5962L1322002V9A [RENESAS]

Adjustable Positive LDO Regulator;
5962L1322002V9A
型号: 5962L1322002V9A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Adjustable Positive LDO Regulator

文件: 总20页 (文件大小:948K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL75052SEH, ISL73052SEH  
1.5A, Radiation Hardened, Positive, High Voltage LDO  
FN8456  
Rev.7.00  
Feb 11, 2019  
The ISL75052SEH and ISL73052SEH are radiation hardened,  
single output LDOs specified for an output current of 1.5A. The  
devices operate from an input voltage range of 4.0V to 13.2V  
and provide for output voltages of 0.6V to 12.7V. The output is  
adjustable based on a resistor divider setting. Dropout  
Features  
• DLA SMD 5962-13220  
• Input supply range 4.0V to 13.2V  
• Output current up to 1.5A at T = +150°C  
J
voltages as low as 75mV (at 0.5A) typical can be realized using  
the devices. This allows you to improve the system efficiency  
• Best in class accuracy ±1.5%  
by lowering V to nearly V  
.
- Over line, load ,and temperature  
IN OUT  
The ENABLE feature allows the part to be placed into a low  
shutdown current mode of 165µA (typical). When enabled, the  
device operates with a low ground current of 11mA (typical),  
which provides for operation with low quiescent power  
consumption.  
• Ultra low dropout:  
- 75mV dropout (typical) at 0.5A  
- 225mV dropout (typical) at 1.5A  
• Noise of 100µV  
(typical) between 300Hz to 300kHz  
RMS  
• SET mitigation with no added filtering/diodes  
• Shutdown current of 165µA (typical)  
• Externally adjustable output voltage  
• PSRR 65dB (typical) at 1kHz  
These devices have superior transient response and are  
designed keeping single event effects in mind. This results in  
reduction of the magnitude of SET seen on the output. There is  
no need for additional protection diodes and filters.  
A COMP pin is provided to enable the use of external  
compensation. This is achieved by connecting a resistor and  
capacitor from COMP to ground. The device is stable with  
tantalum capacitors as low as 47µF (KEMET T525 series) and  
provides excellent regulation all the way from no load to full  
load. The programmable soft-start allows you to program the  
inrush current by means of the decoupling capacitor used on  
the BYP pin. The OCP pin allows the short-circuit output current  
limit threshold to be programmed by means of a resistor from  
OCP pin to GND. The OCP setting range is from 0.16A  
minimum to 3.2A maximum. The resistor sets the constant  
current threshold for the output under fault conditions. The  
thermal shutdown disables the output if the device  
• ENable and PGood feature  
• Programmable soft-start/inrush current limiting  
• Adjustable overcurrent protection  
• Over-temperature shutdown  
• Stable with 47µF minimum tantalum capacitor  
• 16 Ld flatpack package  
• Radiation environment  
- High dose rate (50-300rad(Si)/s) . . . . . . . . . . . 100krad(Si)  
(ISL75052SEH only)  
- Low dose rate (0.01rad(Si)/s) . . . . . . . . . . . . . . 50krad(Si)*  
temperature exceeds the specified value. It subsequently  
enters an ON/OFF cycle until the fault is removed.  
2
- SET/SEL/SEB . . . . . . . . . . . . . . . . . . . . . . 86MeV•cm /mg  
*See TID report for further characterization details.  
Applications  
• LDO regulator for space power systems  
• DSP, FPGA, and µP core power supplies  
• Post regulation of SMPS and down-hole drilling  
Related Literature  
For a full list of related documents, visit our web page:  
ISL75052SEH, ISL73052SEH device pages  
EN  
0.30  
ISL7x052SEH  
VIN  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
+150°C  
VIN  
VOUT 1, 2  
3, 4, 5  
+125°C  
200µF 0.1µF  
16  
8
BYP  
OCP  
VCCX  
PG  
ADJ  
EN  
VOUT  
2.5V  
15  
14  
13  
12  
+25°C  
9
GND  
COMP  
0.1µF 200µF  
10  
15.8k  
4.87k  
2.2k  
2.2n  
0.1µF 0.1µF 300  
22k  
VIN  
1nF  
22k  
0
0.5  
1.0  
1.5  
2.0  
PG  
I
(A)  
LOAD  
FIGURE 2. DROPOUT vs I  
FIGURE 1. TYPICAL APPLICATION  
OUT  
FN8456 Rev.7.00  
Feb 11, 2019  
Page 1 of 20  
ISL75052SEH, ISL73052SEH  
Block Diagram  
COMP  
OCP  
3.8V  
LDO  
VIN  
VCCX  
CURRENT  
LIMIT  
+
-
600mV  
BYP  
REFERENCE  
BIAS  
VOUT  
POWER  
PDMOS  
THERMAL  
SHUTDOWN  
EN  
UVLO  
ADJ  
PG  
-
DELAY  
540mV  
+
GND  
FIGURE 3. BLOCK DIAGRAM  
Typical Application  
EN  
ISL7x052SEH  
1
2
VOUT  
VOUT  
VIN  
16  
15  
14  
BYP  
ADJ  
EN  
0.1µF  
3
4
5
6
7
8
VIN  
VIN  
GND 13  
COMP 12  
GND 11  
PG 10  
VCCX  
VIN  
22k  
10k  
0.1µF  
100µF 100µF  
1nF  
NC  
PG  
NC  
VOUT = 2.5V  
300  
OCP  
VCCX  
9
15.8k  
4.87k  
2.2k  
0.1µF 100µF 100µF  
NC = NO CONNECT PIN CAN BE  
CONNECTED TO EITHER VIN OR GND  
2.2nF  
0.1µF  
FIGURE 4. TYPICAL APPLICATION  
FN8456 Rev.7.00  
Feb 11, 2019  
Page 2 of 20  
ISL75052SEH, ISL73052SEH  
Ordering Information  
ORDERING SMD NUMBER  
PART NUMBER  
(Note 1)  
PACKAGE  
(RoHS COMPLIANT)  
(Note 2)  
TEMP RANGE (°C)  
-55 to +125  
PKG DWG. #  
K16.E  
5962R1322001VXC  
ISL75052SEHVFE  
ISL75052SEHVX  
16 Ld CDFP  
5962R1322001V9A  
-55 to +125  
Die  
N/A  
ISL75052SEHX/SAMPLE (Note 3)  
ISL75052SEHFE/PROTO (Note 3)  
ISL73052SEHVFE  
-55 to +125  
Die Sample  
16 Ld CDFP  
16 Ld CDFP  
Die  
N/A  
-55 to +125  
K16.E  
K16.E  
5962L1322002VXC  
-55 to +125  
5962L1322002V9A  
ISL73052SEHVX  
-55 to +125  
N/A  
N/A  
ISL73052SEHFE/PROTO (Note 3)  
ISL73052SEHX/SAMPLE (Note 3)  
ISL75052SEHEVAL1Z (Note 4)  
-55 to +125  
Die Sample  
16 Ld CDFP  
-55 to +125  
K16.E  
N/A  
Evaluation Board  
NOTES:  
1. These Pb-free Hermetic packaged products employ 100% Au plate - e4 termination finish, which is RoHS compliant and compatible with both SnPb  
and Pb-free soldering operations.  
2. Specifications for Rad Hard QML devices are controlled by the Defense Logistics Agency Land and Maritime (DLA). The SMD numbers listed must be  
used when ordering.  
3. The /PROTO and /SAMPLE are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE) immunity. These parts are intended for  
engineering evaluation purposes only. The /PROTO parts meet the electrical limits and conditions across temperature specified in the DLA SMD and  
are in the same form and fit as the qualified device. The /SAMPLE parts are capable of meeting the electrical limits and conditions specified in the  
DLA SMD at +25°C only. The /SAMPLE parts do not receive 100% screening across temperature to the DLA SMD electrical limits. These part types  
do not come with a Certificate of Conformance because they are not DLA qualified devices.  
4. Evaluation boards use the /PROTO parts and /PROTO parts are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE) immunity.  
TABLE 1. KEY DIFFERENCES BETWEEN FAMILY OF PARTS  
PART NUMBER  
RADIATION HARDENED ASSURANCE TESTING  
ISL75052SEH  
ISL73052SEH  
HDR to 100krad(Si)  
LDR to 50krad(Si)  
LDR to 50krad(Si)  
FN8456 Rev.7.00  
Feb 11, 2019  
Page 3 of 20  
ISL75052SEH, ISL73052SEH  
Pin Configuration  
16 LD CDFP  
TOP VIEW  
VOUT  
VOUT  
VIN  
1
2
3
4
5
6
7
8
16  
BYP  
ADJ  
EN  
15  
14  
13  
12  
11  
10  
9
VIN  
GND  
VIN  
COMP  
TMODE  
NC  
NC  
PG  
OCP  
VCCX  
DOTTED LINE SHOWS METAL BOTTOM  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
VOUT  
VIN  
DESCRIPTION  
ESD CIRCUIT  
Circuit 1  
Circuit 1  
Circuit 2  
Circuit 2  
Circuit 2  
1, 2  
3, 4, 5  
6, 7  
8
Output voltage pins  
Input supply pins  
NC  
No connect. May be grounded if needed.  
OCP  
OCP pin allows the current limit to be programmed with an external resistor.  
9
VCCX  
The 3.8V internal bus is pinned out to accept a decoupling capacitor. Connect a 0.1µF  
ceramic capacitor from VCCX pin to GND.  
10  
PG  
This pin is logic high when V  
in regulation.  
is in regulation signal. A logic low defines when V  
OUT  
is not  
Circuit 2  
OUT  
11  
12  
13  
14  
15  
16  
TMODE  
COMP  
GND  
EN  
Test Mode pin, must be connected to GND.  
