5962L1321403VXC [RENESAS]

Operational Amplifier;
5962L1321403VXC
型号: 5962L1321403VXC
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Operational Amplifier

放大器
文件: 总27页 (文件大小:1887K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL70444SEH, ISL73444SEH  
19MHz Radiation Hardened 40V Quad Rail-to-Rail Input - Output,  
Low-Power Operational Amplifiers  
FN8411  
Rev.7.00  
Aug 16, 2019  
The ISL70444SEH and ISL73444SEH (ISL7x444SEH) feature  
Features  
four low-power amplifiers optimized to provide maximum  
dynamic range. These operational amplifiers (op amps)  
feature a unique combination of rail-to-rail operation on the  
input and output as well as a slew enhanced front-end that  
provides ultra fast slew rates positively proportional to a given  
step size, thereby increasing accuracy under transient  
conditions, whether it’s periodic or momentary. The  
ISL7x444SEH also offer low power, low offset voltage, and low  
temperature drift, making them ideal for applications  
requiring both high DC accuracy and AC performance. With  
<5µs recovery for Single Event Transients (SET)  
(LETTH = 86.4MeV•cm2/mg), the number of filtering  
components needed is drastically reduced. The ISL7x444SEH  
are also immune to single event latch-up because they are  
fabricated using the Renesas proprietary PR40 Silicon On  
Insulator (SOI) process.  
Electrically screened to DLA SMD# 5962-13214  
• Acceptance tested to 50krad(Si) (LDR) wafer-by-wafer  
• <5µs recovery from SEE (LETTH = 86.4MeV•cm2/mg)  
• Unity gain stable  
• Rail-to-rail input and output  
• Wide gain·bandwidth product . . . . . . . . . . . . . . . . . . . . 19MHz  
• Wide single and dual supply range. . . . . . . . 2.7V to 40V max  
• Low input offset voltage . . . . . . . . . . . . . . . . . . . . . . . . . 400µV  
• Low current consumption (per amplifier) . . . . . . . 1.1mA, typ  
• No phase reversal with input overdrive  
• Slew rate  
- Large signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60V/µs  
The amplifiers are designed to operate over a single supply  
range of 2.7V to 40V or a split supply voltage range of ±1.35V to  
±20V. Applications for these amplifiers include precision  
instrumentation, data acquisition, precision power supply  
controls, and process controls.  
• Operating temperature range. . . . . . . . . . . .-55°C to +125°C  
• ISL70444SEH radiation acceptance (see TID report)  
- High dose rate (50-300rad(Si)/s). . . . . . . . . . . 300krad(Si)  
(ISL70444SEH only)  
- Low dose rate (0.01rad(Si)/s) . . . . . . . . . . . . . . .50krad(Si)  
• ISL73444SEH radiation acceptance (see TID report)  
- Low dose rate (0.01rad(Si)/s) . . . . . . . . . . . . . . .50krad(Si)  
• SEE hardness (see SEE report for details)  
- SEB LETTH (VS = ±21V). . . . . . . . . . . . . . 86.4MeV•cm2/mg  
- SEL immune (SOI Process)  
The ISL7x444SEH are available in a 14 Ld hermetic ceramic  
flatpack and die forms that operate across the temperature  
range of -55°C to +125°C.  
Applications  
• Precision instruments  
• Active filter blocks  
• Data acquisition  
Related Literature  
• For a full list of related documents, visit our website:  
- ISL70444SEH, ISL73444SEH device pages  
• Power supply control  
• Process control  
R
F
100kΩ  
30  
+2.7V  
to 40V  
R
-
IN  
-IN  
V ±18V  
S
-
V
+
20  
10  
OUT  
+
10kΩ  
V
R
ISL7x444  
SENSE  
-
R
+
V
IN  
+IN  
+
V
= 10  
OUT  
0
10kΩ  
GROUNDED  
BIASED  
(I  
* R  
)
SENSE  
LOAD  
R
+
REF  
-10  
-20  
-30  
LOAD  
100kΩ  
V
REF  
0
50  
100  
150  
200  
250  
300  
krad (Si)  
FIGURE 1. TYPICAL APPLICATION: SINGLE-SUPPLY, HIGH-SIDE  
CURRENT SENSE AMPLIFIER  
FIGURE 2. VOS SHIFT vs HIGH DOSE RATE RADIATION  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 1 of 27  
ISL70444SEH, ISL73444SEH  
Table of Contents  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical Specifications VS = ±18V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical Specifications VS = ±2.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Specifications VS = ±1.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Specifications VS = ±18V - Post Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical Specifications VS = ±2.5V - Post Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical Specifications VS = ±1.5V - Post Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Post High Dose Rate Radiation Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Post Low Dose Rate Radiation Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Operating Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Input Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Input ESD Diode Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Output Short-Circuit Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Output Phase Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Slew Rate Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Unused Channel Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Die Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Die Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Interface Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Assembly Related Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Additional Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Weight of Packaged Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Lid Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Metallization Mask Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 2 of 27  
ISL70444SEH, ISL73444SEH  
Pin Configuration  
14 LD FLATPACK  
TOP VIEW  
OUT  
14  
13  
12  
11  
10  
9
OUT  
1
A
D
2
3
4
5
6
7
A
D
-IN  
+IN  
V
-IN  
D
A
-
-
+
+
-
-
+IN  
A
+
D
C
-
V
+IN  
-IN  
+IN  
-IN  
B
B
B
+
B
+
C
C
8
OUT  
C
OUT  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
OUTA  
-INA  
EQUIVALENT ESD CIRCUIT  
Circuit 2  
DESCRIPTION  
1
2
Amplifier A output  
Circuit 1  
Amplifier A inverting input  
Amplifier A non-inverting input  
Positive power supply  
3
+INA  
V+  
Circuit 1  
4
Circuit 3  
5
+INB  
-INB  
Circuit 1  
Amplifier B non-inverting input  
Amplifier B inverting input  
Amplifier B output  
6
Circuit 1  
7
OUTB  
OUTC  
-INC  
Circuit 2  
8
Circuit 2  
Amplifier C output  
9
Circuit 1  
Amplifier C inverting input  
Amplifier C non-inverting input  
Negative power supply  
10  
11  
12  
13  
14  
-
+INC  
V-  
Circuit 1  
Circuit 3  
+IND  
-IND  
Circuit 1  
Amplifier D non-inverting input  
Amplifier D inverting input  
Amplifier D output  
Circuit 1  
OUTD  
E-Pad  
Circuit 2  
None  
E-Pad under package (Unbiased, tied to package lid)  
+
V
+
+
V
V
CAPACITIVELY  
TRIGGERED ESD  
CLAMP  
600Ω  
600Ω  
OUT  
IN-  
IN+  
-
V
-
V
-
V
CIRCUIT 2  
CIRCUIT 3  
CIRCUIT 1  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 3 of 27  
ISL70444SEH, ISL73444SEH  
Ordering Information  
ORDERING/SMD NUMBER  
PART NUMBER  
RADIATION HARDNESS  
(Total Ionizing Dose)  
TEMP RANGE  
(°C)  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
(Note 2)  
(Note 1)  
5962F1321401VXC  
ISL70444SEHVF  
HDR to 300krad(Si),  
LDR to 50krad(Si)  
-55 to +125  
-55 to +125  
-55 to +125  
+25  
14 Ld Flatpack  
K14.C  
N/A  
ISL70444SEHF/PROTO  
(Note 3)  
N/A  
14 Ld Flatpack  
DIE  
K14.C  
5962F1321401V9A  
ISL70444SEHVX  
HDR to 300krad(Si),  
LDR to 50krad(Si)  
N/A  
N/A  
ISL70444SEHX/SAMPLE  
(Note 3)  
N/A  
DIE  
ISL73444SEHF/PROTO  
(Note 3)  
N/A  
-55 to +125  
14 Ld Flatpack  
K14.C  
K14.C  
5962L1321403VXC  
5962F1321403V9A  
N/A  
ISL73444SEHVF  
ISL73444SEHVX  
LDR to 50krad(Si)  
LDR to 50krad(Si)  
N/A  
-55 to +125  
-55 to +125  
+25  
14 Ld Flatpack  
DIE  
DIE  
ISL73444SEHX/SAMPLE  
(Note 3)  
N/A  
ISL70444SEHEVAL1Z  
(Note 4)  
N/A  
Evaluation Board  
NOTES:  
1. These Pb-free Hermetic packaged products employ 100% Au plate - e4 termination finish, which is RoHS compliant and compatible with both SnPb  
