

ISL21007DFB830Z

5-Channel Integrated LCD Supply
INTERSIL