Circuit 2  
Circuit 2  
Circuit 2  
Circuit 2  
Circuit 2  
Circuit 2  
Circuit 2  
Add compensation capacitor and resistor between COMP and GND.  
GND pin. Pin 13 is also connected to the metal lid of the package.  
V
independent chip enable. TTL and CMOS compatible.  
IN  
ADJ  
ADJ pin allows V  
to be programmed with an external resistor divider.  
OUT  
BYP  
Connect a 0.1µF capacitor from BYP pin to GND, to filter the internal VREF.  
Bottom Metalization The metal surface on the bottom surface of the package is floating. For mounting  
instructions see “Bottom Metal Mounting Guidelines” on page 15.  
PAD  
PAD  
ESD_CL_12V  
ESD_RC_7V  
GND  
GND  
ESD CIRCUIT 1  
ESD CIRCUIT 2  
FN8456 Rev.7.00  
Feb 11, 2019  
Page 4 of 20  
ISL75052SEH, ISL73052SEH  
Absolute Maximum Ratings  
Thermal Information  
VIN Relative to GND Without Ion Beam (Note 5) . . . . . . . . . -0.3 to +16.0V  
VIN Relative to GND Under Ion Beam (Note 5) . . . . . . . . . . . -0.3 to +14.7V  
VOUT Relative to GND (Note 5) . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +14.7V  
PG, EN, OCP/ADJ, COMP, REFIN,  
Thermal Resistance (Typical)  
16 Ld CDFP Package (Notes 8, 9) . . . . . . .  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
(°C/W)  
26  
(°C/W)  
4.5  
JA  
JC  
Junction Temperature (T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +175°C  
J
REFOUT Relative to GND (Note 5). . . . . . . . . . . . . . . . . . . -0.3 to +6.5V  
ESD Rating  
DC  
Radiation Information  
Maximum Total Dose  
High Dose (Dose Rate = 50-300radSi/s). . . . . . . . . . . . . . . 100krads (Si)  
Low Dose (Dose Rate = 10mradSi/s) (Note 7) . . . . . . . . . . 100krads (Si)  
Human Body Model (Tested per MIL-PRF-883 3015.7). . . . . . . . . . . 2kV  
Machine Model (Tested per JESD22-A115-A). . . . . . . . . . . . . . . . . 200V  
Charged Device Model (Tested per JESD22-C101D) . . . . . . . . . . . . 750V  
SET (V  
within ±5% During Events) . . . . . . . . . . . . . . . 86MeV•cm2/mg  
SEL/B (No Latch-Up/Burnout). . . . . . . . . . . . . . . . . . . . . . 86MeV•cm2/mg  
OUT  
Recommended Operating Conditions (Note 6)  
Ambient Temperature Range (T ) . . . . . . . . . . . . . . . . . . .-55°C to +125°C  
A
The output capacitance used for SEE testing is 2x100µF for C and C  
100nF for BYPASS.  
,
IN  
OUT  
Junction Temperature (T ) (Note 5). . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
J
VIN Relative to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.0V to 13.2V  
VOUT Range (Note 11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.6V to 12.7V  
PG, EN, OCP/ADJ Relative to GND . . . . . . . . . . . . . . . . . . . . . . . .0V to +5.5V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
5. Extended operation at these conditions may compromise reliability. Exceeding these limits results in damage. Recommended operating conditions  
define limits where specifications are established.  
6. Refer to “Bottom Metal Mounting Guidelines” on page 15.  
7. Product capability established by initial characterization. The “EH” version is acceptance tested on a wafer-by-wafer basis to 50krad(Si) at low dose rate.  
8. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See TB379.  
JA  
9. For , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
10. Electromigration specification defined as lifetime average junction temperature of +150°C where maximum rated DC current = lifetime average  
current.  
11. SET performance of ±5% applies to V  
OUT  
2.5V. For V <2.5V SEE testing needs to be performed to ensure system SET goals are met.  
OUT  
Electrical Specifications Unless otherwise noted, V = V  
+ 0.5V, V  
= 4.0V, C = C  
= 2x100µF 60mΩ, KEMET type  
IN  
OUT OUT  
IN OUT  
T541X107N025AH or equivalent, T = +25°C, I = 0A. Applications must follow thermal guidelines of the package to determine worst case junction  
J
L
temperature. Please refer to “Applications Information” on page 15 and TB379. Boldface limits apply across the operating temperature range, -55°C to  
+125°C. Pulse load techniques used by ATE to ensure T = T defines established limits.  
J
A
MIN  
MAX  
PARAMETER  
DC CHARACTERISTICS  
DC Output Voltage Accuracy  
SYMBOL  
TEST CONDITIONS  
(Note 12) TYP (Note 12) UNIT  
V
V resistor adjust to: 2.5V and 5.0V  
OUT  
OUT  
V
= 2.5V, 4.0V < V < 5.0V; 0A < I  
< 1.5A,  
< 1.5A,  
< 1.5A,  
< 1.5A,  
-1.5  
-2.0  
-1.5  
-2.0  
0.2  
0.2  
0.2  
0.2  
1.5  
2.0  
1.5  
2.0  
%
%
%
%
OUT  
IN  
LOAD  
LOAD  
LOAD  
LOAD  
T = -55°C to +125°C  
J
V
= 2.5V, 4.0V < V < 5.0V; 0A < I  
IN  
OUT  
T = +25°C, post radiation  
J
V
= 5.0V, 5.5V < V < 6.9V; 0A < I  
IN  
OUT  
T = -55°C to +125°C  
J
V
= 5.0V, 5.5V < V < 6.9V, 0A < I  
IN  
OUT  
T = +25°C, post radiation  
J
V
OUT  
resistor adjust to: 10.0V  
= 10.0V, 10.5V < V < 13.2V, I  
V
= 0A,  
= 0A,  
-1.5  
-2.0  
-1.5  
-2.0  
0.2  
0.2  
0.2  
0.2  
1.5  
2.0  
1.5  
2.0  
%
%
%
%
OUT  
T = -55°C to +125°C  
IN  
LOAD  
J
V
= 10.0V, 10.5V < V < 13.2V, I  
IN  
OUT  
T = +25°C, post radiation  
LOAD  
J
V
V
= 10.0V, V = 10.5V, I  
IN LOAD  
= 1.5A,  
OUT  
= 13.2V, I  
= 1.0A, T = -55°C to +125°C  
IN  
LOAD  
J
V
= 10.0V, V = 10.5V; I  
= 1.5A, V = 13.2V,  
IN  
OUT  
IN LOAD  
I
= 1.0A, T = +25°C, post radiation  
LOAD  
J
FN8456 Rev.7.00  
Feb 11, 2019  
Page 5 of 20  
ISL75052SEH, ISL73052SEH  
Electrical Specifications Unless otherwise noted, V = V  
+ 0.5V, V  
= 4.0V, C = C = 2x100µF 60mΩ, KEMET type  
IN OUT  
IN  
OUT OUT  
T541X107N025AH or equivalent, T = +25°C, I = 0A. Applications must follow thermal guidelines of the package to determine worst case junction  
J
L
temperature. Please refer to “Applications Information” on page 15 and TB379. Boldface limits apply across the operating temperature range, -55°C to  
+125°C. Pulse load techniques used by ATE to ensure T = T defines established limits. (Continued)  
J
A
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 12) TYP (Note 12) UNIT  
VCCX Pin  
ADJ Pin  
ADJ Pin  
BYP Pin  
V
T = -55°C to +125°C; 4V < V < 13.2V; I  
= 0A  
3.7  
591  
588  
588  
3.9  
600  
600  
600  
4.1  
609  
612  
612  
V
VCCX  
J
IN  
LOAD  
V
T = -55°C to +125°C  
mV  
mV  
mV  
ADJ  
J
V
T = 25°C, post radiation  
J
ADJ  
V
4.0V < V < 13.2V; I  
IN  
= 0A,  
BYP  
LOAD  
T = -55°C to +125°C  
J
DC Input Line Regulation  