and Pb-free soldering operations.  
2. Specifications for Rad Hard QML devices are controlled by the Defense Logistics Agency Land and Maritime (DLA). The SMD numbers listed must be  
used when ordering.  
3. The /PROTO and /SAMPLE are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE) immunity. These parts are intended for  
engineering evaluation purposes only. The /PROTO parts meet the electrical limits and conditions across the temperature range specified in the DLA  
SMD and are in the same form and fit as the qualified device. The /SAMPLE die is capable of meeting the electrical limits and conditions specified  
in the DLA SMD at +25°C only. The /SAMPLE is a die and does not receive 100% screening across the temperature range to the DLA SMD electrical  
limits. These part types do not come with a certificate of conformance because there is no radiation assurance testing and they are not DLA qualified  
devices.  
4. The evaluation board uses /PROTO parts. The /PROTO parts are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE)  
immunity.  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 4 of 27  
ISL70444SEH, ISL73444SEH  
Absolute Maximum Ratings  
Thermal Information  
Maximum Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42V  
Maximum Supply Voltage (Note 7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42V  
Maximum Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA  
Maximum Differential Input Voltage . . . . . . . . 42V or V- - 0.5V to V+ + 0.5V  
Min/Max Input Voltage . . . . . . . . . . . . . . . . . . . . 42V or V- - 0.5V to V+ + 0.5V  
Max/Min Input Current for Input Voltage >V+ or <V- . . . . . . . . . . . . ±20mA  
ESD Tolerance  
Human Body Model (Tested per MIL-PRF-883 3015.7). . . . . . . . . . . 2kV  
Machine Model (Tested per JESD22-A115-A). . . . . . . . . . . . . . . . . . 200V  
Charged Device Model (Tested per CDM-22CI0ID). . . . . . . . . . . . . . 750V  
Thermal Resistance (Typical)  
14 Ld Flatpack Package (Notes 5, 6). . . . .  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
JA (°C/W)  
JC (°C/W)  
9
35  
Recommended Operating Conditions  
Ambient Operating Temperature Range . . . . . . . . . . . . . .-55°C to +125°C  
Maximum Operating Junction Temperature . . . . . . . . . . . . . . . . . .+150°C  
Single Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . 3V ±10% to 36V ±10%  
Split Rail Supply Voltage . . . . . . . . . . . . . . . . .. ±1.5V ±10% to ±18V ±10%  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
5. JA is measured in free air with the component mounted on a high-effective thermal conductivity test board with “direct attach” features. See TB379.  
6. For JC, the “case temp” location is the center of the package underside.  
7. Tested in a heavy ion environment at LET = 86.4MeVcm2/mg at +125°C (TC) for SEB. See Single Event Effects Test Report for more information.  
Electrical Specifications V = ±18V  
V
= V = 0V, R = Open, T = +25°C, unless otherwise noted. Boldface limits apply  
CM O L A  
S
across the operating temperature range, -55°C to +125°C.  
MIN  
MAX  
PARAMETER  
Offset Voltage  
SYMBOL  
VOS  
TEST CONDITIONS  
VCM = 0V  
CM = V+ to V-  
(Note 8)  
TYP  
20  
(Note 8)  
UNIT  
µV  
400  
V
80  
500  
µV  
Offset Voltage Temperature Coefficient  
Input Offset Channel-to-Channel Match  
TCVOS  
VCM = V+ - 2V to V- + 2V  
0.5  
µV/°C  
VOS  
VCM = V+  
VCM = V-  
VCM = 0V  
77  
800  
800  
370  
µV  
µV  
nA  
117  
189  
Input Bias Current  
IB  
V
V
V
V
CM = V+  
200  
262  
200  
257  
0
370  
650  
370  
650  
30  
nA  
nA  
nA  
nA  
nA  
nA  
V
CM = V-  
CM = V+ - 0.5V  
CM = V- + 0.5V  
Input Offset Current  
IOS  
VCM = V+ to V-  
-30  
-50  
V-  
0
50  
Common-Mode Input Voltage Range  
Common-Mode Rejection Ratio  
VCMIR  
V+  
CMRR  
V
CM = V- to V+  
112  
111  
128  
dB  
dB  
dB  
dB  
dB  
VCM = V- to V+  
70  
80  
VCM = V+ - 0.5V to V- + 0.5V  
VCM = V+ - 0.5V to V- + 0.5V  
Power Supply Rejection Ratio  
Open-Loop Gain  
PSRR  
AVOL  
VOH  
V- = -18V; V+ = 0.5V to 18V  
V+ = 18V; V- = -0.5V to -18V  
83  
96  
dB  
dB  
RL = 10kΩ to ground  
125  
dB  
Output Voltage High (VOUT to V+)  
Output Voltage Low (VOUT to V-)  
Output Short-Circuit Current  
RL = No load  
RL = 10kΩ  
78  
118  
73  
160  
175  
160  
175  
mV  
mV  
mV  
mV  
mA  
VOL  
RL = No load  
RL = 10kΩ  
110  
ISRC  
Sourcing; VIN = 0V, VOUT = -18V  
10  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 5 of 27  
ISL70444SEH, ISL73444SEH  
Electrical Specifications V = ±18V  
V
= V = 0V, R = Open, T = +25°C, unless otherwise noted. Boldface limits apply  
CM O L A  
S
across the operating temperature range, -55°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
SYMBOL  
ISNK  
TEST CONDITIONS  
(Note 8)  
TYP  
(Note 8)  
UNIT  
mA  
Output Short-Circuit Current  
Sinking; VIN = 0V, VOUT = +18V  
10  
Supply Current/Amplifier  
IS  
Unity gain  
1.5  
1.75  
mA  
mA  
1.95  
2.4  
AC SPECIFICATIONS  
Gain Bandwidth Product  
Voltage Noise Density  
Current Noise Density  
Large Signal Slew Rate  
GBW  
en  
A
CL = 101, RL = 10k  
19  
MHz  
nV/Hz  
pA/Hz  
V/µs  
f = 10kHz  
f = 10kHz  
11.3  
0.312  
in  
SR  
AV = 1, RL = 10kΩVO = 10VP-P  
60  
Electrical Specifications V = ±2.5V  
V
= V = 0V, R = Open, T = +25°C, unless otherwise noted. Boldface limits apply  
CM O L A  
S
across the operating temperature range, -55°C to +125°C.  
MIN  
MAX  
PARAMETER  
Offset Voltage  
SYMBOL  
VOS  
TEST CONDITIONS  
VCM = 0V  
CM = V+ to V-  
(Note 8)  
TYP  
20  
(Note 8)  
UNIT  
µV  
400  
V
80  
500  
µV  
Offset Voltage Temperature Coefficient  
Input Offset Channel-to-Channel Match  
TCVOS  
VCM = V+ - 2V to V- + 2V  
0.5  
µV/°C  
VOS  
VCM = V+  
VCM = V-  
VCM = 0V  
79  
800  
800  
340  
µV  
µV  
nA  
119  
202  
Input Bias Current  
IB  
V
V
V
V
CM = V+  
182  
229  
181  
224  
0
340  
580  
340  
580  
30  
nA  
nA  
nA  
nA  
nA  
nA  
V
CM = V-  
CM = V+ - 0.5V  
CM = V- + 0.5V  
Input Offset Current  
IOS  
VCM = V+ to V-  
-30  
-50  
V-  
0
50  
Common-Mode Input Voltage Range  
Common-Mode Rejection Ratio  
VCMIR  
V+  
CMRR  
V
CM = V- to V+  
92  
91  
dB  
dB  
dB  
dB  
dB  
VCM = V- to V+  
70  
74  
VCM = V+ - 0.5V to V- + 0.5V  
VCM = V+ - 0.5V to V- + 0.5V  
Power Supply Rejection Ratio  
PSRR  
V- = -2.5V; V+ = 0.5V to 2.5V  
V+ = 2.5V; V- = -0.5V to -2.5V  
TA = +25°C, +125°C  
123  
80  
70  
dB  
dB  
V- = -2.5V; V+ = 0.5V to 2.5V  
V+ = 2.5V; V- = -0.5V to -2.5V  
TA = -55°CC  
Open-Loop Gain  
AVOL  
RL = 10kΩ to ground  
118  
dB  
dB  
90  
Output Voltage High (VOUT to V+)  
VOH  
RL = No load  
RL = 10kΩ  
RL = 600Ω  
53  
53  
85  
mV  
mV  
mV  
105  
400  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 6 of 27  
ISL70444SEH, ISL73444SEH  
Electrical Specifications V = ±2.5V  
V
= V = 0V, R = Open, T = +25°C, unless otherwise noted. Boldface limits apply  
CM O L A  
S
across the operating temperature range, -55°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
SYMBOL  
VOL  
TEST CONDITIONS  
RL = No load  
(Note 8)  
TYP  
53  
(Note 8)  
UNIT  
mV  
Output Voltage Low (VOUT to V-)  
85  
105  
400  
1.25  
1.8  
RL = 10kΩ  
RL = 600Ω  
Unity gain  
53  
mV  
mV  
mA  
mA  
Supply Current/Amplifier  
IS  
1.1  
1.6  
AC SPECIFICATIONS  
Gain Bandwidth Product  
Voltage Noise Density  
Current Noise Density  
Large Signal Slew Rate  
GBW  
en  
A
CL = 101, RL = 10k  
17  
12.3  
0.313  
35  
MHz  
nV/Hz  
pA/Hz  
V/µs  
f = 10kHz  
in  
f = 10kHz  
SR  
AV = 1, RL = 10kΩVO = 3VP-P  
Electrical Specifications V = ±1.5V  
V
= V = 0V, R = Open, T = +25°C, unless otherwise noted. Boldface limits apply  
CM O L A  
S
across the operating temperature range, -55°C to +125°C.  
MIN  
MAX  
PARAMETER  
Offset Voltage  
SYMBOL  
VOS  
