HIP5600IS2 [RENESAS]

1.2 V-ADJUSTABLE POSITIVE REGULATOR, PSSO3, GULLWING, PLASTIC, SIP-3;
HIP5600IS2
型号: HIP5600IS2
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

1.2 V-ADJUSTABLE POSITIVE REGULATOR, PSSO3, GULLWING, PLASTIC, SIP-3

输出元件 调节器
文件: 总16页 (文件大小:889K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIP5600  
®
September 1998  
File Number 3270.7  
Thermally Protected High Voltage Linear  
Regulator  
Features  
• Operates from 50V  
• Operates from 50V  
• UL Recognized  
to 400V  
DC  
DC  
The HIP5600 is an adjustable 3-terminal positive linear  
to 280V  
Line  
RMS  
RMS  
voltage regulator capable of operating up to either 400V  
DC  
. The output voltage is adjustable from 1.2V  
or 280V  
RMS  
DC  
• Variable DC Output Voltage 1.2V  
DC  
to V - 50V  
IN  
to within 50V of the peak input voltage with two external  
resistors. This high voltage linear regulator is capable of  
sourcing 1mA to 30mA with proper heat sinking. The  
HIP5600 can also provide 40mA peak (typical) for short  
periods of time.  
• Internal Thermal Shutdown Protection  
• Internal Over Current Protection  
• Up to 40mA Peak Output Current  
Protection is provided by the on chip thermal shutdown and  
output current limiting circuitry. The HIP5600 has a unique  
advantage over other high voltage linear regulators due to its  
ability to withstand input to output voltages as high as  
400V(peak), a condition that could exist under output short  
circuit conditions.  
• Surge Rated to ±650V; Meets IEEE/ANSI C62.41.1980  
with Additional MOV  
CAUTION: This product does not provide isolation from AC  
line.  
Applications  
• Switch Mode Power Supply Start-Up  
Common linear regulator configurations can be implemented  
as well as AC/DC conversion and start-up circuits for switch  
mode power supplies.  
• Electronically Commutated Motor Housekeeping Supply  
• Power Supply for Simple Industrial/Commercial/Consumer  
Equipment Controls  
The HIP5600 requires a minimum output capacitor of 10µF  
for stability of the output and may require a 0.02µF input  
decoupling capacitor depending on the source impedance. It  
also requires a minimum load current of 1mA to maintain  
output voltage regulation.  
• Off-Line (Buck) Switch Mode Power Supply  
Ordering Information  
PART  
All protection circuitry remains fully functional even if the  
adjustment terminal is disconnected. However, if this  
happens the output voltage will approach the input voltage.  
NUMBER  
HIP5600IS  
HIP5600IS2  
TEMP. RANGE  
PACKAGE  
o
o
-40 C to +100 C  
3 Lead Plastic SIP  
o
o
-40 C to +100 C  
3 Lead Gullwing Plastic  
SIP  
Pinouts  
HIP5600 (TO-220)  
HIP5600 (MO-169)  
TOP VIEW  
TOP VIEW  
TAB ELECTRICALLY  
CONNECTED  
V
OUT  
TO V  
OUT  
HIP5600  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2002. All Rights Reserved  
63  
HIP5600  
Functional Block Diagram  
HIP5600  
RECTIFIER FOR  
AC OPERATION  
PASS  
TRANSISTOR  
SHORT-CIRCUIT  
PROTECTION  
V
OUT  
-
V
IN  
+
+
-
RF1  
RF2  
BIAS  
NETWORK  
C2  
-
C1  
+
THERMAL  
SHUTDOWN  
FEEDBACK  
OR CONTROL  
AMPLIFIER  
VOLTAGE  
REFERENCE  
+
-
ADJ  
Schematic Diagram  
V
IN  
R1  
D3  
D2  
D1  
D4  
Q1  
R2  
Q2  
R3  
Q11  
R12  
D7  
D8  
Q12  
R13  
D9  
Q4  
R4  
Q9  
D6  
Q5  
R11  
R5  
D5  
Q14  
R14  
C1  
R7  
Q3  
Q6  
Q10  
Q13  
R8  
R6  
R15  
Q8  
Q7  
V
OUT  
R10  
R9  
ADJ  
FIGURE 1.  
64  
HIP5600  
Absolute Maximum Ratings  
Thermal Information (Typical)  
Input to Output Voltage, Continuous . . . . . . . . . . . . +480V to -550V Thermal Resistance  
θ
θ
JC  
4 C/W  
JA  
o
o
Input to Output Voltage, Peak (Non Repetitive, 2ms) . . . . . . . ±650V  
Plastic SIP Package . . . . . . . . . . . . . . 60 C/W  
o
Junction Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150 C  
ADJ to Output, Voltage to ADJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5V  
o
o
o
Storage Temperature Range . . . . . . . . . . . . . . . . . -65 C to +150 C  
Lead Temperature (Soldering 10s). . . . . . . . . . . . . . . . . . . . +265 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Operating Conditions  
o
o
Operating Voltage Range. . . . . . . . . . . . . . 80V  
RMS  
to 280V  
or  
Operating Temperature Range . . . . . . . . . . . . . . . .-40 C to +100 C  
RMS  
to 400V  
50V  
DC  
DC  
Electrical Specifications Conditions V = 400VDC, I = 1mA, C = 10µF, V  
= 3.79V, V  
= 5V (Unless Otherwise Specified) Tem-  
IN  
L
L
ADJ  
OUT  
perature = Case Temperature.  
PARAMETER  
CONDITION  
TEMP  
MIN  
TYP  
MAX  
UNITS  
INPUT  
Input Voltage  
DC  
Non-Repetitive (2ms)  
Full  
Full  
Full  
Full  
50  
-
-
-
400  
±650  
1000  
0.6  
V
V
Max Peak Input Voltage  
Input Frequency (Note 1)  
DC  
0.4  
-
Hz  
mA  
Bias Current (I  
REFERENCE  
Note 2)  
0.5  
BIAS  
o
I
I
I
+25 C  
50  
65  
+0.15  
-215  
1.18  
-460  
9
80  
µA  
ADJ  
ADJ  
o
T
(Note 1)  
I
I
= 1mA  
Full  
-
-
-
µA/ C  
C
L
L
o
(Note 1)  
= 1mA to 10mA  
+25 C  
-
nA/mA  
V
ADJ LOAD REG  
o
V
V
(Note 3)  
+25 C  
1.07  
1.30  
-
REF  
REF  
o
T
(Note 1)  
I
= 1mA  
Full  
-
-
-
-
-
µV/ C  
C
L
o
Line Regulation  
V
50VDC to 400VDC  
+25 C  
14.5  
29  
5
µV/V  
µV/V  
REF LINE REG  
Full  
9
o
Load Regulation  
V
I
= 1mA to 10mA  
+25 C  
3
mV/mA  
mV/mA  
OUT  
REF LOAD REG  
Full  
3
6
PROTECTION CIRCUITS  
o
Output Short Circuit Current Limit  
V
V
= 50V  
+25 C  
35  
-
45  
mA  
IN  
IN  
o
Thermal Shutdown T  
= 400V  
-
-
127  
134  
142  
C
TS  
(IC surface, not case temperature. Note 1)  
o
Thermal Shutdown Hysteresis (Note 1)  
V
= 400V  
-