4.0V < V < 13.2V, V  
IN  
= 2.5V  
= 5.0V  
1
1
8
mV  
mV  
mV  
mV  
mV  
mV  
µA  
OUT  
5.5V < V < 13.2V, V  
IN  
20  
OUT  
10.5V < V < 13.2V, V  
IN OUT  
= 10.0V  
1
10  
DC Output Load Regulation  
V
V
V
= 2.5V; 0A < I  
= 5.0V; 0A < I  
< 1.5A, V = 4.0V  
IN  
0.3  
1.3  
0.1  
9.0  
18.0  
36.0  
1
OUT  
OUT  
OUT  
LOAD  
LOAD  
< 1.5A, V = 5.5V  
IN  
< 1.5A, V = 10.5V  
= 10.0V; 0A < I  
= 0.6V  
LOAD  
IN  
ADJ Input Current  
Ground Pin Current  
V
ADJ  
I
V
= 2.5V; I  
= 2.5V; I  
= 0A, 4.0V < V < 13.2V  
IN  
6
8
10  
mA  
mA  
mA  
mA  
µA  
Q
OUT  
OUT  
OUT  
OUT  
LOAD  
LOAD  
V
V
V
= 1.5A, 4.0V < V < 13.2V  
IN  
12  
= 10.0V, I  
= 0A, 11.0V < V < 13.2V  
IN  
15  
20  
LOAD  
LOAD  
= 10.0V, I  
= 1.5A, 11.0V < V < 13.2V  
IN  
20  
25  
Ground Pin Current in Shutdown  
Ground Pin Current in Shutdown  
Dropout Voltage (Note 14)  
I
ENABLE pin = 0V, V = 4.0V  
IN  
70  
120  
300  
160  
300  
400  
0.32  
SHDNL  
I
ENABLE pin = 0V, V = 13.2V  
IN  
165  
75  
µA  
SHDNH  
V
I
I
I
= 0.5A, V  
= 1.0A, V  
= 1.5A, V  
= 3.6V and 12.7V  
= 3.6V and 12.7V  
= 3.6V and 12.7V  
mV  
mV  
mV  
A
DO  
LOAD  
LOAD  
LOAD  
OUT  
OUT  
OUT  
150  
225  
0.24  
Output Short-Circuit Current for  
16 Ld CDFP  
ISCL  
ISCH  
TSD  
V
SET = 4.0V, V  
OUT  
+ 0.5V < V < 13.2V,  
IN  
0.16  
1.6  
OUT  
R
= 3k, (Note 16)  
SET  
Output Short-Circuit Current for  
16 Ld CDFP  
V
SET = 4.0V, V  
OUT  
+ 0.5V < V < 13.2V,  
IN  
2.4  
3.2  
196  
25  
A
OUT  
R
= 300Ω, (Note 16)  
SET  
Thermal Shutdown Temperature  
(Note 13)  
V
+ 0.5V < V < 13.2V  
IN  
154  
175  
°C  
°C  
OUT  
Thermal Shutdown Hysteresis  
(Rising Threshold) (Note 13)  
TSDn  
V
+ 0.5V < V < 13.2V  
IN  
OUT  
AC CHARACTERISTICS  
Input Supply Ripple Rejection  
(Note 13)  
PSRR  
PSRR  
PSRR  
PM  
V
V
= 300mV, f = 1kHz, I  
= 1.5A;  
55  
60  
40  
50  
10  
65  
70  
50  
dB  
dB  
dB  
°
P-P  
IN  
LOAD  
= 4.9V, V  
= 4.0V  
OUT  
Input Supply Ripple Rejection  
(Note 13)  
V
V
= 300mV, f = 120Hz, I  
= 5mA;  
LOAD  
P-P  
IN  
= 4.9V, V  
= 2.5V  
OUT  
Input Supply Ripple Rejection  
(Note 13)  
V
V
= 300mV, f = 100kHz, I  
= 1.5A;  
LOAD  
P-P  
IN  
= 4.9V, V  
= 4.0V  
OUT  
Phase Margin (Note 13)  
V
= 2.5V, 4.0V and 10V, C  
= 2x100µF, R  
= 22k,  
= 22k,  
OUT  
OUT  
OUT  
COMP  
C
= 1nF  
COMP  
Gain Margin (Note 13)  
GM  
V
= 2.5V, 4.0V and 10V C  
= 2x100µF, R  
dB  
OUT  
COMP  
C
= 1nF  
COMP  
Output Noise Voltage (Note 13)  
V
= 4.1V, V  
= 2.5V, I  
= 10mA, BW = 100Hz < f < 100kHz,  
100  
µV  
RMS  
IN  
OUT  
LOAD  
BYPASS to GND capacitor = 0.2µF  
FN8456 Rev.7.00  
Feb 11, 2019  
Page 6 of 20  
ISL75052SEH, ISL73052SEH  
Electrical Specifications Unless otherwise noted, V = V  
+ 0.5V, V  
= 4.0V, C = C = 2x100µF 60mΩ, KEMET type  
IN OUT  
IN  
OUT OUT  
T541X107N025AH or equivalent, T = +25°C, I = 0A. Applications must follow thermal guidelines of the package to determine worst case junction  
J
L
temperature. Please refer to “Applications Information” on page 15 and TB379. Boldface limits apply across the operating temperature range, -55°C to  
+125°C. Pulse load techniques used by ATE to ensure T = T defines established limits. (Continued)  
J
A
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 12) TYP (Note 12) UNIT  
DEVICE START-UP CHARACTERISTICS  
Enable Pin Characteristics  
Turn-On Threshold  
4.0V < V < 13.2V  
IN  
0.5  
0.8  
1.2  
1
V
Enable Pin Leakage Current  
Enable Pin Propagation Delay  
V
= 13.2V, EN = 5.5V  
µA  
ms  
IN  
V
= 4.5V, V  
OUT  
= 4.0V, I  
= 1.5A,  
= 1.5A,  
0.5  
1.4  
1.1  
170  
1.0  
IN  
LOAD  
LOAD  
(EN step 1.2V to V  
= 100mV)  
C
= 22µF, C  
= 0.2µF  
OUT  
OUT  
BYP  
= 4.0V, I  
Enable Pin Turn-On Delay  
(EN step 1.2V to PGOOD)  
V
= 4.5V, V  
3.0  
2.5  
ms  
ms  
mV  
IN  
OUT  
= 2x100µF, C  
C
= 0.2µF  
OUT  
BYP  
= 4.0V, I  
Enable Pin Turn-On Delay  
(EN step 1.2V to PGOOD)  
V
= 4.5V, V  
= 1.5A,  
IN  
OUT  
LOAD  
= 0.2µF  
BYP  
C
= 22µF, C  
OUT  
4.0V < V < 13.2V  
Hysteresis (Falling Threshold)  
PG Pin Characteristics  
75  
IN  
V
V
V
Error Flag Rising Threshold  
Error Flag Falling Threshold  
Error Flag Hysteresis  
83  
80  
88  
86  
2.50  
5
94  
91  
%V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
%V  
%V  
1.75  
Error Flag Low Voltage  
Error Flag Low Voltage  
Error Flag Leakage Current  
NOTES:  
I
= 1mA  
100  
400  
1
mV  
SINK  
I
= 10mA  
5
mV  
µA  
SINK  
V
= 13.2V, PG = 5.5V  
IN  
12. Parameters with bold face MIN and/or MAX limits are 100% tested at -55°C, +25°C and +125°C.  
13. Limits established by characterization and are not production tested.  
14. Dropout is defined by the difference in supply V and V  
IN OUT  
when the supply produces a 2% drop in V from its nominal value.  
OUT  
15. Refer to thermal package guidelines in “Bottom Metal Mounting Guidelines” on page 15.  
16. OCP recovery overshoot should be within ±4% of the nominal V set point.  
OUT  
17. SET performance of <±5% at LET = 86MeV•cm2/mg has been evaluated at V  
0.1µF CDR04 X7R capacitor. Capacitor on BYP = 0.1µF CDR04 X7R.  
= >2.5V with C = C  
IN  
= 2x100µF 10V 60mΩ in parallel with  
OUT  
OUT  
High Dose Rate Post Radiation Characteristics  
T = +25°C, unless otherwise noted. This data is typical test data post  
A
radiation exposure at a rate of 50 to 300rad(Si)/s (ISL75052SEH only). This data is intended to show typical parameter shifts due to high dose rate  
radiation (Note 18). These are not limits nor are they guaranteed.  
ITEM#  
DESCRIPTION  
Enable Pin Leakage Current  
TEST CONDITIONS  
= 13.2V, EN = 0V  
0k RAD 100k RAD UNIT  
1
2
V
V
-0.0375  
-0.0006  
-0.0007  
68.0  
-0.0409  
0.0005  
-0.0010  
67.5  
µA  
µA  
µA  
µA  
µA  
V
IN  
Enable Pin Leakage Current  
ADJ Input Current  
Ground Pin Current in Shutdown  
Ground Pin Current in Shutdown  
ADJ Pin  
= 13.2V, EN = 5.5V  
IN  
3
VADJ = 0.6V  
4
EN pin = 0V, V = 4.0V  
IN  
5
EN pin = 0V, V = 13.2V  
162.7  
163.1  
IN  
6
V
V
V
V
V
V
V
= 4.0V  
0.60178  
0.60075  
3.89156  
0.60489  
0.60041  
3.87454  
IN  
7
BYP Pin  
= 4.0V; I  
= 4.0V; I  
= 13.2V  
= 0A  
= 0A  
V
IN  
LOAD  
8
VCCX Pin  
V
IN  
LOAD  
9
ADJ Pin  
0.60183 0.60495  
0.60105 0.60069  
3.89260 3.87503  
V
IN  
10  
11  
12  
BYP Pin  
= 13.2V; I  
= 13.2V; I  
= 0A  
V
IN  
LOAD  
LOAD  
VCCX Pin  
= 0A  