TEST CONDITIONS  
VCM = 0V  
CM = V+ to V-  
(Note 8)  
TYP  
51  
(Note 8)  
UNIT  
µV  
400  
V
80  
500  
µV  
Input Offset Channel-to-Channel Match  
Input Bias Current  
VOS  
VCM = V+  
VCM = V-  
VCM = 0V  
79  
800  
800  
330  
µV  
µV  
nA  
119  
220  
IB  
V
V
V
V
CM = V+  
180  
225  
180  
223  
0
330  
565  
330  
565  
30  
nA  
nA  
nA  
nA  
nA  
nA  
V
CM = V-  
CM = V+ - 0.5V  
CM = V- + 0.5V  
Input Offset Current  
IOS  
VCM = V+ to V-  
CM = V+ to V-  
-30  
-50  
V-  
V
0
50  
Common-Mode Input Voltage Range  
Output Voltage High (VOUT to V+)  
VCMIR  
VOH  
V+  
RL = No load  
RL = 10kΩ  
RL = No load  
RL = 10kΩ  
Unity Gain  
26  
30  
39  
mV  
mV  
mV  
mV  
mA  
mA  
60  
Output Voltage Low (VOUT to V-)  
Supply Current/Amplifier  
VOL  
26  
39  
42  
60  
IS  
1.1  
1.57  
1.24  
1.8  
AC SPECIFICATIONS  
Gain Bandwidth Product  
Voltage Noise Density  
Current Noise Density  
GBW  
en  
A
CL = 101, RL = 10k  
16  
12  
MHz  
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
in  
0.312  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 7 of 27  
ISL70444SEH, ISL73444SEH  
Electrical Specifications V = ±18V - Post Radiation  
V
= V = 0V, R = Open, T = +25°C, unless otherwise  
CM O L A  
S
noted. Boldface limits apply across a total ionizing dose of 300krad(Si) with exposure of a high dose rate of 50 to 300rad(Si)/s (ISL70444SEH only) and  
across a total ionizing dose of 50krad(Si) with exposure at a low dose rate of <10mrad(Si)/s.  
MIN  
MAX  
PARAMETER  
Offset Voltage  
SYMBOL  
VOS  
TEST CONDITIONS  
VCM = V+ to V-  
VCM = V+  
CM = V-  
VCM = V+  
CM = V-  
VCM = V+ to V-  
(Note 8)  
TYP  
(Note 8  
UNIT  
µV  
µV  
µV  
nA  
nA  
nA  
V
500  
800  
800  
650  
Input Offset Channel-to-Channel  
Match  
VOS  
V
Input Bias Current  
IB  
V
-650  
-50  
V-  
Input Offset Current  
IOS  
50  
V+  
Common-Mode Input Voltage Range  
Common-Mode Rejection Ratio  
VCMIR  
CMRR  
V
CM = V- to V+  
70  
dB  
VCM = V- to V+  
VCM= V+ - 0.5V to V- + 0.5V  
dB  
dB  
V
CM= V+ - 0.5V to V- + 0.5V  
80  
Power Supply Rejection Ratio  
PSRR  
V- = -18V; V+ = 0.5V to 18V  
V+ = 18V; V- = -0.5V to -18V  
dB  
83  
dB  
Open-Loop Gain  
AVOL  
VOH  
RL = 10kΩ to ground  
RL = No load  
96  
dB  
Output Voltage High (VOUT to V+)  
160  
175  
150  
165  
mV  
mV  
mV  
mV  
mA  
mA  
mA  
V/µs  
RL = 10kΩ  
Output Voltage Low (VOUT to V-)  
VOL  
RL = No load  
RL = 10kΩ  
Output Short-Circuit Current  
Output Short-Circuit Current  
Supply Current/Amplifier  
Large Signal Slew Rate  
ISRC  
ISNK  
IS  
Sourcing; VIN = 0V, VOUT = -18V  
Sinking; VIN = 0V, VOUT = +18V  
Unity gain  
10  
10  
2.4  
SR  
AV = 1, RL = 10kΩ, VO = 10VP-P  
60  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 8 of 27  
ISL70444SEH, ISL73444SEH  
Electrical Specifications V = ±2.5V - Post Radiation  
V
= V = 0V, R = Open, T = +25°C, unless otherwise  
CM O L A  
S
noted. Boldface limits apply a total ionizing dose of 300krad(Si) with exposure of a high dose rate of 50 to 300rad(Si)/s (ISL70444SEH only) and across  
a total ionizing dose of 50krad(Si) with exposure at a low dose rate of <10mrad(Si)/s.  
MIN  
MAX  
PARAMETER  
Offset Voltage  
SYMBOL  
VOS  
TEST CONDITIONS  
VCM = V+ to V-  
(Note 8)  
TYP  
(Note 8)  
UNIT  
µV  
500  
Input Offset Channel-to-Channel Match  
VOS  
VCM = V+  
VCM = V-  
VCM = V+  
800  
800  
650  
µV  
µV  
nA  
Input Bias Current  
IB  
V
CM = V-  
VCM = V+ to V-  
-650  
-50  
V-  
nA  
nA  
V
Input Offset Current  
IOS  
50  
V+  
Common-Mode Input Voltage Range  
Common-Mode Rejection Ratio  
VCMIR  
CMRR  
V
CM = V- to V+  
dB  
dB  
dB  
dB  
dB  
VCM = V- to V+  
70  
74  
VCM= V+ - 0.5V to V- + 0.5V  
V
CM= V+ - 0.5V to V- + 0.5V  
Power Supply Rejection Ratio  
PSRR  
V- = -2.5V; V+ = 0.5V to 2.5V  
V+ = 2.5V; V- = -0.5V to -2.5V  
80  
dB  
dB  
Open-loop Gain  
AVOL  
VOH  
RL = 10kΩ to ground  
RL = No load  
RL = 10kΩ  
90  
Output Voltage High (VOUT to V+)  
85  
105  
400  
85  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
RL = 600Ω  
Output Voltage Low (VOUT to V-)  
Supply Current/Amplifier  
VOL  
RL = No load  
RL = 10kΩ  
105  
400  
1.8  
RL = 600Ω  
IS  
Unity gain  
Electrical Specifications V = ±1.5V - Post Radiation  
V
= V = 0V, R = Open, T = +25°C, unless otherwise  
CM O L A  
S
noted. Boldface limits apply a total ionizing dose of 300krad(Si) with exposure of a high dose rate of 50 to 300rad(Si)/s (ISL70444SEH only) and across  
a total ionizing dose of 50krad(Si) with exposure at a low dose rate of <10mrad(Si)/s.  
MIN  
MAX  
PARAMETER  
Offset Voltage  
SYMBOL  
VOS  
TEST CONDITIONS  
VCM = V+ to V-  
(Note 8)  
TYP  
(Note 8)  
UNIT  
µV  
500  
Input Offset Channel-to-Channel Match  
VOS  
VCM = V+  
VCM = V-  
VCM = V+  
800  
800  
650  
µV  
µV  
nA  
Input Bias Current  
IB  
V
CM = V-  
-650  
-50  
V-  
nA  
nA  
Input Offset Current  
IOS  
VCMIR  
VOH  
VCM = V+ to V-  
50  
V+  
Common-Mode Input Voltage Range  
Output Voltage High (VOUT to V+)  
V
RL = No load  
RL = 10kΩ  
RL = No load  
RL = 10kΩ  
Unity gain  
160  
175  
150  
165  
1.8  
mV  
mV  
mV  
mV  
mA  
Output Voltage Low (VOUT to V-)  
VOL  
Supply Current/Amplifier  
NOTE:  
IS  
8. Compliance to datasheet limits is assured by one or more methods: production test, characterization, and/or design.  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 9 of 27  
ISL70444SEH, ISL73444SEH  
Typical Performance Curves Unless otherwise specified, V ±18V, V = 0, V = 0V, T = +25°C.  
S
CM  
O
A
120  
100  
80  
300  
200  
100  
0
60  
40  
20  
0
-100  
-200  
-300  
-20  
-40  
-60  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
COMMON MODE VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
FIGURE 3. OFFSET VOLTAGE vs COMMON-MODE VOLTAGE  
FIGURE 4. IBIAS vs COMMON-MODE VOLTAGE  
300  
250  
200  
150  
100  
50  
IB+  
250  
200  
150  
100  
50  
IB+  
IB-  
IB-  
0
-100  
0
-50  
0
50  
100  
150  
-100  
-50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 6. IBIAS vs TEMPERATURE (VS = ±2.5V)  
FIGURE 5. IBIAS vs TEMPERATURE (VS = ±18V)  
2.5  
2.0  
1.5  
1.0  
0.5  
0
300  
250  
200  
150  
100  
50  
IB+  
IB-  
I
OS  
0
-100  
-100  
-50  
0
50  
100  
150  
-50  
0
50  
TEMPERATURE (°C)  
FIGURE 7. IBIAS vs TEMPERATURE, (VS = ±1.5V)  
100  
150  
TEMPERATURE (°C)  
FIGURE 8. IOS vs TEMPERATURE (VS = ±18V)  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 10 of 27  
ISL70444SEH, ISL73444SEH  
Typical Performance Curves Unless otherwise specified, V ±18V, V = 0, V = 0V, T = +25°C. (Continued)  
S
CM  
O
A
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
I
OS  
I
OS  
-100  
-50  
0
50  
100  
150  
-100  
-50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 9. IOS vs TEMPERATURE (VS = ±2.5V)  
FIGURE 10. IOS vs TEMPERATURE (VS = ±1.5V)  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
V
OS  
V
OS  
-100  
-50  
0
50  
100  
150  
-100  
-50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 11. VOS vs TEMPERATURE (VS = ±18V)  
FIGURE 12. VOS vs TEMPERATURE (VS = ±2.5V)  
135  
130  
125  
120  
115  
110  
105  
100  
50  
±18V  
40  
30  
20  
10  
0
V
OS  
±1.5V  
±2.5V  
-75  
-25  
25  
75  
125  
-100  
-50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 14. AVOL vs TEMPERATURE vs SUPPLY VOLTAGE  
FIGURE 13. VOS vs TEMPERATURE (VS = ±1.5V)  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 11 of 27  
ISL70444SEH, ISL73444SEH  
Typical Performance Curves Unless otherwise specified, V ±18V, V = 0, V = 0V, T = +25°C. (Continued)  
S
CM  
O
A
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
+125°C  
+25°C  
-55°C  
+25°C  
-55°C  
+125°C  
30  
0
10  
20  
40  
0
10  
20  
30  
40  
+
-
+
-
SUPPLY DIFFERENTIAL (V TO V ) (V)  
SUPPLY DIFFERENTIAL (V TO V ) (V)  
FIGURE 16. POSITIVE SUPPLY CURRENT vs SUPPLY VOLTAGE  