34  
-
C
IN  
NOTES:  
1. Characterized not tested  
2. Bias current input current with output pin floating.  
3. V  
REF  
= V - V  
OUT ADJ  
65  
HIP5600  
Application Information  
Introduction  
V
RF1  
3.6k  
2.7k  
1.8k  
1.1k  
RF2  
5.6k  
7.5k  
15k  
OUT(NOMINAL)  
In many electronic systems the components operate at 3V to  
15V but the system obtains power from a high voltage  
source (AC or DC). When the current requirements are  
small, less than 10mA, a linear regulator may be the best  
supply provided that it is easy to design in, reliable, low cost  
and compact. The HIP5600 is similar to other 3 terminal reg-  
ulators but operates from much higher voltages. It protects  
its load from surges +250V above its 400V operating input  
voltage and has short circuit current limiting and thermal  
shutdown self protection features.  
HIP5600  
3.3V  
4.9V  
AC/DC  
12.0V  
14.8V  
12k  
I
1
V
REF  
RF1  
V
OUT  
I
ADJ  
RF2  
Output Voltage  
AC/DC  
FIGURE 2.  
The HIP5600 provides a temperature independent 1.18V  
reference, V  
terminal (V  
, between the output and the adjustment  
REF  
= V  
Example: Given:  
2mA to 12mA, θ  
V
= 200V , V  
= 15V, I  
=
OUT  
IN  
DC OUT  
- V ). This constant reference  
o
REF  
OUT  
ADJ  
= 10 C/W, RF1 = 1.1k5% low, RF2 =  
equals 10mA and Temp equals  
SA  
voltage is impressed across RF1 (see Figure 2) and results  
in a constant current (I ) that flows through RF2 to ground.  
The voltage across RF2 is the product of its resistance and  
12k5% high, I  
OUT  
+60 C (ambient temperature +25 C to +85 C). The worst  
case V for the given conditions is -1.13V. The shift in  
o
o
o
1
OUT  
is attributed to the following: -1.55V manufacturing tol-  
the sum of I and I  
The output voltage is given in Equa-  
1
ADJ.  
V
OUT  
tions 1(A, B).  
erances, +1.33V external resistors, -0.62V load regulation  
RF1 + RF2  
)------------------------------ + I  
ADJ  
RF1  
and -0.29V temperature effects.  
(EQ. 1A)  
(EQ. 1B)  
V
= (V  
(RF2)  
OUT  
OUT  
REF  
Regulator With Zener  
RF1 + RF2  
V
= (1.18) × ------------------------------ + 65µA(RF2)  
RF1  
V
= 1.18 + V  
Z
OUT  
V
V
Z
OUT  
HIP5600  
3.7V  
5.1V  
2.5V  
3.9V  
9.1V  
11V  
15V  
Error Budget  
AC/DC  
RF2  
RF2  
RF1 + RF2  
T
T
V  
= V  
------------------------ + I  
RF2 + I  
ADJ  
RF2-------------  
ADJ  
10.3V  
REF  
OUT  
RF1  
12.2V  
RF2 RF1  
RF2 RF1  
RF2  
RF1  
I
1
(EQ. 2A)  
+V  
--------- ----------- -------------  
V
REF  
REF  
RF1  
16.2V  
V
OUT  
Where;  
RF1 = 10k  
I
ADJ  
V
Z
T
REF  
V  
≡ ∆V  
+ V  
(I  
) + V  
TC(∆Temp)  
REF  
REF  
REF  
OUT  
LOADREG  
AC/DC  
+V  
TC(θ )∆(I  
V ) + V  
IN  
REF  
SA  
OUT  
REF  
LINEREG  
FIGURE 3.  
(EQ. 2B)  
T
The output voltage can be set by using a zener diode (Figure  
3) instead of the resistor divider shown in Figure 2. The  
zener diode improves the ripple rejection ratio and reduces  
the value of the worst case output voltage, as illustrated in  
the example to follow. The bias current of the zener diode is  
I  
≡ ∆I  
+ I  
(I  
) + I  
TC(∆Temp)  
ADJ  
ADJ  
ADJ  
ADJ  
OUT  
LOADREG  
+I  
TC(θ )∆(I  
SA  
V  
)
IN  
ADJ  
OUT  
(EQ. 2C)  
Note:  
set by the value of RF1 and I  
.
ADJ  
RFx  
---------------  
RFx  
= % tolerance of resistor x  
The regulator / zener diode becomes an attractive solution if  
ripple rejection or the worst case tolerance of the output volt-  
age is critical (i.e. one zener diode cost less than one 10µF  
capacitor (C3) and one 1/4W resistor RF2). Minimum power  
dissipation is possible by reducing I current, with little effect  
on the output voltage regulation. The output voltage is given  
in Equation 3.  
Equations 2(A,B,C) are provided to determine the worst  
case output voltage in relation to; manufacturing tolerances  
(V  
and I  
),% tolerance in external resistors  
REF  
REF  
1
(RF1/RF1, RF2/RF2), load regulation (V  
,
REF LOAD REG  
I
), line regulation (V  
) and the  
ADJ LOAD REG  
effects of temperature (V  
self heating (θ ).  
REF LINE REG  
TC), which includes  
REF  
TC, I  
REF  
SA  
Equations 4(A,B,C) are provided to determine the worst  
case output voltage in relation to; manufacturing tolerances  
66  
HIP5600  
V
= V  
+ V  
Z
REF  
OUT  
(EQ. 3)  
Error Budget  
HIP5600  
HIP5600  
T
T
(EQ. 4A)  
TC(Temp)  
(EQ. 4B)  
V  
= V  
+ V  
Z
REF  
OUT  
AC/DC  
AC/DC  
T
V  
≡ ∆V  
+ V  
(I  
) + V  
OUT REF  
REF  
REF  
REF  
LOADREG  
R
S
R
S
+V  
TC(θ )∆(I  
SA  
V ) + V  
OUT IN  
REF  
T
REF  
LINEREG  
V
I
I
1
V
REF  
1
REF  
RF1  
RF1  
V
V
OUT  
OUT  
V V tolerance(V ) + V TC(∆Temp)  
(EQ. 4C)  
Z
Z
Z
Z
I
I
ADJ  
ADJ  
RF2  
RF2  
of HIP5600 and the zener diode (V  
and V ), load reg-  
), and the effects of  
REF  
z
AC/DC  
AC/DC  
ulation of the HIP5600 (V  
REF LOAD REG  
(B)  
(A)  
temperature on the HIP5600 and the zener diode (V  
TC,  
FIGURE 4.  
REF  
V TC).  
Z
Protection Diodes  
Example: Given:  
V
= 200V, V  
= 14.18V (V  
=
REF  
IN  
OUT  
The HIP5600, unlike other voltage regulators, is internally  
protected by input diodes in the event the input becomes  
shorted to ground. Therefore, no external protection diode is  
required between the input pin and the output pin to protect  
against the output capacitor (C2) discharging through the  
input to ground.  
1.18V, V = 13V), V = 5%, V TC = +0.079%/°C (assumes  
Z
Z
Z
1N5243BPH), ∆I  
equal 10mA and Temp equal  
OUT  
o
+60 C. The worst case V  
is 0.4956V. The shift in  
OUT  
is attributed to the following: -0.2 (HIP5600) and 0.69  
V
OUT  