V
IN  
DC Output Voltage Accuracy  
= 2.5V, V = 4.0V; I  
IN  
= 0A, T = +25°C  
2.51591  
2.52880  
V
OUT  
LOAD  
A
FN8456 Rev.7.00  
Feb 11, 2019  
Page 7 of 20  
ISL75052SEH, ISL73052SEH  
High Dose Rate Post Radiation Characteristics  
T = +25°C, unless otherwise noted. This data is typical test data post  
A
radiation exposure at a rate of 50 to 300rad(Si)/s (ISL75052SEH only). This data is intended to show typical parameter shifts due to high dose rate  
radiation (Note 18). These are not limits nor are they guaranteed. (Continued)  
ITEM#  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
DESCRIPTION  
DC Output Voltage Accuracy  
TEST CONDITIONS  
0k RAD 100k RAD UNIT  
V
V
V
= 2.5V, V = 4.0V; I  
IN  
= 1.5A, = +25°C  
2.51606  
2.51601  
2.51613  
0.41881  
2.52893  
2.52879  
2.52894  
0.43023  
V
OUT  
OUT  
OUT  
LOAD  
LOAD  
LOAD  
DC Output Voltage Accuracy  
DC Output Voltage Accuracy  
DC Input Line Regulation  
DC Output Load Regulation  
DC Output Voltage Accuracy  
DC Output Voltage Accuracy  
DC Output Voltage Accuracy  
DC Output Voltage Accuracy  
DC Input Line Regulation  
DC Output Load Regulation  
DC Output Voltage Accuracy  
DC Output Voltage Accuracy  
DC Output Voltage Accuracy  
DC Output Voltage Accuracy  
DC Input Line Regulation  
DC Output Load Regulation  
Ground Pin Current  
= 2.5V, V = 5.0V; I  
IN  
= 0A, = +25°C  
V
= 2.5V, V = 5.0V; I  
IN  
= 1.5A, = +25°C  
V
4.0V < V < 13.2V, V  
IN  
= 2.5V  
mV  
mV  
V
OUT  
V
V
V
V
V
= 2.5V; 0A < I  
< 1.5A, V = 4.0V  
IN  
0.15429 0.13063  
5.02291 5.04849  
5.02425 5.04984  
5.02298 5.04900  
OUT  
OUT  
OUT  
OUT  
OUT  
LOAD  
= 5.0V, V = 5.5V; I  
IN  
= 0A, = +25°C  
= 1.5A, = +25°C  
= 0A, = +25°C  
= 1.5A, = +25°C  
LOAD  
LOAD  
LOAD  
LOAD  
= 5.0V, V = 5.5V; I  
IN  
V
= 5.0V, V = 6.9V; I  
IN  
V
= 5.0V, V = 6.9V; I  
IN  
5.02425  
0.43559  
5.05003  
0.71168  
V
5.5V < V < 13.2V, V  
IN  
= 5.0V  
mV  
mV  
V
OUT  
V
V
V
V
V
= 5.0V; 0A < I  
< 1.5A, V = 5.5V  
IN  
1.34488 1.34957  
10.05084 10.10237  
10.04956 10.10146  
10.05112 10.10158  
10.05334 10.10470  
0.28300 -0.78996  
-1.28285 -0.90861  
OUT  
OUT  
OUT  
OUT  
OUT  
LOAD  
= 10.0V, V = 10.5V; I  
IN  
= 0A, = +25°C  
= 1.5A, = +25°C  
= 0A, = +25°C  
= 1.5A, = +25°C  
LOAD  
LOAD  
LOAD  
LOAD  
= 10.0V, V = 10.5V; I  
IN  
V
= 10.0V, V = 13.2V; I  
IN  
V
= 10.0V, V = 13.2V; I  
IN  
V
10.5V < V < 13.2V, V  
IN  
= 10.0V  
mV  
mV  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mV  
mV  
mV  
mV  
mV  
mV  
µA  
mV  
mV  
%
OUT  
V
V
V
V
V
V
V
V
V
= 10.0V; 0A < I  
< 1.5A, V = 10.5V  
IN  
OUT  
OUT  
LOAD  
= 2.5V; I  
= 2.5V; I  
= 2.5V; I  
= 2.5V; I  
= 0A, V = 4.0V  
IN  
5.4  
7.1  
5.3  
7.1  
LOAD  
LOAD  
LOAD  
LOAD  
Ground Pin Current  
= 1.5A, V = 4.0V  
IN  
OUT  
Ground Pin Current  
= 0A, V = 13.2V  
IN  
5.6  
5.6  
OUT  
Ground Pin Current  
= 1.5A, V = 13.2V  
IN  
5.6  
5.6  
OUT  
Ground Pin Current  
= 10.0V; I  
= 10.0V; I  
= 10.0V; I  
= 10.0V; I  
= 0A, V = 4.0V  
IN  
13.5  
13.4  
OUT  
LOAD  
LOAD  
LOAD  
LOAD  
Ground Pin Current  
= 1.5A, V = 4.0V  
IN  
13.8  
13.8  
OUT  
Ground Pin Current  
= 0A, V = 13.2V  
IN  
11.7  
11.7  
OUT  
Ground Pin Current  
= 1.5A, V = 13.2V  
IN  
13.3  
13.6  
OUT  
Dropout Voltage  
I
I
I
I
I
I
= 0.5A, V  
= 1.0A, V  
= 1.5A, V  
= 0.5A, V  
= 1.0A, V  
= 1.5A, V  
= 3.6V  
63.79  
130.74  
200.22  
67.06  
133.59  
202.13  
-0.0404  
2.74  
65.87  
134.93  
205.87  
69.05  
137.09  
207.74  
-0.0108  
2.69  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
Dropout Voltage  
= 3.6V  
Dropout Voltage  
= 3.6V  
Dropout Voltage  
= 12.7V  
= 12.7V  
= 12.7V  
Dropout Voltage  
Dropout Voltage  
Error Flag Leakage Current  
Error Flag Low Voltage  
Error Flag Low Voltage  
V
= 13.2V, PG = 5.5V  
IN  
I
= 1mA  
= 10mA  
= 13.2V  
= 13.2V  
= 13.2V  
= 4.0V  
SINK  
I
2.95  
2.89  
SINK  
V
V
V
V
Error Flag Rising Threshold  
Error Flag Falling Threshold  
Error Flag Hysteresis  
V
V
V
V
88.6  
88.0  
OUT  
OUT  
OUT  
OUT  
IN  
IN  
IN  
IN  
86.1  
85.5  
%
2.5  
2.5  
%
Error Flag Rising Threshold  
88.5  
87.9  
%
FN8456 Rev.7.00  
Feb 11, 2019  
Page 8 of 20  
ISL75052SEH, ISL73052SEH  
High Dose Rate Post Radiation Characteristics  
T = +25°C, unless otherwise noted. This data is typical test data post  
A
radiation exposure at a rate of 50 to 300rad(Si)/s (ISL75052SEH only). This data is intended to show typical parameter shifts due to high dose rate  
radiation (Note 18). These are not limits nor are they guaranteed. (Continued)  
ITEM#  
51  
DESCRIPTION  
Error Flag Falling Threshold  
Error Flag Hysteresis  
TEST CONDITIONS  
0k RAD 100k RAD UNIT  
V
V
V
V
V
V
V
V
V
= 4.0V  
86.0  
2.5  
85.4  
2.5  
%
%
OUT  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
52  
= 4.0V  
OUT  
53  
Turn-On Threshold (Rising)  
Hysteresis  
= 4.0V  
0.930  
163.8  
0.981  
188.6  
483.9  
0.928  
163.3  
0.975  
186.6  
489.4  
V
54  
= 4.0V  
mV  
V
55  
Turn-On Threshold (Rising)  
Hysteresis  
= 13.2V  
= 13.2V  
= 4.5V, V  
56  
mV  
µs  
57  
Enable Pin Propagation Delay (EN step 1.2V to  
= 4.0V, I  
= 4.0V, I  
= 1.5A, C  
= 1.5A, C  
= 22μF,  
= 22μF,  
OUT  
LOAD  
LOAD  
LOAD  
OUT  
OUT  
OUT  
V
= 100mV)  
C
= 0.2μF  
OUT  
BYP  
58  
59  
Enable Pin Turn-On Delay (EN step 1.2V to PGOOD)  
Enable Pin Turn-On Delay (EN step 1.2V to PGOOD)  
V
= 4.5V, V  
1007.6  
1312.8  
984.1  
µs  
µs  
IN  
OUT  
= 0.2μF  
C
BYP  
V
= 4.5V, V  
= 4.0V, I  
= 1.5A, C  
= 2x100μF,  
1319.1  
IN  
OUT  
CBYP = 0.2μF  
60  
61  
62  
63  
Output Short-Circuit Current  
Output Short-Circuit Current  
Output Short-Circuit Current  
Output Short-Circuit Current  
V
V
V
V
= 4.0V, V = 4.5V, R  
IN  
= 3k  
0.235  
0.240  
2.524  
2.538  
0.234  
0.239  
2.526  
2.540  
A
A
A
A
OUT  
OUT  
OUT  
OUT  
SET  
= 4.0V, V = 13.2V, R  
= 3k  
= 300  
IN SET  
= 4.0V, V = 4.5V, R  
IN  
SET  
= 4.0V, V = 13.2V, R  
= 300  
IN SET  
Low Dose Rate Post Radiation Characteristics  
T = +25°C, unless otherwise noted. This data is typical test data post  
A
radiation exposure at a rate of 10mrad(Si)/s. This data is intended to show typical parameter shifts due to low dose rate radiation (Note 18). These are  
not limits nor are they guaranteed (applies only to ISL75052SEH initial LDR characterization).  