FIGURE 15. NEGATIVE SUPPLY CURRENT vs SUPPLY VOLTAGE  
135  
135  
130  
±18V  
130  
±18V  
125  
±2.5V  
125  
±2.5V  
120  
115  
120  
115  
±1.5V  
±1.5V  
110  
110  
105  
100  
105  
100  
-75  
-25  
25  
75  
125  
-75  
-25  
25  
75  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 18. PSRR- vs TEMPERATURE vs SUPPLY VOLTAGE  
FIGURE 17. PSRR+ vs TEMPERATURE vs SUPPLY VOLTAGE  
120  
110  
70  
60  
±18V  
100  
50  
±15V  
±5V  
±18V  
90  
80  
40  
30  
20  
10  
0
±1.5V  
±2.5V  
70  
60  
50  
40  
±2.5V  
±1.5V  
-75  
-25  
25  
75  
125  
-75  
-25  
25  
75  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 20. SHORT-CIRCUIT CURRENT vs TEMPERATURE  
FIGURE 19. CMRR vs TEMPERATURE vs SUPPLY VOLTAGE  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 12 of 27  
ISL70444SEH, ISL73444SEH  
Typical Performance Curves Unless otherwise specified, V ±18V, V = 0, V = 0V, T = +25°C. (Continued)  
S
CM  
O
A
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
R
= 2kΩ  
L
R
= 2kΩ  
L
R
= 10kΩ  
L
R
= 10kΩ  
L
R
= OPEN  
125  
L
R
= OPEN  
L
-75  
-25  
25  
75  
175  
-75  
-25  
25  
75  
125  
175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 22. (VS = ±2.5V) VOH vs TEMPERATURE  
FIGURE 21. (VS = ±1.5V) VOH vs TEMPERATURE  
350  
300  
250  
200  
150  
100  
50  
50  
40  
30  
20  
10  
0
R
= 2kΩ  
L
R
= 2kΩ  
L
R
= 10kΩ  
L
R
= 10kΩ  
R = OPEN  
L
L
R
= OPEN  
125  
L
0
-75  
-25  
25  
75  
125  
175  
-75  
-25  
25  
75  
175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 23. (VS = ±18V) VOH vs TEMPERATURE  
FIGURE 24. (VS = ±1.5V) VOL vs TEMPERATURE  
70  
60  
50  
40  
30  
20  
10  
0
350  
300  
250  
200  
150  
100  
50  
R
= 2kΩ  
L
R
= 2kΩ  
L
R
= 10kΩ  
L
R
= 10kΩ  
L
R
= OPEN  
L
R
= OPEN  
L
0
-75  
-25  
25  
75  
125  
175  
-75  
-25  
25  
75  
125  
175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 26. (VS = ±18V) VOL vs TEMPERATURE  
FIGURE 25. (VS = ±2.5V) VOL vs TEMPERATURE  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 13 of 27  
ISL70444SEH, ISL73444SEH  
Typical Performance Curves Unless otherwise specified, V ±18V, V = 0, V = 0V, T = +25°C. (Continued)  
S
CM  
O
A
10  
10,000  
1,000  
100  
10  
1
0.1  
0.1  
1
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
FREQUENCY (Hz)  
1k  
10k  
100k  
FREQUENCY (Hz)  
FIGURE 27. INPUT NOISE VOLTAGE SPECTRAL DENSITY (VS = ±18V)  
FIGURE 28. INPUT NOISE CURRENT SPECTRAL DENSITY (VS = ±18V)  
150  
100  
50  
200  
150  
100  
50  
150  
100  
50  
250  
200  
150  
100  
50  
PHASE  
PHASE  
0
0
0
0
-50  
-50  
GAIN  
GAIN  
-100  
-150  
-200  
-250  
-300  
-50  
-100  
-150  
-50  
-100  
-150  
-100  
-150  
-200  
-250  
SIMULATION  
10  
SIMULATION  
10  
0
1k  
100k  
10M  
1G  
0
1k  
100k  
10M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 29. OPEN LOOP FREQUENCY RESPONSE (CL = 0.01pF)  
FIGURE 30. OPEN LOOP FREQUENCY RESPONSE (CL = 10pF)  
150  
100  
50  
250  
150  
100  
50  
250  
200  
150  
100  
50  
200  
150  
100  
50  
PHASE  
GAIN  
PHASE  
GAIN  
0
0
0
0
-50  
-50  
-100  
-150  
-200  
-250  
-300  
-100  
-150  
-200  
-250  
-300  
-50  
-100  
-150  
-50  
-100  
-150  
SIMULATION  
10  
SIMULATION  
10  
0
1k  
100k  
10M  
1G  
0
1k  
100k  
10M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 31. OPEN LOOP FREQUENCY RESPONSE (CL = 22pF)  
FIGURE 32. OPEN LOOP FREQUENCY RESPONSE (CL = 47pF)  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 14 of 27  
ISL70444SEH, ISL73444SEH  
Typical Performance Curves Unless otherwise specified, V ±18V, V = 0, V = 0V, T = +25°C. (Continued)  
S
CM  
O
A
250  
200  
150  
100  
50  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-10  
100  
150  
100  
50  
PHASE  
±1.5V  
0
±18V  
0
-50  
GAIN  
-100  
-150  
-200  
-250  
-300  
-50  
-100  
-150  
±2.5V  
1M  
SIMULATION  
10  
0
1k  
100k  
10M  
1G  
1k  
10k  
100k  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 33. OPEN LOOP FREQUENCY RESPONSE (CL = 100pF)  
FIGURE 34. CMRR vs FREQUENCY  
120  
110  
100  
90  
70  
60  
50  
G = 1000  
40  
±1.5V  
80  
30  
G = 100  
70  
20  
60  
50  
40  
30  
20  
10  
0
±18V  
G = 10  
10  
0
-10  
-20  
-30  
-40  
-50  
G = 1  
±2.5V  
-10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 35. PSRR vs FREQUENCY  
FIGURE 36. FREQUENCY RESPONSE vs CLOSED LOOP GAIN  
20  
10  
10  
0
R
= 10kΩ  
F
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
R
R
= 5kΩ  
= 2kΩ  
= 1kΩ  
L
R
= 100Ω  
F
R
= 10kΩ  
L
L
R
= 1kΩ  
-10  
-20  
-30  
F
R
L
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 37. FREQUENCY RESPONSE vs FEEDBACK RESISTANCE (RF)  
FIGURE 38. FREQUENCY RESPONSE vs LOAD RESISTANCE  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 15 of 27  
ISL70444SEH, ISL73444SEH  
Typical Performance Curves Unless otherwise specified, V ±18V, V = 0, V = 0V, T = +25°C. (Continued)  
S
CM  
O
A
10  
10  
0
0
12pF  
-10  
-20  
-30  
-40  
-50  
±1.5V  
-10  
-20  
-30  
-40  
27pF  
47pF  
68pF  
±2.5V  
±18V  
ACL = 1  
R
= 10kΩ  
= ±18V  
L
S
V
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 39. UNITY GAIN RESPONSE vs LOAD CAPACITANCE  
FIGURE 40. FREQUENCY RESPONSE vs SUPPLY VOLTAGE  
35  
140  
130  
120  
-55°C  
±18V  
30  
25  
20  
15  
10  
5
±2.5V  
110  
100  
+125°C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
±1.5V  
+25°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
100  
1k  
10k  
100k  
1M  
10M  
100M  
STEP SIZE (V)  
FREQUENCY (Hz)  
FIGURE 41. CROSSTALK REJECTION  
FIGURE 42. SLEW RATE vs STEP SIZE vs TEMPERATURE (VS = ±1.5V)  
450  
400  
80  
70  
60  
50  
40  
30  
20  
10  
0
-55°C  
350  
300  
+125°C  
+25°C  
250  
+125°C  
200  
150  
100  
50  
-55°C  
+25°C  
0
0
5
10  
15  
20  
25  
0
1
2
3
4
5
6
STEP SIZE (V)  
STEP SIZE (V)  
FIGURE 43. SLEW RATE vs STEP SIZE vs TEMPERATURE (VS = ±2.5V)  
FIGURE 44. SLEW RATE vs STEP SIZE vs TEMPERATURE (VS = ±18V)  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 16 of 27  
ISL70444SEH, ISL73444SEH  
Typical Performance Curves Unless otherwise specified, V ±18V, V = 0, V = 0V, T = +25°C. (Continued)  
S
CM  
O
A
(INPUT)  
(INPUT)  
200mV/DIV  
200mV/DIV  
(OUTPUT)  
= ±5V  
(OUTPUT)  
= ±18V  
A
R
R
V
= -100  
= 1kΩ  
= 100kΩ, R = 1kΩ  
= 400mV  
P-P  
A
R
R
V
= -100  
= 2kΩ  
= 100kΩ, R = 1kΩ  
V
V
L
F
V
L
F
S
V
S
G
G
= 400mV  
P-P  
IN  
IN  
1µs/DIV  
1µs/DIV  
FIGURE 45. SATURATION RECOVERY (VS = ±18V)  
FIGURE 46. SATURATION RECOVERY (VS = ±5V)  
40  
V
= ±18V  
= 10kΩ  
= 1  
S
35  
30  
25  
20  
15  
10  
5
R
A
V
(INPUT)  
L
V
200mV/DIV  
OS-  
= 25mV  
OUT  
P-P  
OS+  
(OUTPUT)  
= -100  
A
R
R
V
L
V
= ±2.5V  
= 2kΩ  
= 100kΩ, R = 1kΩ  
S
F
G
V
= 400mV  
IN  
P-P  
0
1
10  
CAPACITANCE (pF)  
100  
1µs/DIV  
FIGURE 47. SATURATION RECOVERY (VS = ±2.5V)  
FIGURE 48. OVERSHOOT (%) vs LOAD CAPACITANCE  
2V/DIV, INPUT  
V
V
= ±5V  
= 12V  
2V/DIV, OUTPUT  
10µs/DIV  
S
No Output Phase Reversal  
IN  
P-P  
FIGURE 49. INPUT OVERDRIVE RESPONSE  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 17 of 27  
ISL70444SEH, ISL73444SEH  
Post High Dose Rate Radiation Characteristics Unless otherwise specified, VS ±18V, VCM = 0,  
VO = 0V, TA = +25°C. This data is typical mean test data post radiation exposure at a high dose rate of 50 to 300rad(Si)/s (ISL70444SEH only). This data  
is intended to show typical parameter shifts due to high dose rate radiation. These are not limits nor are they guaranteed.  
30  
30  
V
= ±18V  
V = ±18V  
S
S
GROUNDED  
20  
20  
GROUNDED  
10  
10  
0
0
BIASED  
-10  
-20  
-30  
-10  
-20  
-30  
BIASED  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
krad (Si)  
krad (Si)  
FIGURE 51. IBIAS SHIFT vs HIGH DOSE RATE RADIATION  
FIGURE 50. VOS SHIFT vs HIGH DOSE RATE RADIATION  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
V
= ±18V  
S