(zener diode).  
The regulator/zener diode configuration gives a 3.5%  
(0.49/14.18) worst case output voltage error where, for the  
same conditions, the regulator/resistor configuration results  
in an 7.5% (1.129/15) worst case output voltage error.  
If the output is shorted in the absence of D1 (Figure 5), the  
bypass capacitor voltage (C3) could exceed the absolute  
maximum voltage rating of ±5V between V  
and V .  
OUT  
IN  
Note; No protection diode (D1) is needed for output voltages  
less than 6V or if C3 is not used.  
External Capacitors  
A minimum10µF output capacitor (C2) is required for stability  
of the output stage. Any increase of the load capacitance  
greater than 10µF will merely improve the loop stability and  
output impedance.  
V
IN  
HIP5600  
C1  
0.02µF  
A 0.02µF input decoupling capacitor (C1) between V and  
IN  
D1 PROTECTS AGAINST C3  
DISCHARGING WHEN THE  
OUTPUT IS SHORTED.  
ground may be required if the power source impedance is  
not sufficiently low for the 1MHz - 10MHz band. Without this  
capacitor, the HIP5600 can oscillate at 2.5MHz when driven  
by a power source with a high impedance for the 1MHz -  
10MHz band.  
+ V  
OUT  
D1  
RF1  
C2  
10µF  
C3  
10µF  
An optional bypass capacitor (C3) from V  
to ground  
RF2  
ADJ  
improves the ripple rejection by preventing the ripple at the  
Adjust pin from being amplified. Bypass capacitors larger  
than 10µF do not appreciably improve the ripple rejection of  
the part (see Figure 20 through Figure 25).  
FIGURE 5. REGULATOR WITH PROTECTION DIODE  
Selecting the Right Heat Sink  
Load Regulation  
Linear power supplies can dissipate a lot of power. This  
power or heat must be safely dissipated to permit continuous  
operation. This section will discuss thermal resistance and  
show how to calculate heat sink requirements.  
For improved load regulation, resistor RF1 (connected  
between the adjustment terminal and V  
) should be tied  
OUT  
directly to the output of the regulator (Figure 4A) rather than  
near the load Figure 4B. This eliminates line drops (R ) from  
S
appearing effectively in series with RF1 and degrading regu-  
lation. For example, a 15V regulator with a 0.05resistance  
between the regulator and the load will have a load regula-  
Electronic heat sinks are generally rated by their thermal  
resistance. Thermal resistance is defined as the temperature  
rise per unit of heat transfer or power dissipated, and is  
expressed in units of degrees centigrade per watt. For a par-  
tion due to line resistance of 0.05x I . If RF1 is con-  
L
nected near the load the effective load regulation will be 11.9  
times worse (1+R2/R1, where R2 = 12k, R1 = 1.1k).  
ticular application determine the thermal resistance (θ  
)
SA  
which the heat sink must have in order to maintain a junction  
temperature below the thermal shut down limit (T ).  
TS  
67  
HIP5600  
A thermal network that describes the heat flow from the inte-  
Example,  
grated circuit to the ambient air is shown in Figure 6. The  
basic relation for thermal resistance from the IC surface, his-  
Given: V = 400V  
IN  
V
T
= 15V  
I
I
= 15mA  
DC  
OUT  
LOAD  
= 80µA  
ADJ  
o
ο
torically called “junction”, to ambient (θ ) is given in Equa-  
θ
= 4.8 C/W  
= +127 C  
JA  
JC  
TS  
tion 5. The thermal resistance of the heat sink (θ ) to  
SA  
o
T
= +50 C  
RF1 = 1.1k  
A
maintain a desired junction temperature is calculated using  
Equation 6.  
V
= 1.18V P = 6.2W = (V - V  
IN  
)(I )  
OUT IN  
REF  
PD  
V
REF  
T
= JUNCTION  
I
I  
+ ------------------ + I  
J
ADJ  
LOAD  
IN  
RF1  
θJC  
θCS  
Find:  
of the HIP5600 from exceeding T (+127 C).  
Proper heat sink to keep the junction temperature  
T
= CASE  
C
o
TS  
Solution:  
Use Equation 6,  
T
= HEAT SINK  
S
HEAT SINK  
θSA  
T
T  
TS  
A
θ
= --------------------------- θ  
T
= AMBIENT AIR  
(EQ. 7)  
(EQ. 8)  
A
SA  
JC  
P
FIGURE 6.  
= 1----2----7----°----C--6----.-2----5----0----°----C--- – 4.8°C = 7.62°----C----  
θ
SA  
W
T
T  
J
A
°C  
--------  
W
θ
= ---------------------  
(EQ. 5)  
(EQ. 6)  
JA  
P
o
The selection of a heat sink with θ  
less than +7.62 C/W  
SA  
Where:  
would ensure that the junction temperature would not  
exceed the thermal shut down temperature (T ) of  
θ
= θ  
+ θ  
+ θ  
TS  
T
= T  
JA  
JC  
CS  
SA  
and  
J
TS  
o
+127× C. A Thermalloy P/N7023 at 6.2W power dissipation  
o
would meet this requirement with a θ of +5.7× C/W.  
SA  
T
T  
TS  
A
θ
+ θ  
θ  
= --------------------------- θ  
Operation Without A Heatsink  
SA  
SA  
JC  
P
CS  
o
The package has a  
θ
of +60 C/W. This allows 0.7W  
JA  
o
power dissipation at +85 C in still air. Mounting the HIP5600  
to a printed circuit board (see Figure 39 through Figure 41)  
decreases the thermal impedance sufficiently to allow about  
Where:  
θ
= (Junction to Ambient Thermal Resistance) The sum of  
the thermal resistances of the heat flow path.  
JA  
o
1.6W of power dissipation at +85 C in still air.  
θ
= θ + θ  
+ θ  
JA  
T = (Junction Temperature) The desired maximum junc-  
JC CS  
SA  
Thermal Transient Operation  
J
For applications such as start-up, the HIP5600 in the TO-220  
package can operate at several watts -without a heat sink-  
for a period of time before going into thermal shutdown.  
tion temperature of the part. T = T  
J
TS  
T
= (Thermal Shutdown Temperature) The maximum  
junction temperature that is set by the thermal pro-  
tection circuitry of the HIP5600  
TS  
o
o
o
(min = +127 C, typ = +134 C and max = +142 C).  
P