ITEM#  
1
DESCRIPTION  
Enable Pin Leakage Current  
Enable Pin Leakage Current  
ADJ Input Current  
TEST CONDITIONS  
0k RAD  
-0.0390  
-0.0010  
-0.0115  
68.8  
50k RAD  
-0.0298  
0.0092  
UNIT  
µA  
µA  
µA  
µA  
µA  
V
V
V
= 13.2V, EN = 0V  
IN  
2
= 13.2V, EN = 5.5V  
= 0.6V  
IN  
3
V
-0.0070  
65.1  
ADJ  
4
Ground Pin Current in Shutdown  
Ground Pin Current in Shutdown  
ADJ Pin  
ENABLE Pin = 0V, V = 4.0V  
IN  
ENABLE Pin = 0V, V = 13.2V  
5
163.4  
159.9  
IN  
6
V
V
V
V
V
V
V
V
V
V
= 4.0V  
0.60162  
0.60019  
3.88673  
0.60168  
0.60049  
3.88770  
2.51577  
2.51596  
2.51598  
2.51611  
0.51044  
0.19541  
5.02321  
5.02434  
5.02324  
5.02443  
0.10020  
1.13716  
0.60174  
0.60048  
3.88170  
0.60179  
0.60057  
3.88246  
2.51488  
2.51508  
2.51504  
2.51520  
0.44539  
0.20233  
5.02138  
5.02257  
5.02155  
5.02267  
0.16807  
1.19041  
IN  
7
BYP Pin  
= 4.0V; I  
= 4.0V; I  
= 13.2V  
= 0A  
= 0A  
V
IN  
LOAD  
8
VCCX Pin  
V
IN  
LOAD  
9
ADJ Pin  
V
IN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
BYP Pin  
= 13.2V; I  
= 13.2V; I  
= 0A  
V
IN  
LOAD  
LOAD  
VCCX Pin  
= 0A  
V
IN  
DC Output Voltage Accuracy  
DC Output Voltage Accuracy  
DC Output Voltage Accuracy  
DC Output Voltage Accuracy  
DC Input Line Regulation  
DC Output Load Regulation  
DC Output Voltage Accuracy  
DC Output Voltage Accuracy  
DC Output Voltage Accuracy  
DC Output Voltage Accuracy  
DC Input Line Regulation  
DC Output Load Regulation  
= 2.5V, V = 4.0V; I  
IN  
= 0A, T = +25°C  
V
OUT  
OUT  
OUT  
OUT  
LOAD  
LOAD  
LOAD  
LOAD  
A
= 2.5V, V = 4.0V; I  
IN  
= 1.5A, T = +25°C  
V
A
= 2.5V, V = 5.0V; I  
IN  
= 0A, T = +25°C  
V
A
= 2.5V, V = 5.0V; I  
IN  
= 1.5A, T = +25°C  
V
A
4.0V < V < 13.2V, V  
IN  
= 2.5V  
mV  
mV  
V
OUT  
V
V
V
V
V
= 2.5V; 0A < I  
< 1.5A, V = 4.0V  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
LOAD  
= 5.0V, V = 5.5V; I  
IN  
= 0A, T = +25°C  
A
LOAD  
LOAD  
LOAD  
LOAD  
= 5.0V, V = 5.5V; I  
IN  
= 1.5A, T = +25°C  
V
A
= 5.0V, V = 6.9V; I  
IN  
= 0A, T = +25°  
V
A
= 5.0V, V = 6.9V; I  
IN  
= 1.5A, T = +25°C  
V
A
5.5V < V < 13.2V, V  
IN  
= 5.0V  
mV  
mV  
OUT  
V
= 5.0V; 0A < I  
< 1.5A, V = 5.5V  
IN  
OUT  
LOAD  
FN8456 Rev.7.00  
Feb 11, 2019  
Page 9 of 20  
ISL75052SEH, ISL73052SEH  
Low Dose Rate Post Radiation Characteristics  
T = +25°C, unless otherwise noted. This data is typical test data post  
A
radiation exposure at a rate of 10mrad(Si)/s. This data is intended to show typical parameter shifts due to low dose rate radiation (Note 18). These are  
not limits nor are they guaranteed (applies only to ISL75052SEH initial LDR characterization). (Continued)  
ITEM#  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
DESCRIPTION  
DC Output Voltage Accuracy  
DC Output Voltage Accuracy  
DC Output Voltage Accuracy  
DC Output Voltage Accuracy  
DC Input Line Regulation  
DC Output Load Regulation  
Ground Pin Current  
TEST CONDITIONS  
0k RAD  
50k RAD  
UNIT  
V
V
V
V
V
= 10.0V, V = 10.5V; I  
IN  
= 0A, T = +25°C  
10.04951 10.04602  
10.04930 10.04583  
10.05009 10.04631  
10.05191 10.04823  
OUT  
OUT  
OUT  
OUT  
LOAD  
LOAD  
LOAD  
LOAD  
A
= 10.0V, V = 10.5V; I  
IN  
= 1.5A, T = +25°C  
V
A
= 10.0V, V = 13.2V; I  
IN  
= 0A, T = +25°C  
V
A
= 10.0V, V = 13.2V; I  
IN  
= 1.5A, T = +25°C  
V
A
10.5V < V < 13.2V, V  
IN  
= 10.0V  
0.58653  
-0.20163  
5.5  
0.29418  
-0.18742  
5.8  
mV  
mV  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mV  
mV  
mV  
mV  
mV  
mV  
µA  
mV  
mV  
%
OUT  
V
V
V
V
V
V
V
V
V
= 10.0V; 0A < I  
< 1.5A, V = 10.5V  
IN  
OUT  
OUT  
LOAD  
= 2.5V; I  
= 2.5V; I  
= 2.5V; I  
= 2.5V; I  
= 0A, V = 4.0V  
IN  
LOAD  
LOAD  
LOAD  
LOAD  
Ground Pin Current  
= 1.5A, V = 4.0V  
IN  
7.2  
7.4  
OUT  
Ground Pin Current  
= 0A, V = 13.2V  
IN  
5.6  
5.9  
OUT  
Ground Pin Current  
= 1.5A, V = 13.2V  
IN  
5.6  
5.9  
OUT  
Ground Pin Current  
= 10.0V; I  
= 10.0V; I  
= 10.0V; I  
= 10.0V; I  
= 0A, V = 4.0V  
IN  
14.0  
14.3  
OUT  
LOAD  
LOAD  
LOAD  
LOAD  
Ground Pin Current  
= 1.5A, V = 4.0V  
IN  
14.1  
14.5  
OUT  
Ground Pin Current  
= 0A, V = 13.2V  
IN  
11.9  
12.3  
OUT  
Ground Pin Current  
= 1.5A, V = 13.2V  
IN  
13.5  
13.9  
OUT  
Dropout Voltage  
I
I
I
I
I
I
= 0.5A, V  
= 1.0A, V  
= 1.5A, V  
= 0.5A, V  
= 1.0A, V  
= 1.5A, V  
= 3.6V  
67.19  
138.01  
210.09  
70.54  
140.61  
212.35  
-0.0581  
2.72  
68.88  
140.62  
213.41  
72.94  
143.23  
215.80  
-0.0364  
2.81  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
Dropout Voltage  
= 3.6V  
Dropout Voltage  
= 3.6V  
Dropout Voltage  
= 12.7V  
= 12.7V  
= 12.7V  
Dropout Voltage  
Dropout Voltage  
Error Flag Leakage Current  
Error Flag Low Voltage  
Error Flag Low Voltage  
V
= 13.2V, PG = 5.5V  
IN  
I
I
= 1mA  
= 10mA  
= 13.2V  
= 13.2V  
= 13.2V  
= 4.0V  
SINK  
2.92  
2.97  
SINK  
V
V
V
V
V
V
Error Flag Rising Threshold  
Error Flag Falling Threshold  
Error Flag Hysteresis  
V
V
V
V
V
V
V
V
V
V
88.6  
88.5  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
86.0  
86.0  
%
2.5  
2.5  
%
Error Flag Rising Threshold  
Error Flag Falling Threshold  
Error Flag Hysteresis  
88.4  
88.4  
%
= 4.0V  
85.9  
85.9  
%
= 4.0V  
2.5  
2.5  
%
Turn-On Threshold (Rising)  
Hysteresis  
= 4.0V  
0.925  
162.6  
0.975  
186.9  
531.5  
0.923  
161.3  
0.972  
185.0  
531.8  
V
= 4.0V  
mV  
V
Turn-On Threshold (Rising)  
Hysteresis  
= 13.2V  
= 13.2V  
mV  
µs  
Enable Pin Propagation Delay (EN step 1.2V V = 4.5V, V  
IN  
= 4.0V, I  
= 4.0V, I  
= 1.5A, C  
= 1.5A, C  
= 22μF, C  
= 22μF, C  
=
=
OUT  
OUT  
OUT  
LOAD  
LOAD  
LOAD  
OUT  
OUT  
OUT  
BYP  
BYP  
to V  
= 100mV)  
0.2μF  
OUT  
58  
59  
Enable Pin Turn-On Delay (EN step 1.2V to  
PGOOD)  
V
= 4.5V, V  
1033.7  
1297.9  
1031.8  
1305.7  
µs  
µs  
IN  
0.2μF  
Enable Pin Turn-On Delay (EN step 1.2V to  
PGOOD)  
V
= 4.5V, V  
= 4.0V, I  
= 1.5A, C  
= 2x100μF, C  
BYP  
IN  
= 0.2μF  
60  
61  
Output Short-Circuit Current  
Output Short-Circuit Current  
Output Short-Circuit Current  
Output Short-Circuit Current  
V
V
V
V
= 4.0V, V = 4.5V, R  
IN  
= 3k  
0.236  
0.240  
2.575  
2.584  
0.236  
0.241  
2.564  
2.573  
A
A
A
A
OUT  
OUT  
OUT  
OUT  
SET  
= 4.0V, V = 13.2V, R  
= 3k  
= 300  
IN SET  
62  
= 4.0V, V = 4.5V, R  
IN  
SET  
63  
= 4.0V, V = 13.2V, R  
= 300  
IN SET  
NOTE:  