V
= ±18V  
S
BIASED  
GROUNDED  
GROUNDED  
-0.2  
-0.4  
-0.6  
-0.8  
-0.2  
-0.4  
-0.6  
-0.8  
BIASED  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
krad (Si)  
krad (Si)  
FIGURE 52. I- SHIFT vs HIGH DOSE RATE RADIATION  
FIGURE 53. I+ SHIFT vs HIGH DOSE RATE RADIATION  
2.0  
1.5  
1.0  
0.5  
0
V
= ±18V  
S
BIASED  
-0.5  
GROUNDED  
-1.0  
-1.5  
-2.0  
0
50  
100  
150  
200  
250  
300  
krad (Si)  
FIGURE 54. IOS SHIFT vs HIGH DOSE RATE RADIATION  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 18 of 27  
ISL70444SEH, ISL73444SEH  
Post Low Dose Rate Radiation Characteristics Unless otherwise specified, VS ±18V, VCM = 0,  
VO = 0V, TA = +25°C. This data is typical mean test data post radiation exposure at a low dose rate of <10mrad(Si)/s. This data is intended to show typical  
parameter shifts due to high dose rate radiation. These are not limits nor are they guaranteed.  
30  
30  
20  
10  
0
V
= ±18V  
V
= ±18V  
S
S
20  
GROUNDED  
BIASED  
BIASED  
10  
0
-10  
-20  
-30  
-10  
-20  
-30  
GROUNDED  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
krad (Si)  
krad (Si)  
FIGURE 55. VOS SHIFT vs LOW DOSE RATE RADIATION  
FIGURE 56. IBIAS SHIFT vs LOW DOSE RATE RADIATION  
0.8  
0.6  
6
4
V
= ±18V  
V
= ±18V  
S
S
0.4  
0.2  
0
BIASED  
2
GROUNDED  
BIASED  
0
-0.2  
-0.4  
-0.6  
-0.8  
GROUNDED  
-2  
-4  
-6  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
krad (Si)  
krad (Si)  
FIGURE 58. I+ SHIFT vs LOW DOSE RATE RADIATION  
FIGURE 57. IOS SHIFT vs LOW DOSE RATE RADIATION  
0.8  
0.6  
V
= ±18V  
S
BIASED  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
GROUNDED  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
krad (Si)  
FIGURE 59. I- SHIFT vs LOW DOSE RATE RADIATION  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 19 of 27  
ISL70444SEH, ISL73444SEH  
not violated. This applies to only one amplifier at a given time.  
Continued use of the device in these conditions may degrade the  
long term reliability of the part and is not recommended.  
Figure 20 shows the typical short-circuit currents that can be  
expected. The ISL7x444SEH’s current limiting circuitry  
automatically lowers the current limit of the device if short-circuit  
conditions carry on for extended periods of time. This protects  
the device from malfunction; however, extended operation in this  
mode degrades the output rail-to-rail performance by increasing  
the VOH/VOL levels.  
Applications Information  
Functional Description  
The ISL7x444SEH contain four high-speed and low-power op amps  
designed to take advantage of their full dynamic input and output  
voltage range with rail-to-rail operation. By offering low power, low  
offset voltage and low temperature drift coupled with its high  
bandwidth and enhanced slew rates upwards of 50V/µs, these op  
amps are ideal for applications requiring both high DC accuracy  
and AC performance. The ISL7x444SEH are manufactured using  
the Renesas PR40 silicon-on-insulator process, which makes  
these devices immune to single event latch-up and provides  
excellent radiation tolerance. These features make the devices an  
ideal choice for high reliability applications in harsh radiation-  
prone environments.  
Output Phase Reversal  
Output phase reversal is a change of polarity in the amplifier  
transfer function when the input voltage exceeds the supply  
voltage. The ISL7x444SEH are immune to output phase reversal,  
even when the input voltage is 1V beyond the supplies. This is  
illustrated in Figure 49 on page 17.  
Operating Voltage Range  
The ISL7x444SEH are designed to operate with a split supply rail  
from ±1.35V to ±20V or a single supply rail from 2.7V to 40V. The  
ISL7x444SEH are fully characterized in production for supply rails  
of 5V (±2.5V) and 36V (±18V). The power supply rejection ratio is  
typically 120dB over the full operating voltage range. The worst  
case Common-Mode Rejection Ratio (CMRR) across temperature  
is within 1.5V to 2V of each rail. When VCM is inside that range, the  
CMRR performance is typically >110dB with a ±18V supply. The  
minimum CMRR performance across the -55°C to +125°C  
temperature range and radiation is >70dB over the full  
common-mode input range for power supply voltages from ±2.5V  
(5V) to ±18V (36V).  
Power Dissipation  
It is possible to exceed the +150°C maximum junction  
temperature under certain load and power supply conditions. It is  
therefore important to calculate the maximum junction  
temperature (TJMAX) for all applications to determine if power  
supply voltages, load conditions, or package type need to be  
modified to remain in the safe operating range. These  
parameters are related using Equation 1:  
(EQ. 1)  
T
= T  
+   
x PD  
JA MAXTOTAL  
JMAX  
MAX  
where:  
• PDMAXTOTAL is the sum of the maximum power dissipation of  
Input Performance  
each amplifier in the package (PDMAX  
)
The slew enhanced front-end is a block that is placed in parallel  
with the main input stage and functions based on the input  
differential.  
• Calculate PDMAX for each amplifier using Equation 2:  
V
OUTMAX  
R
L
----------------------------  
PD  
= V I  
+ V - V    
OUTMAX  
(EQ. 2)  
MAX  
S
qMAX  
S
Input ESD Diode Protection  
where:  
The input terminals (IN+ and IN-) have internal ESD protection  
diodes to the positive and negative supply rails, series connected  
600Ω current limiting resistors and an anti-parallel diode pair  
across the inputs.  
• TMAX = Maximum ambient temperature  
JA = Thermal resistance of the package  
• PDMAX = Maximum power dissipation of one amplifier  
• VS = Total supply voltage  
+
V
• IqMAX = Maximum quiescent supply current of one amplifier  
• VOUTMAX = Maximum output voltage swing of the application  
600Ω  
600Ω  
V
OUT  
Slew Rate Enhancement  
V
R
IN  
L
The ISL7x444SEH have slew enhanced front-end that increases  
the drive on the output transistors proportional to the differential  
voltage across the inputs. This increase in output drive shows up  
as increased transient current on top of the op amp’s steady  
state supply current. If the voltage differential between the  
inputs remains constant, as in comparator applications, the  
added drive current to the output transistors becomes steady  
state and increases the DC power supply current of the IC. For  
this reason, we do not recommended using the ISL7x444SEH in  
a comparator configuration.  
-
V
FIGURE 60. INPUT ESD DIODE CURRENT LIMITING, UNITY GAIN  
Output Short-Circuit Current Limiting  
The output current limit has a worst case minimum limit of  
±8mA but may reach as high as ±100mA. The op amp can  
withstand a short-circuit to either rail for a short duration  
(<1s) as long as the maximum operating junction temperature is  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 20 of 27  
ISL70444SEH, ISL73444SEH  
Unused Channel Configuration  
V+  
If the application does not require the use of all four op amps,  
you must configure the unused channels to prevent it from  
oscillating. Any unused channels oscillate if the input and output  
pins are floating. The oscillationresults in higher than expected  
supply currents and possible noise injection into any of the active  
channels in use. The proper way to prevent oscillation is to short  
the output to the inverting input and tie the positive input to a  
known voltage, such as mid-supply.  
V-  
FIGURE 61. PREVENTING OSCILLATIONS IN UNUSED CHANNELS,  
SPLIT SUPPLY  
-
When the V supply is less than or equal to -1.0V, configure your  
op amp as in Figure 61, or follow the configuration shown in  
Figure 62. The resistors in Figure 62 are of equal value and high  
resistance (10kΩ) to minimize current draw, while keeping the  
positive input at mid-supply. All unused op amps can have their  