= I (V - V  
IN IN  
)
OUT  
D
θ
= (Junction to Case Thermal Resistance) Describes the  
JC  
thermal resistance from the IC surface to its case.  
o
T
= JUNCTION  
J
θ
= 4.8 C/W  
JC  
0.6θ  
0.4θ  
JC  
C
D
θ
= (Case to Mounting Surface Thermal Resistance) The  
resistance of the mounting interface between the  
transistor case and the heat sink.  
CS  
DIE/PACKAGE INTERFACE  
0.5C  
P
JC  
For example, mica washer.  
T
= HEAT SINK  
OR CASE  
S
θ
= (Mounting Surface to Ambient Thermal Resistance)  
The resistance of the heat sink to the ambient air.  
Varies with air flow.  
SA  
θ
SA  
CS + 0.5C  
P
T
= AMBIENT AIR  
A
T
= Ambient Temperature  
A
P = The power dissipated by the HIP5600 in watts.  
P = (V - V )(I  
FIGURE 7. THERMAL CAPACITANCE MODEL OF HIP5600  
)
IN OUT OUT  
Figure 7 shows the thermal capacitances of the TO-220  
package, the integrated circuit and the heat sink, if used.  
When power is initially applied, the mass of the package  
absorbs heat which limits the rate of temperature rise of the  
Worst case θ  
is calculated using the minimum T  
of  
TS  
SA  
+127 C in Equation 6.  
o
68  
HIP5600  
junction. With no heat sink C equals zero and θ equals the  
S
SA  
T (t) = T + T + T + T  
(EQ. 11A)  
difference between θ and θ . The following equations pre-  
J
A
1
2
3
JA JC  
dict the transient junction temperature and the time to thermal  
o
shutdown for ambient temperatures up to +85 C and power  
t  
τ1  
-------  
levels up to 8W. The output current limit temperature coeffi-  
cient (Figure 39) precludes continuous operation above 8W.  
T
Pθ  
1e  
1
SA  
t  
----  
τ
Where:  
(EQ. 11B)  
(EQ. 11C)  
T (t) = T + Pθ + Pθ  
1e  
J
A
JC  
SA  
(EQ. 9)  
τ1 θ  
(C + C  
)
SA  
P
S
Where:  
t  
τ ≡ θ (C + C )  
SA  
P
S
-------  
τ2  
T
0.4Pθ  
1e  
2
JC  
P+ θ ) + T T  
JC  
SA  
A
TS  
t = –τln ------------------------------------------------------------------  
(EQ. 10)  
Pθ  
SA  
Where:  
(0.5C + C )0.5C  
P
S
P
τ2 0.7θ  
-----------------------------------------------------------  
For the TO-220, C is 0.9Ws to 1.1Ws per degree compared  
JC  
C
+ C  
P
P
S
to about 2.6mWs per degree for the integrated circuit and C  
is 0.9Ws per degree per gram for aluminum heat sinks.  
S
t  
τ3  
-------  
Figure 8 shows the time to thermal shutdown versus power  
T
0.6Pθ  
1e  
(EQ. 11D)  
3
JC  
o
dissipation for a part in +22 C still air and at various elevated  
o
ambient temperatures with a θ  
flow.  
of +27 C/W from forced air  
Where:  
SA  
τ3 0.6θ  
C
JC D  
For the shorter shutdown times, the θ  
value is not impor-  
Thermal Shutdown Hysteresis  
SA  
tant but the thermal capacitances are. A more accurate  
equation for the transient silicon surface temperature can be  
derived from the model shown in Figure 7. Due to the distrib-  
uted nature of the package thermal capacitance, the second  
time constant is 1.7 times larger than expected.  
Figure 9 shows the HIP5600 thermal hysteresis curve with  
V
= 100V , V = 5V and I = 10mA. Hysteresis is  
IN  
DC OUT OUT  
added to the thermal shutdown circuit to prevent oscillations  
as the junction temperature approaches the thermal shut-  
down limit. The thermal shutdown is reset when the input  
voltage is removed, goes negative (i.e. AC operation) or  
when the part cools down.  
2
10  
10  
HEATING  
8.0  
1
10  
o
+22× C  
6.0  
4.0  
SHUTDOWN  
REGION  
o
+70× C  
o
0
+85× C  
10  
COOLING  
2.0  
0.0  
o
+100× C  
-1  
10  
10  
98.0  
105.0  
113.0  
120  
127  
135  
142  
o
CASE TEMPERATURE ( C)  
o
+115× C  
FIGURE 9. THERMAL HYSTERESIS CURVE  
o
+120 ×C  
-2  
AC to DC Operation  
0.0  
2.0  
4.0  
6.0  
8.0  
10  
POWER DISSIPATION (W)  
Since the HIP5600 has internal high voltage diodes in series  
with its input, it can be connected directly to an AC power  
line. This is an improvement over typical low current supplies  
constructed from a high voltage diode and voltage dropping  
resistor to bias a low voltage zener. The HIP5600 provides  
better line and load regulation, better efficiency and heat  
FIGURE 8. TIME TO THERMAL SHUTDOWN vs POWER  
DISSIPATION  
69  
HIP5600  
transfer. The latter because the TO-220 package permits  
easy heat sinking.  
Referring again to Figure 10, Curve “A1” shows the input  
current for a 10mA output load and curve “B1” with a 3mA  
output load. The input current spike just before the negative  
going zero crossing occurs while the input voltage is less  
than the minimum operating voltage but is so short it has no  
detrimental effect. The input current also includes the charg-  
ing current for the 0.02µF input decoupling capacitor C1.  
The efficiency of either supply is approximately the DC  
output voltage divided by the RMS input voltage. The  
resistor value, in the typical low current supply, is chosen  
such that for maximum load at minimum line voltage there is  
some current flowing into the zener. This resistor value  
results in excess power dissipation for lighter loads or higher  
line voltages.  
The maximum load current cannot be greater than 1/2 of the  
short circuit current because the HIP5600 only conducts over  
1/2 of the line cycle. The short circuit current limit (Figure 38)  
depends on the case temperature, which is a function of the  
power dissipation. Figure 38 for a case temperature of  
Using the circuit in Figure 3 with a 1000µF output capacitor  
the HIP5600 only takes as much current from the power line  
as the load requires. For light loads, the HIP5600 is even  
more efficient due to it’s interaction with the output capacitor.  