18. See the Radiation report.  
FN8456 Rev.7.00  
Feb 11, 2019  
Page 10 of 20  
ISL75052SEH, ISL73052SEH  
Typical Operating Performance  
2.605  
2.600  
2.595  
2.590  
10.35  
10.30  
10.25  
10.20  
10.15  
10.10  
10.05  
10.00  
V
AT +25°C  
V
= 12V  
V
= 10.8V  
OUT  
IN  
IN  
2.585  
2.580  
2.575  
2.570  
2.565  
2.560  
2.555  
V
AT +125°C  
OUT  
V
AT -55°C  
V
= 13.2V  
V
= 14.7V  
OUT  
IN  
IN  
0
2
4
6
8
10  
(V)  
12  
14  
16  
18  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.6  
1.6  
V
I
(A)  
IN  
OUT  
FIGURE 5. LINE REGULATION vs TEMPERATURE (°C),  
FIGURE 6. LOAD REGULATION V  
= 10.17V AT +25°C  
OUT  
V
= 2.579V, I  
= 0mA  
OUT  
OUT  
10.35  
10.30  
10.25  
10.20  
10.35  
10.30  
10.25  
10.20  
10.15  
10.10  
10.05  
10.00  
V
= 10.8V  
V
= 12V  
IN  
IN  
V
= 12V  
IN  
V
= 10.8V  
IN  
V
= 14.7V  
IN  
10.15  
10.10  
10.05  
10.00  
V
= 13.2V  
IN  
V
= 14.7V  
0.6  
IN  
V
= 13.2V  
IN  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
0
0.2  
0.4  
0.8  
1.0  
1.2  
1.4  
1.6  
I
(A)  
I
(A)  
OUT  
OUT  
FIGURE 7. LOAD REGULATION V  
= 10.13V AT +125°C  
FIGURE 8. LOAD REGULATION V  
= 10.22V AT -55°C  
OUT  
OUT  
2.61  
2.60  
2.59  
2.61  
2.60  
2.59  
V
= 12V  
IN  
V
= 10.5V  
IN  
V
= 4.5V  
IN  
V
= 4.0V  
2.58  
2.57  
2.56  
2.55  
2.54  
2.53  
2.52  
2.58  
2.57  
2.56  
2.55  
2.54  
2.53  
2.52  
IN  
V
= 14.7V  
IN  
V
= 13.2V  
IN  
V
= 5.5V  
IN  
V
= 5.0V  
IN  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
0
0.2  
0.4  
0.6  
0.8  
(A)  
1.0  
1.2  
1.4  
1.6  
I
(A)  
I
OUT  
OUT  
FIGURE 9. LOAD REGULATION V  
OUT  
= 2.567V AT +25°C  
FIGURE 10. LOAD REGULATION V  
= 2.571V AT +125°C  
OUT  
FN8456 Rev.7.00  
Feb 11, 2019  
Page 11 of 20  
ISL75052SEH, ISL73052SEH  
Typical Operating Performance(Continued)  
2.61  
2.60  
2.59  
13.00  
12.95  
12.90  
12.85  
12.80  
12.75  
12.70  
12.65  
12.60  
12.55  
12.50  
V
= 12V  
2.58  
2.57  
2.56  
2.55  
2.54  
2.53  
2.52  
IN  
V
= 10.5V  
IN  
V
= 13.2V  
IN  
V
= 14.7V  
= 16.2V  
IN  
V
= 14.7V  
IN  
V
= 13.2V  
IN  
V
IN  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0
0.2  
0.4  
0.6  
0.8  
(A)  
1.0  
1.2  
1.4  
1.6  
I
(A)  
I
OUT  
OUT  
FIGURE 11. LOAD REGULATION V  
= 2.564V AT -55°C  
FIGURE 12. LOAD REGULATION V  
= 12.75V AT +25°C  
OUT  
OUT  
13.00  
12.95  
12.90  
12.85  
12.80  
12.75  
13.00  
12.95  
12.90  
12.85  
12.80  
V
= 14.7V  
V
= 13.2V  
IN  
IN  
12.75  
12.70  
12.65  
12.60  
12.55  
12.50  
V
= 16.2V  
IN  
V
= 14.7V  
V
= 13.2V  
IN  
IN  
12.70  
12.65  
12.60  
12.55  
12.50  
V
= 16.2V  
IN  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0
0.2  
0.4  
0.6  
0.8  
(A)  
1.0  
1.2  
1.4  
1.6  
I
(A)  
I
OUT  
OUT  
FIGURE 13. LOAD REGULATION V  
OUT  
= 12.63V AT +125°C  
FIGURE 14. LOAD REGULATION V = 12.7V AT -55°C  
OUT  
TIMEBASE = 500µs/DIV  
TIMEBASE = 500µs/DIV  
V
= 20mV/DIV  
OUT  
V
= 20mV/DIV  
OUT  
I
= 500mA/DIV  
OUT  
I
= 500mA/DIV  
OUT  
FIGURE 15. LOAD STEP RESPONSE +25°C, V = 4.0V, V  
IN OUT  
= 2.5V,  
FIGURE 16. LOAD STEP RESPONSE, +25°C, V = 4.0V, V  
IN OUT  
= 2.5V,  
I
= 0A TO 1.6A, C  
= 200µF, 30m  
I
= 0.15A TO 1.6A, C  
= 200µF, 30mΩ  
OUT  
OUT  
OUT  
OUT  
FN8456 Rev.7.00  
Feb 11, 2019  
Page 12 of 20  
ISL75052SEH, ISL73052SEH  
Typical Operating Performance(Continued)  
TIMEBASE = 500µs/DIV  
TIMEBASE = 500µs/DIV  
V
= 50mV/DIV  
V
= 50mV/DIV  
OUT  
OUT  
I
= 500mA/DIV  
I
= 500mA/DIV  
OUT  
OUT  
FIGURE 18. LOAD STEP RESPONSE, +25°C, V = 13.2V, V  
IN OUT  
= 10V,  
FIGURE 17. LOAD STEP RESPONSE, +25°C, V = 13.2V, V  
IN OUT  
= 10V,  
I
= 0.15A TO 1.5A, C  
= 200µF, 30mΩ  
I
= 0A TO 1.5A, C  
= 200µF, 30mΩ  
OUT  
OUT  
OUT  
OUT  
70  
60  
50  
40  
30  
60  
50  
180  
150  
120  
90  
180  
150  
120  
90  
PHASE (°)  
PHASE (°)  
40  
30  
20  
60  
60  
20  
10  
30  
10  
30  
0
0
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-10  
-20  
-30  
-40  
-50  
-60  
-30  
-60  
-90  
-120  
-150  
-180  
-30  
-60  
-90  
-120  
-150  
-180  
GAIN (dB)  
GAIN (dB)  
500  
5k  
50k  
FREQUENCY (Hz)  
500k  
500  
5k  
50k  
500k  
FREQUENCY (Hz)  
FIGURE 19. GAIN PHASE PLOTS, V = 4V, V  
IN  
= 2.5V, I  
= 200µF, 30m,  
= 1.5A,  
OUT  
FIGURE 20. GAIN PHASE PLOTS, V = 11V, V  
IN OUT  
= 10V, I  
= 1.5A,  
OUT  
OUT  
OUT  
R
= 22k, C  
= 1nF, C  
R
= 22k, C  
= 1nF, C  
= 200µF, 30m,  
COMP  
COMP  
COMP  
COMP  
OUT  
PHASE MARGIN = 98.68°, GAIN MARGIN = 23.01dB  
PHASE MARGIN = 84.56°, GAIN MARGIN = 18.06dB  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
100  
10  
+125°C PSRR (dB)  
1
V
V
I
= 6V  
IN  
+25°C PSRR (dB)  
-55°C PSRR (dB)  
= 5V  
OUT  
= 1A  
0.1  
0.01  
OUT  
TEMP = +25oC  
e
= 582.11 nV/√Hz AT 1kHz  
n
100  
1k  
10k  
100k  
0.1  
1.0  
10.0  
100.0  
1,000.0  
10,000.0 100,000.0  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 22. OUTPUT NOISE DENSITY  
FIGURE 21. PSRR, V = 4.9V, V  
IN OUT  
= 4.0V, I  
= 1.5A,  
OUT  
R
= 22k, C = 1nF, C  
= 200µF, 30mΩ  
COMP  
COMP  
OUT  
FN8456 Rev.7.00  
Feb 11, 2019  
Page 13 of 20  
ISL75052SEH, ISL73052SEH  
Typical Operating Performance(Continued)  
TIMEBASE = 1ms/DIV  
C1 TO C4 = 1V/DIV  
TIMEBASE = 1ms/DIV  
C1 TO C4 = 1V/DIV  
EN  
EN  
V
V
IN  
IN  
V
V
OUT  
OUT  
P
P
GOOD  
GOOD  
FIGURE 23. +25°C START-UP WITH ENABLE, V = 4V, V  
IN OUT  
= 2.5V,  
FIGURE 24. +25°C START-UP WITH ENABLE, V = 4V, V = 2.5V,  
IN OUT  
I
= 0.1A  
I
= 1.5A  
OUT  
OUT  
TIMEBASE = 5ms/DIV  
TO C = 1V/DIV  
TIMEBASE = 5ms/DIV  
TO C = 1V/DIV  
V
C
1
C
OUT  
4
V
1
4
OUT  
V
IN  
V
IN  
P
P
GOOD  
GOOD  
EN  
EN  
FIGURE 25. +25°C SHUTDOWN WITH ENABLE, V = 4V, V  
IN OUT  
= 2.5V,  
FIGURE 26. +25°C SHUTDOWN WITH ENABLE, V = 4V, V = 2.5V,  
IN OUT  
I
= 0.1A  
I
= 1.5A  
OUT  
OUT  
TIMEBASE = 200µs/DIV  
EN  
V
IN  
V
OUT  
P
GOOD  
FIGURE 27. +25°C PROPAGATION DELAY, V = 4.5V, V  
IN OUT  
= 4V, I  
= 1.5A, EN 50% TO V 5%  
OUT  
OUT  
FN8456 Rev.7.00  
Feb 11, 2019  
Page 14 of 20  
ISL75052SEH, ISL73052SEH  
ESD Clamps  
Applications Information  
The ESD_CL_12V ESD clamps break down at nominally 17V. The  
ESD_RC_7V clamps break down at nominally 7.5V with a  
tolerance of ±10%. The PG pin has a diode to GND. The VOUT pin  
has a diode to VIN (see “Pin Descriptions” on page 4).  