inputs tied to the same resistor divider to minimize the number  
of components.  
V+  
V-  
-
Tying the positive input to ground in Figure 62 (where V = GND)  
would produce a voltage differential across the inputs, as the  
inverting input would be at the op amp’s VOL and the positive  
input would be at GND, causing an increase in the steady state  
supply current. While this does not damage the op amp, the  
increased supply current would result in additional unnecessary  
power dissipation.  
FIGURE 62. PREVENTING OSCILLATIONS IN UNUSED CHANNELS,  
SINGLE SUPPLY  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 21 of 27  
ISL70444SEH, ISL73444SEH  
Die Characteristics  
Assembly Related Information  
SUBSTRATE POTENTIAL  
Die Dimensions  
Floating  
2410µm x 3175µm (95 mils x 125 mils)  
Thickness: 483µm ±25µm (19 mils ±1 mil)  
Additional Information  
Interface Materials  
WORST CASE CURRENT DENSITY  
< 2 x 105 A/cm2  
GLASSIVATION  
Type: Nitrox  
Thickness: 15kÅ  
TRANSISTOR COUNT  
730  
TOP METALLIZATION  
Weight of Packaged Device  
Type: AlCu (99.5%/0.5%)  
Thickness: 30kÅ  
0. 5952 grams (Typical)  
BACKSIDE FINISH  
Lid Characteristics  
Silicon  
Finish: Gold  
Potential: Unbiased, tied to E-pad under package  
Case Isolation to Any Lead: 20 x 109 Ω (min)  
PROCESS  
PR40  
Metallization Mask Layout  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 22 of 27  
ISL70444SEH, ISL73444SEH  
TABLE 1. DIE LAYOUT X-Y COORDINATES  
BOND WIRES  
PER PAD  
PAD NAME  
OUTB  
OUTC  
-INC  
PAD NUMBER  
X (µm)  
599.0  
1472.0  
2071.0  
2071.0  
2071.0  
2071.0  
2071.0  
1472.0  
599.0  
0.0  
Y (µm)  
-11.5  
dX (µm)  
70  
dY (µm)  
70  
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
-11.5  
70  
70  
4
0.0  
70  
70  
+INC  
V-  
12  
20  
21  
22  
23  
24  
25  
33  
41  
42  
1
347.5  
70  
70  
1406.5  
2465.5  
2813.0  
2824.5  
2824.5  
2813.0  
2465.5  
1406.5  
347.5  
70  
70  
+IND  
-IND  
70  
70  
70  
70  
OUTD  
OUTA  
-INA  
70  
70  
70  
70  
70  
70  
+INA  
V+  
0.0  
70  
70  
0.0  
70  
70  
+INB  
-INB  
0.0  
70  
70  
0.0  
0.0  
70  
70  
NOTE:  
9. Origin of coordinates is the centroid of pad 42, “IN-B”.  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 23 of 27  
ISL70444SEH, ISL73444SEH  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please visit our website to make sure  
that you have the latest revision.  
DATE  
REVISION  
FN8411.7  
CHANGE  
Aug 16, 2019  
Updated SEE and TID ratings in Features section.  
Added radiation levels to ordering information table.  
Removed Table 1.  
Mar 28, 2019  
Jan 19, 2018  
Jul 6, 2017  
FN8411.6  
FN8411.5  
FN8411.4  
Updated links throughout document.  
Added ISL73444SEH information throughout document.  
Added Table 1.  
Updated Disclaimer.  
Added “Slew Rate Enhancement” section on page 20.  
On page 21 - Updated “Unused Channel Configuration” section, updated Figure 61 and added Figure 62.  
Removed “About Intersil” section.  
Added new disclaimer.  
Updated Related Literature section.  
Changed low input voltage from 300µV to 400µV in features list.  
Added Notes 3 and 4.  
Electrical Specification updates:  
VS = ±18V table:  
Updated Offset Voltage from “300” to “400” and “400” to “500”.  
Updated Input Offset Current from “-17” to “-30” (min) and “17” to “30” (max) unbolded values.  
Added another Input Offset Current line and bolded.  
Updated PSRR min from “88” to “83”  
VS = ±2.5V table:  
Updated Offset Voltage from “300” to “400” and “400” to “500”.  
Updated Input Offset Current from “-17” to “-30” (min) and “17” to “30” (max) unbolded values.  
Added another Input Offset Current line and bolded.  
Unbolded PSRR min value and added a new line with 70 min bolded.  
VS = ±1.5V table:  
Updated Offset Voltage from “300” to “400” and “400” to “500”.  
Updated Input Offset Current from “-17” to “-30” (min) and “17” to “30” (max) unbolded values.  
Added another Input Offset Current line and bolded.  
VS = ±18V table (RAD):  
Updated Offset Voltage from “400” to “500”.  
Updated Input Offset Current from “-17” to “-50” (min) and “17” to “50” (max).  
Updated PSRR min from “88” to “83”  
VS = ±2.5V table (RAD):  
Updated Offset Voltage from “400” to “500”.  
Updated Input Offset Current from “-17” to “-50” (min) and “17” to “50” (max).  
VS = ±1.5V table (RAD):  
Updated Offset Voltage from “400” to “500”.  
Updated Input Offset Current from “-17” to “-50” (min) and “17” to “50” (max).  
Jun 5, 2015  
FN8411.3  
Changed Die Dimensions on page 22:  
From  
2410µm x 3175µm (80mils x 101mils)  
Thickness: 483µm ± 25µm (19mils ± 1 mil)  
To:  
Die Dimensions  
2410µm x 3175µm (95mils x 125mils)  
Thickness: 483µm ± 25µm (19mils ± 1 mil)  
Jul 31, 2014  
FN8411.2  
On page 1: Updated Features bullet from:  
- SEL/SEB LETTH. . . . . . . . . . . . . . . . . . . . 86.4MeVocm2/mg  
To:  
- SEB LETTH (VS = ±21V). . . . . . . . . . . . . . . . 86.4 MeV/mg/cm2  
- SEL Immune (SOI Process)  
Ordering Information table on page 4: Removed MSL note.  
Updated About Intersil verbiage.  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 24 of 27  
ISL70444SEH, ISL73444SEH  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please visit our website to make sure  
that you have the latest revision. (Continued)  
DATE  
REVISION  
FN8411.1  
CHANGE  
Jun 14, 2013  
Changed Radiation tolerance High dose rate from 100krad(Si) to 300krad(Si) on page 1 features and in  
Electrical Spec Table conditions on pages 7 and 8.  
Added SR spec for VS = ±18V to Electrical Spec Table on page 8.  
Removed Max limit of 300 for VOS Offset Voltage in VS = ±18V, VS = ±2.5V and VS = ±1.5V Spec tables.  
May 23, 2013  
FN8411.0  
Initial Release.  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 25 of 27  
ISL70444SEH, ISL73444SEH  
For the most recent package outline drawing, see K14.C.  
Package Outline Drawing  
K14.C  
14 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE  
Rev 0, 9/12  
A
A
0.050 (1.27 BSC)  
PIN NO. 1  
ID AREA  
0.390 (9.91)  
0.376 (9.55)  
1
TOP VIEW  
0.022 (0.56)  
0.015 (0.38)  
0.005 (0.13)  
MIN  
3
0.115 (2.92)  
0.009 (0.23)  
0.004 (0.10)  
-D-  
0.045 (1.14)  
0.085 (2.16)  
5
0.260 (6.60)  
0.248 (6.30)  
0.026 (0.66)  
-H-  
0.370 (9.40)  
0.270 (6.86)  
0.03 (0.76) MIN  
-C-  
0.183 (4.65)  
0.167 (4.24)  
BOTTOM  
METAL  
6
SEATING AND  
BASE PLANE  
SIDE VIEW  
BOTTOM METAL  
0.005 (0.127) REF.  
OFFSET FROM  
CERAMIC EDGE  
OPTIONAL  
PIN 1 INDEX  
BOTTOM VIEW  
NOTES:  
Index area: A notch or a pin one identification mark shall be located  
adjacent to pin one and shall be located within the shaded area shown.  
The manufacturer’s identification shall not be used as a pin one  
identification mark.  
1.  
0.006 (0.15)  
0.004 (0.10)  
LEAD FINISH  
2. The maximum limits of lead dimensions (section A-A) shall be  
measured at the centroid of the finished lead surfaces, when solder  
dip or tin plate lead finish is applied.  
3. Measure dimension at all four corners.  
0.009 (0.23)  
0.004 (0.10)  
BASE  
METAL  
4. For bottom-brazed lead packages, no organic or polymeric materials  
shall be molded to the bottom of the package to cover the leads.  
0.019 (0.48)  
0.015 (0.38)  
5. Dimension shall be measured at the point of exit (beyond the  
meniscus) of the lead from the body. Dimension minimum shall  
be reduced by 0.0015 inch (0.038mm) maximum when solder dip  
lead finish is applied.  
0.0015 (0.04)  
MAX  
0.022 (0.56)  
0.015 (0.38)  
6. The bottom of the package is a solderable metal surface.  
7. Dimensioning and tolerancing per ANSI Y14.5M - 1982.  
8. Dimensions: INCH (mm). Controlling dimension: INCH.  
2
SECTION A-A  
FN8411 Rev.7.00  
Aug 16, 2019  
Page 26 of 27  
1RWLFH  
ꢃꢅ 'HVFULSWLRQVꢀRIꢀFLUFXLWVꢆꢀVRIWZDUHꢀDQGꢀRWKHUꢀUHODWHGꢀLQIRUPDWLRQꢀLQꢀWKLVꢀGRFXPHQWꢀDUHꢀSURYLGHGꢀRQO\ꢀWRꢀLOOXVWUDWHꢀWKHꢀRSHUDWLRQꢀRIꢀVHPLFRQGXFWRUꢀSURGXFWVꢀ  