Immediately after the AC line goes positive, the HIP5600  
tries to replace all the charge drained by the load during the  
negative half cycle at a rate limited by the short circuit cur-  
rent limit (see “A1” and “B1” Figure 10). Since most of this  
charge is replaced before the input voltage reaches its RMS  
value, the power dissipation for this charge is lower than it  
would be if the charge were transferred at a uniform rate dur-  
ing the cycle. When the product of the input voltage and cur-  
rent is averaged over a cycle, the average power is less than  
if the input current were constant. Figure 11 shows the  
o
+100 C (i.e. no heat sink) indicates for AC operation the  
maximum available output current is 10mA (1/2 x 20mA).  
Operation from full wave rectified input will increase the  
o
maximum output current to 20mA for the same +100 C case  
temperature.  
As a reminder, since the HIP5600 is off during the negative  
half cycle, the output capacitor must be large enough to sup-  
ply the maximum load current during this time with some  
acceptable level of droop. Figure 10 also shows the output  
ripple voltage, for both a 10mA and 3mA output loads “A2”  
and “B2”, respectively.  
HIP5600 efficiency as a function of load current for 80V  
and 132VRMS inputs for a 15.6V output.  
RMS  
Do’s And Don’ts  
DC Operation  
120V  
, 60Hz  
RMS  
1. Do not exceed the absolute maximum ratings.  
2. The HIP5600 requires a minimum output current of 1mA.  
Minimum output current includes current through RF1.  
Warning: If there is less than 1mA load current, the out-  
put voltage will rise. If the possibility of no load exists,  
RF1 should be sized to sink 1mA under these conditions.  
I
IN  
20mA/DIV.  
A1  
B1  
V
B2  
REF  
1.07V  
1mA  
RF1  
= ------------------ = --------------- = 1kΩ  
MIN  
1mA  
V
OUT  
A2  
100mV/DIV.  
FIGURE 10. AC OPERATION  
3. Do not “HOT” switch the input voltage without protecting  
the input voltage from exceeding ±650V. Note: induc-  
tance from supplies and wires along with the 0.02µF  
decoupling capacitor can form an under damped tank cir-  
cuit that could result in voltages which exceed the maxi-  
mum ±650V input voltage rating. Switch arcing can  
further aggravate the effects of the source inductance  
creating an over voltage condition.  
2ms/DIV.  
25  
V
= 80V  
RMS  
IN  
23  
21  
19  
18  
16  
14  
12  
10  
Recommendation: Adequate protection means (such as  
MOV, avalanche diode, surgector, etc.) may be needed  
to clamp transients to within the ±650V input limit of the  
HIP5600.  
4. Do not operate the part with the input voltage below the  
V
= 132V  
RMS  
IN  
minimum 50V  
recommended. Low voltage opera-  
DC  
tion: For input voltages between 0V  
and +5V  
noth-  
DC  
DC  
ing happens (I  
= 0), for input voltages between  
there is not enough voltage for the  
DC  
OUT  
and +35V  
+5V  
DC  
V
= 15.6V  
pass transistor to operate properly and therefore a high  
frequency (2MHz) oscillation occurs. For input voltages  
OUT  
DC  
0.0  
5.0  
10.0  
15.0  
+35V  
to +50V  
proper operation can occur with  
DC  
DC  
some parts.  
LOAD CURRENT (mA)  
FIGURE 11. EFFICIENCY AS A FUNCTION OF LOAD CURRENT  
70  
HIP5600  
5. Warning: the output voltage will approach the input volt-  
minimized by connecting the test equipment ground as  
age if the adjust pin is disconnected, resulting in perma-  
nent damage to the low voltage output capacitor.  
close to the circuit ground as possible.  
CAUTION: Dangerous voltages may appear on exposed  
metal surfaces of AC powered test equipment.  
AC Operation  
1. Do not exceed the absolute maximum ratings.  
2. The HIP5600 requires a minimum output current of  
0.5mA. Minimum output current includes current through  
RF1. Warning: If there is less than 0.5mA output current,  
the output voltage will rise. If the possibility of no load  
exists, RF1 should be sized to sink 0.5mA under these  
conditions.  
Application Circuits  
+ 50VDC TO 400VDC BUS  
HIP5600  
C1  
0.02µF  
V
REF  
1.07V  
0.5mA  
±
RF1  
= ------------------ = ----------------- = 2kΩ  
MIN  
0.5mA  
+ V  
OUT  
3. If using a laboratory AC source (such as VARIACs or  
step-up transformers, etc.) be aware that they contain  
large inductances that can generate damaging high volt-  
age transients when they are switched on or off.  
RF1  
RF2  
C2  
10µF  
C3  
10µF  
Recommendations  
(1) Preset VARIAC output voltage before applying power  
to part.  
FIGURE 12. DC/DC CONVERTER  
(2) Adequate protection means (such as MOV, ava-  
lanche diode, surgector, etc.) may be needed to clamp  
transients to within the ±650V input limit of the HIP5600.  
The HIP5600 can be configured in most common DC linear  
regulator applications circuits with an input voltage between  
50V  
to 400V  
(above the output voltage) see Figure 12.  
4. Do not operate the part with the input voltage below the  
DC  
DC  
minimum 50V  
recommended. Low voltage opera-  
RMS  
A 10µF capacitor (C2) provides stabilization of the output  
stage. Heat sinking may be required depending upon the  
tion similar to DC operation (reference step 4 under  
DC operation).  
power dissipation. Normally, choose RF1 << V  
/I .  
REF ADJ  
5. Warning: the output voltage will approach the input volt-  
age if the adjust pin is disconnected, resulting in perma-  
nent damage to the low voltage output capacitor.  
(NOTE 1)  
1kΩ  
HIP5600  
General Precautions  
Instrumentation Effects  
C1  
0.02µF  