Input Voltage Requirements  
This RH LDO works from a V in the range of 4.0V to 13.2V. The  
IN  
input supply can have a tolerance of as much as ±10% for  
conditions noted in the specification table. The minimum  
assured input voltage is 4.0V. However, due to the nature of an  
Soft-Start  
LDO, V must be some margin higher than the output voltage  
Soft-start is achieved by means of the charging time constant of  
the BYP pin. The capacitor value on the pin determines the time  
constant and can be calculated using Equation 2:  
IN  
plus dropout at the maximum rated current of the application if  
active filtering (PSRR) is expected from V to V . The Dropout  
IN  
OUT  
specification of this family of LDOs has been generously  
specified in order to allow design for efficient operation.  
t
= (3.3338E-6 C  
) + (9.5725E-8 T 9.2628E-6  
(EQ. 2)  
BYP A  
SS  
Where:  
= Soft-start time in seconds.  
External Capacitor Requirements  
t
SS  
GENERAL GUIDELINES  
C
= Bypass capacitance in nF.  
BYP  
External capacitors are required for proper operation. Careful  
attention must be paid to layout guidelines and selection of  
capacitor type and value to ensure optimal performance.  
T = Ambient temperature in °C.  
A
COMP Pin  
OUTPUT CAPACITORS  
This pin helps compensate the device for various load conditions.  
For 4.0V < V < 6.0V use R = 40k and C = 1nF. For  
It is recommended to use a combination of tantalum and  
ceramic capacitors to achieve a good volume to capacitance  
ratio. The recommended combination is a 2x100µF 60mΩ rated,  
KEMET T541 series tantalum capacitor, in parallel with a 0.1µF  
IN  
COMP  
= 40k and C  
COMP  
= 4.7nF. The  
COMP  
6V < V < 13.2V use R  
IN COMP  
maximum current of the COMP pin when shorted to GND is  
160µA.  
MIL-PRF-49470 ceramic capacitor to be connected to V  
and  
OUT  
ground pins of the LDO with PCB traces no longer than 0.5cm.  
Undervoltage Lockout  
The undervoltage lockout function detects when VCCX exceeds  
3.2V. When that level is reached, the LDO feedback loop is closed  
and the LDO can begin regulating. This is achieved by freeing the  
BYP net to charge up and act as a reference voltage to the EA.  
Prior to that happening, the LDO Power PMOS device is clamped  
off.  
INPUT CAPACITORS  
It is recommended to use a combination of tantalum and  
ceramic capacitors to achieve a good capacitance to volume  
ratio. The recommended combination is a 2x100µF 60mΩ rated,  
KEMET T541 series tantalum capacitor in parallel with a 0.1µF  
MIL-PRF-49470 ceramic capacitor to be connected to V and  
IN  
ground pins of the LDO with PCB traces no longer than 0.5cm.  
Bottom Metal Electrical Potential  
The package bottom metal is electrically isolated and unbiased.  
The bottom metal may be electrically connected to any potential,  
which offers the best thermal path through conductive mounting  
materials (such as conductive epoxy or solder) or can be left  
unbiased through the use of electrically nonconductive mounting  
materials (nonconductive epoxy, Sil-pad, kapton film, etc.).  
Current Limit Protection  
The RH LDO incorporates protection against overcurrent due to  
any short or overload condition applied to the output pin. The  
current limit circuit performs as a constant current source when  
the output current exceeds the current limit threshold, which can  
be adjusted by means of a resistor connected between the OCP  
pin and GND. If the short or overload condition is removed from  
Bottom Metal Mounting Guidelines  
The package bottom is a solderable metal surface. The following  
JESD51-5 guidelines can be used to mount the package:  
V
, then the output returns to normal voltage mode regulation.  
OUT  
In the event of an overload condition, the LDO begins to cycle on  
and off due to the die temperature exceeding thermal fault  
condition. However, you may never witness thermal cycling if the  
heatsink used for the package can keep the die temperature  
below the limits specified for thermal shutdown. The R  
be calculated using Equation 1:  
• Place a thermal land on the PCB under the bottom metal.  
• The land should be approximately the same size to 1mm  
larger than the 0.19inx0.41in bottom metal.  
can  
OCP  
• Place an array of thermal vias below the thermal land.  
• Via array size: ~4 x 9 = 36 thermal vias  
762.8  
-----------------------------------------------------------------------------------------------------------------------------------------------------------  
=
R
OCP  
I
1.382E-03 V 2.629E-04 T + 4.493E-02  
OCP  
IN A  
• Via diameter: ~0.3mm drill diameter with plated copper on  
the inside of each via.  
(EQ. 1)  
where:  
= The OCP setting resistor in ohms.  
R
OCP  
• Via pitch: ~1.2mm.  
V
= Supply voltage in volts.  
IN  
Vias should drop to and contact as much buried metal area as  
feasible to provide the best thermal path.  
I
= The required OCP threshold in amps.  
OCP  
T = The ambient temperature in °C.  
A
FN8456 Rev.7.00  
Feb 11, 2019  
Page 15 of 20  
ISL75052SEH, ISL73052SEH  
Thermal Fault Protection  
In the event the die temperature exceeds +170°C (typical) the  
output of the LDO shuts down until the die temperature can cool  
down to +150°C (typical). The level of power combined with the  
thermal impedance of the package (of 5°C/W for the 16 Ld  
JC  
CDFP package) determine if the junction temperature exceeds the  
thermal shutdown temperature specified in the specification table  
(see “Bottom Metal Mounting Guidelines” on page 15).  
Package Characteristics  
Weight of Packaged Device  
Assembly Related Information  
0.59 Grams (typical)  
SUBSTRATE POTENTIAL  
Ground  
Lid Characteristics  
Finish: Gold  
Potential: Connected to Pin 13 (GND)  
Case Isolation to Any Lead: 20x10 Ω (minimum)  
Additional Information  
9
WORST CASE CURRENT DENSITY  
5
2
<2x10 A/cm  
Die Characteristics  
Die Dimensions  
TRANSISTOR COUNT  
1074  
2819μmx5638μm (111 milsx222 mils)  
Thickness: 304.8μm ±25.4μm (12.0 mils ±1 mil)  
PROCESS  
0.6µm BiCMOS Junction Isolated  
Interface Materials  
GLASSIVATION  
Type: Silicon Oxide and Silicon Nitride  
Thickness: 0.3µm ±0.03µm to 1.2µm ±0.12µm  
TOP METALLIZATION  
Type: AlCu (99.5%/0.5%)  
Thickness: 2.7µm ±0.4µm  
SUSTRATE  
Type: Silicon  
BACKSIDE FINISH  
Silicon  
FN8456 Rev.7.00  
Feb 11, 2019  
Page 16 of 20  
ISL75052SEH, ISL73052SEH  
Metallization Mask Layout  
11  
9
8
12  
7
13  
14  
10  
15  
6
3
1
4
2
5
TABLE 2. DIE LAYOUT X-Y COORDINATES  
PAD  
1
X
Y
DX  
DY  
PIN NAME  
VOUT  
VOUT  
VIN  
1019  
1249  
3070  
3300  
5037  
5253  
5099  
4635  
3824  
2840  
1799  
668  
1021  
390  
185  
185  
185  
185  
185  
185  
185  
185  
185  
185  
185  
185  
185  
185  
185  
450  
449  
450  
450  
185  
185  
185  
185  
185  
450  
185  
185  
185  
184  
450  
2
3
1030  
399  
4
VIN  
5
256  
OCP  
VCC  
6
1635  
2436  
2436  
2436  
1660  
2436  
2436  
2381  
1972  
1652  
7
PG  
8
NC  
9
COMP  
VIN  
10  
11  
12  
13  
14  
15  
GND  
EN  
168  
ADJ  
168  
BYP  
789  
VOUT  
FN8456 Rev.7.00  
Feb 11, 2019  
Page 17 of 20  
ISL75052SEH, ISL73052SEH  
Revision History The revision history provided is for informational purposes only and is believed to be accurate, however, not  
warranted. Please go to the web to make sure that you have the latest revision.  
DATE  
REVISION  
FN8456.7  
CHANGE  
Feb 11, 2019  
Added ISL73052SEH part information throughout document.  
Updated Features note.  
Added Notes 3 and 4.  
Removed 100k RAD column from LDR Post Radiation Characteristics table on page 9.  
Removed About Intersil section.  
Updated Disclaimer.  
Oct 25, 2016  
FN8456.6  
Updated Related Literature section.  
Updated Ordering information table and Note 2.  
Added Figure 22 on page 13.  
Nov 5, 2015  
FN8456.5  
FN8456.4  
Updated Equation 1 on page 15.  
Aug 31, 2015  
Updated Equation 2 on page 15.  
Thermal Information table on page 5: Removed reference to TB493.  
Dec 4, 2014  
FN8456.3  
FN8456.2  
Updated Figure 1 for clarity.  
Added ESD Ratings to “Absolute Maximum Ratings” on page 5.  
July 11, 2014  
1) Pages 7 thru 10 - Added Radiation tables  
2) Page 15 - Added paragraph for Soft Start: " The Soft-start is achieved by means of the charging time  
constant of the BYP pin. The capacitor value on the pin determines the time constant and can be  
calculated using Equation 2.  
Ts = (2961xCs) -121] EQ. 2  
Where Ts = soft-start time in ms, and Cs = BYPASS capacitor in nF.  
3) Page 15 - Changed in 1st paragraph, 2nd sentence “(of 5°C/W....” to “(of 4.5°C/W.....”  
JC  
JC  
4) Page 17 - Rotated and changed pad numbers on Metallization Mask layout  
Updated Die layout X-Y Coordinates table  
Sep19, 2013  
FN8456.1  
FN8456.0  
Recommended operating conditions table on page 5, changed VOUT min from 2.5V to 0.6V, and added  
Note 11.  