DQGꢀDSSOLFDWLRQꢀH[DPSOHVꢅꢀ<RXꢀDUHꢀIXOO\ꢀUHVSRQVLEOHꢀIRUꢀWKHꢀLQFRUSRUDWLRQꢀRUꢀDQ\ꢀRWKHUꢀXVHꢀRIꢀWKHꢀFLUFXLWVꢆꢀVRIWZDUHꢆꢀDQGꢀLQIRUPDWLRQꢀLQꢀWKHꢀGHVLJQꢀRIꢀ\RXUꢀ  
SURGXFWꢀRUꢀV\VWHPꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀDQGꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ  
WKHVHꢀFLUFXLWVꢆꢀVRIWZDUHꢆꢀRUꢀLQIRUPDWLRQꢅ  
ꢁꢅ 5HQHVDVꢀ(OHFWURQLFVꢀKHUHE\ꢀH[SUHVVO\ꢀGLVFODLPVꢀDQ\ꢀZDUUDQWLHVꢀDJDLQVWꢀDQGꢀOLDELOLW\ꢀIRUꢀLQIULQJHPHQWꢀRUꢀDQ\ꢀRWKHUꢀFODLPVꢀLQYROYLQJꢀSDWHQWVꢆꢀFRS\ULJKWVꢆꢀRUꢀ  
RWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀWKLUGꢀSDUWLHVꢆꢀE\ꢀRUꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRUꢀWHFKQLFDOꢀLQIRUPDWLRQꢀGHVFULEHGꢀLQꢀWKLVꢀ  
GRFXPHQWꢆꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢆꢀWKHꢀSURGXFWꢀGDWDꢆꢀGUDZLQJVꢆꢀFKDUWVꢆꢀSURJUDPVꢆꢀDOJRULWKPVꢆꢀDQGꢀDSSOLFDWLRQꢀH[DPSOHVꢅꢀ  
ꢇꢅ 1RꢀOLFHQVHꢆꢀH[SUHVVꢆꢀLPSOLHGꢀRUꢀRWKHUZLVHꢆꢀLVꢀJUDQWHGꢀKHUHE\ꢀXQGHUꢀDQ\ꢀSDWHQWVꢆꢀFRS\ULJKWVꢀRUꢀRWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀRUꢀ  
RWKHUVꢅ  
ꢈꢅ <RXꢀVKDOOꢀQRWꢀDOWHUꢆꢀPRGLI\ꢆꢀFRS\ꢆꢀRUꢀUHYHUVHꢀHQJLQHHUꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢆꢀZKHWKHUꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀ  
DQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀRUꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀVXFKꢀDOWHUDWLRQꢆꢀPRGLILFDWLRQꢆꢀFRS\LQJꢀRUꢀUHYHUVHꢀHQJLQHHULQJꢅ  
ꢉꢅ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀFODVVLILHGꢀDFFRUGLQJꢀWRꢀWKHꢀIROORZLQJꢀWZRꢀTXDOLW\ꢀJUDGHVꢊꢀꢋ6WDQGDUGꢋꢀDQGꢀꢋ+LJKꢀ4XDOLW\ꢋꢅꢀ7KHꢀLQWHQGHGꢀDSSOLFDWLRQVꢀIRUꢀ  
HDFKꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀGHSHQGVꢀRQꢀWKHꢀSURGXFWꢌVꢀTXDOLW\ꢀJUDGHꢆꢀDVꢀLQGLFDWHGꢀEHORZꢅ  
ꢋ6WDQGDUGꢋꢊ  
&RPSXWHUVꢍꢀRIILFHꢀHTXLSPHQWꢍꢀFRPPXQLFDWLRQVꢀHTXLSPHQWꢍꢀWHVWꢀDQGꢀPHDVXUHPHQWꢀHTXLSPHQWꢍꢀDXGLRꢀDQGꢀYLVXDOꢀHTXLSPHQWꢍꢀKRPHꢀ  
HOHFWURQLFꢀDSSOLDQFHVꢍꢀPDFKLQHꢀWRROVꢍꢀSHUVRQDOꢀHOHFWURQLFꢀHTXLSPHQWꢍꢀLQGXVWULDOꢀURERWVꢍꢀHWFꢅ  
ꢋ+LJKꢀ4XDOLW\ꢋꢊ 7UDQVSRUWDWLRQꢀHTXLSPHQWꢀꢎDXWRPRELOHVꢆꢀWUDLQVꢆꢀVKLSVꢆꢀHWFꢅꢏꢍꢀWUDIILFꢀFRQWUROꢀꢎWUDIILFꢀOLJKWVꢏꢍꢀODUJHꢐVFDOHꢀFRPPXQLFDWLRQꢀHTXLSPHQWꢍꢀNH\ꢀ  
ILQDQFLDOꢀWHUPLQDOꢀV\VWHPVꢍꢀVDIHW\ꢀFRQWUROꢀHTXLSPHQWꢍꢀHWFꢅ  
8QOHVVꢀH[SUHVVO\ꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀSURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGRFXPHQWꢆꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀQRWꢀLQWHQGHGꢀRUꢀDXWKRUL]HGꢀIRUꢀXVHꢀLQꢀSURGXFWVꢀRUꢀV\VWHPVꢀWKDWꢀPD\ꢀSRVHꢀDꢀGLUHFWꢀWKUHDWꢀWRꢀ  
KXPDQꢀOLIHꢀRUꢀERGLO\ꢀLQMXU\ꢀꢎDUWLILFLDOꢀOLIHꢀVXSSRUWꢀGHYLFHVꢀRUꢀV\VWHPVꢍꢀVXUJLFDOꢀLPSODQWDWLRQVꢍꢀHWFꢅꢏꢆꢀRUꢀPD\ꢀFDXVHꢀVHULRXVꢀSURSHUW\ꢀGDPDJHꢀꢎVSDFHꢀV\VWHPꢍꢀ  
XQGHUVHDꢀUHSHDWHUVꢍꢀQXFOHDUꢀSRZHUꢀFRQWUROꢀV\VWHPVꢍꢀDLUFUDIWꢀFRQWUROꢀV\VWHPVꢍꢀNH\ꢀSODQWꢀV\VWHPVꢍꢀPLOLWDU\ꢀHTXLSPHQWꢍꢀHWFꢅꢏꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀ  
DQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀGDPDJHVꢀRUꢀORVVHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀDQ\ꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀWKDWꢀLVꢀ  
LQFRQVLVWHQWꢀZLWKꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢆꢀXVHUꢌVꢀPDQXDOꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢅ  
ꢑꢅ :KHQꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀUHIHUꢀWRꢀWKHꢀODWHVWꢀSURGXFWꢀLQIRUPDWLRQꢀꢎGDWDꢀVKHHWVꢆꢀXVHUꢌVꢀPDQXDOVꢆꢀDSSOLFDWLRQꢀQRWHVꢆꢀꢋ*HQHUDOꢀ1RWHVꢀIRUꢀ  
+DQGOLQJꢀDQGꢀ8VLQJꢀ6HPLFRQGXFWRUꢀ'HYLFHVꢋꢀLQꢀWKHꢀUHOLDELOLW\ꢀKDQGERRNꢆꢀHWFꢅꢏꢆꢀDQGꢀHQVXUHꢀWKDWꢀXVDJHꢀFRQGLWLRQVꢀDUHꢀZLWKLQꢀWKHꢀUDQJHVꢀVSHFLILHGꢀE\ꢀ  
5HQHVDVꢀ(OHFWURQLFVꢀZLWKꢀUHVSHFWꢀWRꢀPD[LPXPꢀUDWLQJVꢆꢀRSHUDWLQJꢀSRZHUꢀVXSSO\ꢀYROWDJHꢀUDQJHꢆꢀKHDWꢀGLVVLSDWLRQꢀFKDUDFWHULVWLFVꢆꢀLQVWDOODWLRQꢆꢀHWFꢅꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀPDOIXQFWLRQVꢆꢀIDLOXUHꢀRUꢀDFFLGHQWꢀDULVLQJꢀRXWꢀRIꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRXWVLGHꢀRIꢀVXFKꢀ  
VSHFLILHGꢀUDQJHVꢅ  
ꢒꢅ $OWKRXJKꢀ5HQHVDVꢀ(OHFWURQLFVꢀHQGHDYRUVꢀWRꢀLPSURYHꢀWKHꢀTXDOLW\ꢀDQGꢀUHOLDELOLW\ꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀVHPLFRQGXFWRUꢀSURGXFWVꢀKDYHꢀVSHFLILFꢀ  
FKDUDFWHULVWLFVꢆꢀVXFKꢀDVꢀWKHꢀRFFXUUHQFHꢀRIꢀIDLOXUHꢀDWꢀDꢀFHUWDLQꢀUDWHꢀDQGꢀPDOIXQFWLRQVꢀXQGHUꢀFHUWDLQꢀXVHꢀFRQGLWLRQVꢅꢀ8QOHVVꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀ  
SURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢆꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀ  
DUHꢀQRWꢀVXEMHFWꢀWRꢀUDGLDWLRQꢀUHVLVWDQFHꢀGHVLJQꢅꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀLPSOHPHQWLQJꢀVDIHW\ꢀPHDVXUHVꢀWRꢀJXDUGꢀDJDLQVWꢀWKHꢀSRVVLELOLW\ꢀRIꢀERGLO\ꢀLQMXU\ꢆꢀ  
LQMXU\ꢀRUꢀGDPDJHꢀFDXVHGꢀE\ꢀILUHꢆꢀDQGꢓRUꢀGDQJHUꢀWRꢀWKHꢀSXEOLFꢀLQꢀWKHꢀHYHQWꢀRIꢀDꢀIDLOXUHꢀRUꢀPDOIXQFWLRQꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀVXFKꢀDVꢀVDIHW\ꢀ  
GHVLJQꢀIRUꢀKDUGZDUHꢀDQGꢀVRIWZDUHꢆꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢀUHGXQGDQF\ꢆꢀILUHꢀFRQWUROꢀDQGꢀPDOIXQFWLRQꢀSUHYHQWLRQꢆꢀDSSURSULDWHꢀWUHDWPHQWꢀIRUꢀDJLQJꢀ  
GHJUDGDWLRQꢀRUꢀDQ\ꢀRWKHUꢀDSSURSULDWHꢀPHDVXUHVꢅꢀ%HFDXVHꢀWKHꢀHYDOXDWLRQꢀRIꢀPLFURFRPSXWHUꢀVRIWZDUHꢀDORQHꢀLVꢀYHU\ꢀGLIILFXOWꢀDQGꢀLPSUDFWLFDOꢆꢀ\RXꢀDUHꢀ  
UHVSRQVLEOHꢀIRUꢀHYDOXDWLQJꢀWKHꢀVDIHW\ꢀRIꢀWKHꢀILQDOꢀSURGXFWVꢀRUꢀV\VWHPVꢀPDQXIDFWXUHGꢀE\ꢀ\RXꢅ  
ꢔꢅ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀIRUꢀGHWDLOVꢀDVꢀWRꢀHQYLURQPHQWDOꢀPDWWHUVꢀVXFKꢀDVꢀWKHꢀHQYLURQPHQWDOꢀFRPSDWLELOLW\ꢀRIꢀHDFKꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWꢅꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀFDUHIXOO\ꢀDQGꢀVXIILFLHQWO\ꢀLQYHVWLJDWLQJꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢀWKDWꢀUHJXODWHꢀWKHꢀLQFOXVLRQꢀRUꢀXVHꢀRIꢀ  
FRQWUROOHGꢀVXEVWDQFHVꢆꢀLQFOXGLQJꢀZLWKRXWꢀOLPLWDWLRQꢆꢀWKHꢀ(8ꢀ5R+6ꢀ'LUHFWLYHꢆꢀDQGꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀLQꢀFRPSOLDQFHꢀZLWKꢀDOOꢀWKHVHꢀ  
DSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀGDPDJHVꢀRUꢀORVVHVꢀRFFXUULQJꢀDVꢀDꢀUHVXOWꢀRIꢀ\RXUꢀQRQFRPSOLDQFHꢀ  
ZLWKꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢅ  
ꢄꢅ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDQGꢀWHFKQRORJLHVꢀVKDOOꢀQRWꢀEHꢀXVHGꢀIRUꢀRUꢀLQFRUSRUDWHGꢀLQWRꢀDQ\ꢀSURGXFWVꢀRUꢀV\VWHPVꢀZKRVHꢀPDQXIDFWXUHꢆꢀXVHꢆꢀRUꢀVDOHꢀLVꢀ  
SURKLELWHGꢀXQGHUꢀDQ\ꢀDSSOLFDEOHꢀGRPHVWLFꢀRUꢀIRUHLJQꢀODZVꢀRUꢀUHJXODWLRQVꢅꢀ<RXꢀVKDOOꢀFRPSO\ꢀZLWKꢀDQ\ꢀDSSOLFDEOHꢀH[SRUWꢀFRQWUROꢀODZVꢀDQGꢀUHJXODWLRQVꢀ  
SURPXOJDWHGꢀDQGꢀDGPLQLVWHUHGꢀE\ꢀWKHꢀJRYHUQPHQWVꢀRIꢀDQ\ꢀFRXQWULHVꢀDVVHUWLQJꢀMXULVGLFWLRQꢀRYHUꢀWKHꢀSDUWLHVꢀRUꢀWUDQVDFWLRQVꢅ  
ꢃꢂꢅ ,WꢀLVꢀWKHꢀUHVSRQVLELOLW\ꢀRIꢀWKHꢀEX\HUꢀRUꢀGLVWULEXWRUꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀRUꢀDQ\ꢀRWKHUꢀSDUW\ꢀZKRꢀGLVWULEXWHVꢆꢀGLVSRVHVꢀRIꢆꢀRUꢀRWKHUZLVHꢀVHOOVꢀRUꢀ  
WUDQVIHUVꢀWKHꢀSURGXFWꢀWRꢀDꢀWKLUGꢀSDUW\ꢆꢀWRꢀQRWLI\ꢀVXFKꢀWKLUGꢀSDUW\ꢀLQꢀDGYDQFHꢀRIꢀWKHꢀFRQWHQWVꢀDQGꢀFRQGLWLRQVꢀVHWꢀIRUWKꢀLQꢀWKLVꢀGRFXPHQWꢅ  
ꢃꢃꢅ 7KLVꢀGRFXPHQWꢀVKDOOꢀQRWꢀEHꢀUHSULQWHGꢆꢀUHSURGXFHGꢀRUꢀGXSOLFDWHGꢀLQꢀDQ\ꢀIRUPꢆꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢆꢀZLWKRXWꢀSULRUꢀZULWWHQꢀFRQVHQWꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢅ  
ꢃꢁꢅ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀLIꢀ\RXꢀKDYHꢀDQ\ꢀTXHVWLRQVꢀUHJDUGLQJꢀWKHꢀLQIRUPDWLRQꢀFRQWDLQHGꢀLQꢀWKLVꢀGRFXPHQWꢀRUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWVꢅ  
ꢎ1RWHꢃꢏ ꢋ5HQHVDVꢀ(OHFWURQLFVꢋꢀDVꢀXVHGꢀLQꢀWKLVꢀGRFXPHQWꢀPHDQVꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢀDQGꢀDOVRꢀLQFOXGHVꢀLWVꢀGLUHFWO\ꢀRUꢀLQGLUHFWO\ꢀFRQWUROOHGꢀ  
VXEVLGLDULHVꢅ  
ꢎ1RWHꢁꢏ ꢋ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢎVꢏꢋꢀPHDQVꢀDQ\ꢀSURGXFWꢀGHYHORSHGꢀRUꢀPDQXIDFWXUHGꢀE\ꢀRUꢀIRUꢀ5HQHVDVꢀ(OHFWURQLFVꢅ  
ꢎ5HYꢅꢈꢅꢂꢐꢃꢀꢀ1RYHPEHUꢀꢁꢂꢃꢒꢏ  
Corporate Headquarters  
ContactInformation
TOYOSU FORESIA, 3-2-24 Toyosu,  
For further information on a product, technology, the most up-to-date  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
version of a document, or your nearest sales office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas Electronics  
Corporation. All trademarks and registered trademarks are the property  
of their respective owners.  
‹ꢀꢁꢂꢃꢄꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢅꢀ$OOꢀULJKWVꢀUHVHUYHGꢅ  