Background: Input to output parasitic impedances exist in  
most test equipment power supplies. The inter-winding  
capacitance of the transformer may result in substantial cur-  
rent flow (mA) from the equipment power lines to the DC  
ground of the HIP5600. This “ground loop” current can result  
in erroneous measurements of the circuits performance and  
in some cases lead to overstress of the HIP5600.  
SURGE  
PROTECTION  
+ V  
OUT  
NOTE 1. 200V  
- 280V  
RMS  
RMS  
RF1  
Operation Only  
C2  
10µF  
C3  
10µF  
RF2  
Recommendations for Evaluation of the HIP5600  
in the Lab  
FIGURE 13. AC/DC CONVERTER  
The HIP5600 can operate from an AC voltage between  
a) The use of battery powered DVMs and scopes will elimi-  
nate ground loops.  
50V to 280V , see Figure 13. The combination of a  
RMS  
RMS  
b) When connecting test equipment, locate grounds as  
close to circuit ground as possible.  
1k(2W) input resistor and a V275LA10B MOV provides  
input surge protection up to 6kV 1.2 x 50µs oscillating and  
pulse waveforms as defined in IEEE/ANSI C62.41.1980.  
c) Input current measurements should be made with a non-  
contact current probe.  
When operating from 120V , a V130LA10B MOV provides  
AC  
protection without the 1kresistor.  
If AC powered test equipment is used, then the use of an  
isolated plug is recommended. The isolated plug eliminates  
any voltage difference between earth ground and AC  
ground. However, even though the earth ground is discon-  
nected, ground loop currents can still flow through trans-  
former of the test equipment. Ground loops can be  
The output capacitor is larger for operation from AC than DC  
because the HIP5600 only conducts current during the posi-  
tive half cycle of the AC line. The efficiency is approximately  
equal to V  
/V (RMS), see Figure 11.  
OUT IN  
71  
HIP5600  
The HIP5600 provides an efficient and economical solution  
as a start-up supply for applications operating from either AC  
part, the amount of heat sinking (if any) and the ambient tem-  
perature. For example; at 400V with no heat sink, it will  
DC  
(50V  
to 280V  
) or DC (50V  
to 400V ).  
provide 20mA for about 8s, see Figure 8.  
RMS  
RMS  
DC DC  
Power supply efficiency is improved by turning off the  
HIP5600 when the SMPS is up and running. In this application  
the output of the HIP5600 would be set via RF1 and RF2 to be  
about 9V. The tickler winding would be adjusted to about 12V  
to insure that the HIP5600 is kept off during normal operating  
conditions.The input current under these conditions is approx-  
HIP5600  
+ 50V  
TO 400V  
DC  
DC  
BUS  
±
imately equal to I  
. (See Figure 27).  
BIAS  
The HIP5600 can supply a 450µA (±20%) constant current.  
(See Figure 15). It makes use of the internal bias network.  
See Figure 27 for bias current versus input voltage.  
+12V  
RF1  
RF2  
10µF  
With the addition of a potentiometer and a 10µF capacitor the  
HIP5600 will provide a constant current source. I  
by Equation 13 in Figure 16.  
is given  
OUT  
V
OUT  
PWM  
The HIP5600 can control a P-channel MOSFET or IGPT in a  
self-oscillating buck regulator. The circuit shown (Figure 17)  
shows the self-oscillating concept with a P-IGBT driving a  
dedicated fan load. The output voltage is set by the resistor  
combination of RF1, RF2, and RF3. Components C3 and  
RF3 impresses the output ripple voltage across RF1 causing  
the HIP5600 to oscillate and control the conduction of the  
P-IGBT. The start-up protection components limit the initial  
surge current in the P-IGBT by forcing this device into its  
active region. The snubber circuit is recommended to reduce  
the power dissipation of the P-IGBT.  
FIGURE 14. START UP CIRCUIT  
The HIP5600 has on chip thermal protection and output cur-  
rent limiting circuitry. These features eliminate the need for  
an in-line fuse and a large heat sink.  
The HIP5600 can provide up to 40mA for short periods of time  
to enable start up of a switch mode power supply‘s control cir-  
cuit. The length of time that the HIP5600 will be on, prior to  
thermal shutdown, is a function of the power dissipation in the  
+50V  
TO +400V  
DC  
DC  
HIP5600  
±
0.02µF  
HIP5600  
+20V  
DC  
TO +400V  
DC  
R1  
1.21V  
R1  
I
OUT  
I
I
=
OUT  
(EQ. 13)  
OUT  
NOTES:  
1. V  
±
10µF  
LOAD  
Floating  
OUT  
2. Fixed 500µA Current Source  
FIGURE 15. CONSTANT 450µA CURRENT SOURCE  
FIGURE 16. ADJUSTABLE CURRENT SOURCE  
72  
HIP5600  
START-UP PROTECTION  
P-IGBT  
HIP5600  
SNUBBER CIRCUIT  
RF1  
+
DC  
FAN  
RF2  
RF3  
C3  
-
FIGURE 17. HIGH CURRENT “BUCK” REGULATOR CONCEPT  
Typical Performance Curves  
-1  
-2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
-1.6  
1mA TO 10mA  
-3  
1mA TO 10mA  
-4  
-5  
1mA TO 20mA  
-6  
1mA TO 20mA  
-7  
-8  
1mA TO 30mA  
V
= 400V  
-9  
IN  
DC  
1mA TO 30mA  
V
= 50V  
IN  
DC  
100  
-10  
-40  
-20  
0
25  
40  
60  
80  
-40  
-20  
0
25  
40  
60  
o
80  
o
CASE TEMPERATURE ( C)  
CASE TEMPERATURE ( C)  
FIGURE 18. LOAD REGULATION vs TEMPERATURE  
FIGURE 19. LOAD REGULATION VS. TEMPERATURE  
90  
85  
o
o
V
= 400V , I = 10mA, f = 120Hz, T = +25 C  
V
= 170V , I = 10mA, f = 120Hz, T = +25 C  
IN  
DC  
L
C
IN  
DC  
L
C
80  
75  
70  
65  
60  
55  
50  
45  
80  
70  
60  
50  
40  
30  
1µF BYPASS CAPACITOR  
1µF BYPASS CAPACITOR  
10µF BYPASS CAPACITOR  
10µF BYPASS CAPACITOR  
NO BYPASS CAPACITOR  
NO BYPASS CAPACITOR  
0
10 20 30 40 50 60 70 80 90 100 110  
OUTPUT VOLTAGE (V)  
0
50  
100  
150  
200  
250  
300  
350  
OUTPUT VOLTAGE (V)  
FIGURE 20. RIPPLE REJECTION RATIO (OUTPUT VOLTAGE)  
FIGURE 21. RIPPLE REJECTION RATIO (OUTPUT VOLTAGE)  
73  
HIP5600  
Typical Performance Curves (Continued)  
85  
85  
80  
75  
70  
65  
60  
55  
50  
45  
o
= 15V, T = +25 C  
o
V
= 170V , I = 10mA, V  
DC  
IN  
L
OUT  
C
V
= 400V , I = 10mA, V  
DC  
= 15V, T = +25 C  
OUT C  
IN  
L
80  
75  
70  
65  
60  
55  
50  
45  
10µF BYPASS  
CAPACITOR  
10µF BYPASS  
CAPACITOR  
1µF BYPASS CAPACITOR  
NO BYPASS CAPACITOR  
1µF BYPASS CAPACITOR  
NO BYPASS CAPACITOR  
100 1k 10k 100k  
INPUT FREQUENCY (Hz)  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
1M  
INPUT FREQUENCY (Hz)  
FIGURE 22. RIPPLE REJECTION RATIO (INPUT FREQUENCY)  
FIGURE 23. RIPPLE REJECTION RATIO (INPUT FREQUENCY)  
85  
85  
o
o
V
= 400V , V  
DC OUT  
= 10mA, f = 120Hz, T = +25 C  
C
V
= 170V , V  
DC OUT  
= 10mA, f = 120Hz, T = +25 C  
C
IN  
IN  
80  
75  
70  
65  
60  
55  
50  
80  
75  
70  
65  
60  
55  
50  
(REFERENCE FIGURE 3)  
(REFERENCE FIGURE 3)  
1µF BYPASS CAPACITOR  
10µF BYPASS CAPACITOR  
1µF BYPASS CAPACITOR  
10µF BYPASS CAPACITOR  
NO BYPASS CAPACITOR  
NO BYPASS CAPACITOR  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
FIGURE 24. RIPPLE REJECTION RATIO (OUTPUT CURRENT)  
FIGURE 25. RIPPLE REJECTION RATIO (OUTPUT CURRENT)  
520  
I
= 0  
OUT  
510  
500  
490  
480  
470  
460  
450  
440  
430  
420  
o
T
T
= +100 C  
C
100  
C2 = 0.01µF, C3 = 0µF  
o
= -40 C  
10.0  
C
C2 = 10µF, C3 = 0µF  
o
T
= +25 C  
C
1.0  
C2 = 10µF, C3 = 10µF  
0.1  
50  
100  
200  
INPUT VOLTAGE (V  
300  
400  
10  
100  
1K  
10K  
100K  
1M  
)
DC  
FREQUENCY (Hz)  
FIGURE 26. OUTPUT IMPEDANCE  
FIGURE 27. I  
vs INPUT VOLTAGE  
BIAS  
74  
HIP5600  
Typical Performance Curves (Continued)  
100mV/DIV  
C3 = 10µF  
C3 = 0µF  
V
OUT  
20mV/DIV  
15V  
C3 = 10µF  
15V  
400V  
C3 = 0µF  
100V/DIV  
INPUT  
VOLTAGE  
5mA/DIV  
10mA  
5mA  
V
= 15V  
DC  
OUT  
I = 5mA  
V
V
T
= 400V  
IN  
DC  
= 15V  
L
T
100V  
0V  
OUT  
o
o
= +25 C  
= +25 C  
J
T = 100ms/DIV  
T= 100ms/DIV  
J
0mA  
FIGURE 28. LINE TRANSIENT RESPONSE  
FIGURE 29. LOAD TRANSIENT RESPONSE  
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
1.15  
1.14  
1.13  
1.12  
1.11  
1.10  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
V
= 50V  
DC  
IN  
V
= 400V  
DC  
IN  
1mA  
1mA  
5mA  
5mA  
10mA  
10mA  
30mA  
20mA  
40  
20mA  
30mA  
-40  
-20  
0
25  
60  
80  
-40  
-20  
0
25  
40  
60  
80  
100  
o
o
CASE TEMPERATURE ( C)  
CASE TEMPERATURE ( C)  
FIGURE 30. REFERENCE VOLTAGE vs TEMPERATURE  
FIGURE 31. REFERENCE VOLTAGE vs TEMPERATURE  
1.20  
1.18  
1.20  
I
= 10mA  
OUT  
1.19  
1.18  
1.17  
1.16  
1.15  
1.14  
1.13  
1.12  
1.11  
1.10  
1.09  
1.08  
o
1mA  
T
= -40 C  
C
1.16  
5mA  
1.14  
1.12  
1.10  
1.08  
1.06  
1.04  
10mA  
o
T
= +25 C  
C
20mA  
o
T
= +100 C  
C
30mA  
0
100  
200  
INPUT VOLTAGE (V  
300  
400  
0
100  
200  
300  
400  
)
INPUT VOLTAGE (V  
)
DC  
DC  
FIGURE 32. REFERENCE VOLTAGE vs INPUT VOLTAGE  
FIGURE 33. REFERENCE VOLTAGE vs V ; CASE TEMPERA-  
IN  
o
TURE OF +25 C  
75  
HIP5600  
Typical Performance Curves (Continued)  
80  
80  
75  
70  
65  
60  
55  
50  
45  
V
= 400V  
DC  
IN  
V
= 50V  
DC  
IN  
75  
70  
65  
60  
55  
50  
45  
1mA  
10mA  
5mA  
20mA  
1mA  
20mA  
30mA  
30mA  
-40  
-20  
0
25  
40  
60  
80  
-40  
-20  
0
25  
40  
60  
80  
100  
o
CASE TEMPERATURE ( C)  
o
CASE TEMPERATURE ( C)  
FIGURE 34. I  
ADJ  
vs TEMPERATURE  
FIGURE 35. I vs TEMPERATURE  
ADJ  
775  
770  
765  
760  
755  
750  
745  
2000  
1500  
1000  
500  
0
V
= 100V  
o
IN  
= 25 C  
DC  
T
C
o
T
= +25 C  
C
MINIMUM LOAD  
CURRENT  
BIAS CURRENT  
o
T
= +100 C  
C
I
IN  
I
OUT  
I
ADJ  
1
2
3
4
5
50  
100  
200  
INPUT VOLTAGE (V  
300  
400  
V
- V  
(V  
)
OUT  
ADJ  
DC  
)
DC  
FIGURE 36. MINIMUM LOAD CURRENT vs V  
FIGURE 37. TERMINAL CURRENTS vs FORCED V  
IN  
REF  
55  
50  
45  
40  
35  
30  
o
T
= -40 C  
C
o
T
= +25 C  
C
o
T
= +100 C  
C
25  
20  
50  
100  
150  
200  
250  
300  
350  
400  
INPUT-OUTPUT (V  
)
DC  
FIGURE 38. CURRENT LIMIT vs TEMPERATURE  
76  
HIP5600  
Evaluation Boards  
o
θ
= 22 C/W  
HEAT SINK  
SA  
HIP5600  
ADJ  
V
IN  
F1  
V
OUT  
RF1  
+
-
R
S
C2  
C1  
MOV  
C3  
RF2  
V
V
OUT  
IN  
HIP5600 EVALUATION BOARD  
3.25”  
FIGURE 40. EVALUATION BOARD METAL MASK (BOTTOM)  
3.25”  
FIGURE 39. EVALUATION BOARD (TOP)  
HEAT SINK  
ADJ  
V
IN  
V
OUT  
+
-
V
V
OUT  
IN  
HIP5600 EVALUATION BOARD  
3.25”  
FIGURE 41. EVALUATION BOARD METAL MASK (TOP)  
77  
HIP5600  
Single-In-Line Plastic Packages (SIP)  
A
Z3.1B  
ØP  
E
3 LEAD PLASTIC SINGLE-IN-LINE PACKAGE  
INCHES MILLIMETERS  
MIN  
F
Q
H1  
SYMBOL  
MAX  
0.190  
0.040  
0.070  
0.022  
0.650  
0.420  
0.110  
0.210  
0.055  
0.270  
0.115  
0.580  
0.250  
0.161  
0.135  
MIN  
3.56  
0.38  
1.14  
0.36  
14.23  
9.66  
2.29  
4.83  
0.51  
5.85  
2.04  
12.70  
-
MAX  
4.82  
1.02  
1.77  
0.56  
16.51  
10.66  
2.79  
5.33  
1.39  
6.85  
2.92  
14.73  
6.35  
4.08  
3.43  
NOTES  
A
b
0.140  
0.015  
0.045  
0.014  
0.560  
0.380  
0.090  
0.190  
0.020  
0.230  
0.080  
0.500  
-
-
D
-
b1  
c1  
D
1
1
-
L1  
b1  
E
-
L
b
e
2
c1  
e1  
F
2
-
1
2
e
e1  
3
J1  
H1  
J1  
L
-
3
-
NOTES:  
L1  
ØP  
Q
1
1. Lead dimension and finish uncontrolled in zone L1.  
0.139  
0.100  
3.53  
2.54  
-
2. Position of lead to be measured 0.250 inches (6.35mm) from bot-  
tom of dimension D.  
-
Rev. 1 2/95  
3. Position of lead to be measured 0.100 inches (2.54mm) from bot-  
tom of dimension D.  
4. Controlling dimension: INCH.  
78  