相关型号:

5962L1322002V9A

Adjustable Positive LDO Regulator
RENESAS

5962L1324502VXA

Aerospace Dual Low Noise, Rail-to-Rail I/O, Low Power Operational Amplifiers
ADI

5962L1324802V9A

Operational Amplifier
RENESAS

5962L1324802VXC

Operational Amplifier
RENESAS

5962L1420901VXC

具有待机模式和环回功能的耐辐射加固保障 (RHA) 3.3V CAN 收发器 | HKX | 8 | -55 to 125
TI

5962L1422603VXC

Operational Amplifier
RENESAS

5962L1423101VXC

高分辨率模数转换器 (ADC) | HKV | 28 | -55 to 125
TI

5962L1423102VXC

高分辨率模数转换器 (ADC) | HKV | 28 | -55 to 115
TI

5962L1522801V9A

3.3V Radiation Tolerant CAN Transceiver, 1Mbps, Listen Mode, Loopback
INTERSIL

5962L1522801VXC

3.3V Radiation Tolerant CAN Transceiver, 1Mbps, Listen Mode, Loopback
INTERSIL

5962L1522802V9A

3.3V Radiation Tolerant CAN Transceiver, 1Mbps, Listen Mode, Split Termination Output
INTERSIL

5962L1522802VXC

3.3V Radiation Tolerant CAN Transceiver, 1Mbps, Listen Mode, Split Termination Output
INTERSIL