相关型号:

HIP5600_02

Thermally Protected High Voltage Linear Regulator
INTERSIL

HIP6002

Rectifier (PWM) Controller and Output Voltage Monitor
INTERSIL

HIP6002CB

Rectifier (PWM) Controller and Output Voltage Monitor
INTERSIL

HIP6002CB-T

Voltage-Mode SMPS Controller
ETC

HIP6003

Buck Pulse-Width Modulator (PWM) Controller and Output Voltage Monitor
INTERSIL

HIP6003CB

Buck Pulse-Width Modulator (PWM) Controller and Output Voltage Monitor
INTERSIL

HIP6003CB-T

Voltage-Mode SMPS Controller
ETC

HIP6004

Buck and Synchronous-Rectifier (PWM) Controller and Output Voltage Monitor
INTERSIL

HIP6004A

Buck and Synchronous-Rectifier (PWM) Controller and Output Voltage Monitor
INTERSIL

HIP6004ACB

Buck and Synchronous-Rectifier (PWM) Controller and Output Voltage Monitor
INTERSIL

HIP6004ACB-T

SWITCHING CONTROLLER, 1000kHz SWITCHING FREQ-MAX, PDSO20
RENESAS

HIP6004A_02

Buck and Synchronous-Rectifier (PWM) Controller and Output Voltage Monitor
INTERSIL