Electrical spec on page 6, Output Noise Voltage, changed test conditions from  
I
I
= 10mA, BW = 300Hz < f <300 kHz, BYPASS to GND capacitor = 0.2µF to V = 4.1V, V T = 2.5V,  
LOAD  
LOAD  
IN  
OU  
= 10mA, BW = 100Hz < f <100 kHz, BYPASS to GND capacitor = 0.2µF.  
= 0.2A to I = 1.5A.  
Figure 19 on page 11, changed the value from I  
OUT  
OUT  
Figure 20 on page 11, changed the values from V = 4V to V = 11V and V  
= 2.5V to V  
= 10V.  
IN IN OUT  
OUT  
May 29, 2013  
Initial Release  
FN8456 Rev.7.00  
Feb 11, 2019  
Page 18 of 20  
ISL75052SEH, ISL73052SEH  
For the most recent package outline drawing, see K16.E.  
Package Outline Drawing  
K16.E  
16 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE  
Rev 1, 1/12  
0.015 (0.38)  
0.008 (0.20) ID OPTIONAL  
PIN NO. 1  
1
2
A
A
0.050 (1.27 BSC)  
PIN NO. 1  
ID AREA  
0.420  
0.400  
0.005 (0.13)  
MIN  
4
TOP VIEW  
0.022 (0.56)  
0.015 (0.38)  
0.115 (2.92)  
0.085 (2.16)  
0.009 (0.23)  
0.004 (0.10)  
0.045 (1.14)  
0.026 (0.66)  
6
0.278 (7.06)  
0.262 (6.65)  
-D-  
-H-  
-C-  
0.370 (9.40)  
0.250 (6.35)  
0.198 (5.03)  
0.182 (4.62)  
BOTTOM  
METAL  
0.03 (0.76) MIN  
7
SEATING AND  
BASE PLANE  
SIDE VIEW  
BOTTOM METAL  
0.005 (0.127) REF.  
OFFSET FROM  
CERAMIC EDGE  
OPTIONAL  
PIN 1 INDEX  
BOTTOM VIEW  
NOTES:  
Index area: A notch or a pin one identification mark shall be located  
adjacent to pin one and shall be located within the shaded area shown.  
The manufacturer’s identification shall not be used as a pin one  
identification mark. Alternately, a tab may be used to identify pin one.  
1.  
0.006 (0.15)  
0.004 (0.10)  
LEAD FINISH  
2. If a pin one identification mark is used in addition to a tab, the limits  
of the tab dimension do not apply.  
0.009 (0.23)  
0.004 (0.10)  
BASE  
METAL  
3. The maximum limits of lead dimensions (section A-A) shall be  
measured at the centroid of the finished lead surfaces, when solder  
dip or tin plate lead finish is applied.  
0.019 (0.48)  
0.015 (0.38)  
4. Measure dimension at all four corners.  
0.0015 (0.04)  
MAX  
5. For bottom-brazed lead packages, no organic or polymeric materials  
shall be molded to the bottom of the package to cover the leads.  
0.022 (0.56)  
0.015 (0.38)  
6. Dimension shall be measured at the point of exit (beyond the  
meniscus) of the lead from the body. Dimension minimum shall  
be reduced by 0.0015 inch (0.038mm) maximum when solder dip  
lead finish is applied.  
3
SECTION A-A  
7. The bottom of the package is a solderable metal surface.  
8. Dimensioning and tolerancing per ANSI Y14.5M - 1982.  
9. Dimensions: INCH (mm). Controlling dimension: INCH.  
FN8456 Rev.7.00  
Feb 11, 2019  
Page 19 of 20  
1RWLFH  
ꢃꢅ 'HVFULSWLRQVꢀRIꢀFLUFXLWVꢆꢀVRIWZDUHꢀDQGꢀRWKHUꢀUHODWHGꢀLQIRUPDWLRQꢀLQꢀWKLVꢀGRFXPHQWꢀDUHꢀSURYLGHGꢀRQO\ꢀWRꢀLOOXVWUDWHꢀWKHꢀRSHUDWLRQꢀRIꢀVHPLFRQGXFWRUꢀSURGXFWVꢀ  
DQGꢀDSSOLFDWLRQꢀH[DPSOHVꢅꢀ<RXꢀDUHꢀIXOO\ꢀUHVSRQVLEOHꢀIRUꢀWKHꢀLQFRUSRUDWLRQꢀRUꢀDQ\ꢀRWKHUꢀXVHꢀRIꢀWKHꢀFLUFXLWVꢆꢀVRIWZDUHꢆꢀDQGꢀLQIRUPDWLRQꢀLQꢀWKHꢀGHVLJQꢀRIꢀ\RXUꢀ  
SURGXFWꢀRUꢀV\VWHPꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀDQGꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ  
WKHVHꢀFLUFXLWVꢆꢀVRIWZDUHꢆꢀRUꢀLQIRUPDWLRQꢅ  
ꢁꢅ 5HQHVDVꢀ(OHFWURQLFVꢀKHUHE\ꢀH[SUHVVO\ꢀGLVFODLPVꢀDQ\ꢀZDUUDQWLHVꢀDJDLQVWꢀDQGꢀOLDELOLW\ꢀIRUꢀLQIULQJHPHQWꢀRUꢀDQ\ꢀRWKHUꢀFODLPVꢀLQYROYLQJꢀSDWHQWVꢆꢀFRS\ULJKWVꢆꢀRUꢀ  
RWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀWKLUGꢀSDUWLHVꢆꢀE\ꢀRUꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRUꢀWHFKQLFDOꢀLQIRUPDWLRQꢀGHVFULEHGꢀLQꢀWKLVꢀ  
GRFXPHQWꢆꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢆꢀWKHꢀSURGXFWꢀGDWDꢆꢀGUDZLQJVꢆꢀFKDUWVꢆꢀSURJUDPVꢆꢀDOJRULWKPVꢆꢀDQGꢀDSSOLFDWLRQꢀH[DPSOHVꢅꢀ  
ꢇꢅ 1RꢀOLFHQVHꢆꢀH[SUHVVꢆꢀLPSOLHGꢀRUꢀRWKHUZLVHꢆꢀLVꢀJUDQWHGꢀKHUHE\ꢀXQGHUꢀDQ\ꢀSDWHQWVꢆꢀFRS\ULJKWVꢀRUꢀRWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀRUꢀ  
RWKHUVꢅ  
ꢈꢅ <RXꢀVKDOOꢀQRWꢀDOWHUꢆꢀPRGLI\ꢆꢀFRS\ꢆꢀRUꢀUHYHUVHꢀHQJLQHHUꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢆꢀZKHWKHUꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀ  
DQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀRUꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀVXFKꢀDOWHUDWLRQꢆꢀPRGLILFDWLRQꢆꢀFRS\LQJꢀRUꢀUHYHUVHꢀHQJLQHHULQJꢅ  
ꢉꢅ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀFODVVLILHGꢀDFFRUGLQJꢀWRꢀWKHꢀIROORZLQJꢀWZRꢀTXDOLW\ꢀJUDGHVꢊꢀꢋ6WDQGDUGꢋꢀDQGꢀꢋ+LJKꢀ4XDOLW\ꢋꢅꢀ7KHꢀLQWHQGHGꢀDSSOLFDWLRQVꢀIRUꢀ  
HDFKꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀGHSHQGVꢀRQꢀWKHꢀSURGXFWꢌVꢀTXDOLW\ꢀJUDGHꢆꢀDVꢀLQGLFDWHGꢀEHORZꢅ  
ꢋ6WDQGDUGꢋꢊ  
&RPSXWHUVꢍꢀRIILFHꢀHTXLSPHQWꢍꢀFRPPXQLFDWLRQVꢀHTXLSPHQWꢍꢀWHVWꢀDQGꢀPHDVXUHPHQWꢀHTXLSPHQWꢍꢀDXGLRꢀDQGꢀYLVXDOꢀHTXLSPHQWꢍꢀKRPHꢀ  
HOHFWURQLFꢀDSSOLDQFHVꢍꢀPDFKLQHꢀWRROVꢍꢀSHUVRQDOꢀHOHFWURQLFꢀHTXLSPHQWꢍꢀLQGXVWULDOꢀURERWVꢍꢀHWFꢅ  
ꢋ+LJKꢀ4XDOLW\ꢋꢊ 7UDQVSRUWDWLRQꢀHTXLSPHQWꢀꢎDXWRPRELOHVꢆꢀWUDLQVꢆꢀVKLSVꢆꢀHWFꢅꢏꢍꢀWUDIILFꢀFRQWUROꢀꢎWUDIILFꢀOLJKWVꢏꢍꢀODUJHꢐVFDOHꢀFRPPXQLFDWLRQꢀHTXLSPHQWꢍꢀNH\ꢀ  
ILQDQFLDOꢀWHUPLQDOꢀV\VWHPVꢍꢀVDIHW\ꢀFRQWUROꢀHTXLSPHQWꢍꢀHWFꢅ  
8QOHVVꢀH[SUHVVO\ꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀSURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGRFXPHQWꢆꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀQRWꢀLQWHQGHGꢀRUꢀDXWKRUL]HGꢀIRUꢀXVHꢀLQꢀSURGXFWVꢀRUꢀV\VWHPVꢀWKDWꢀPD\ꢀSRVHꢀDꢀGLUHFWꢀWKUHDWꢀWRꢀ  
KXPDQꢀOLIHꢀRUꢀERGLO\ꢀLQMXU\ꢀꢎDUWLILFLDOꢀOLIHꢀVXSSRUWꢀGHYLFHVꢀRUꢀV\VWHPVꢍꢀVXUJLFDOꢀLPSODQWDWLRQVꢍꢀHWFꢅꢏꢆꢀRUꢀPD\ꢀFDXVHꢀVHULRXVꢀSURSHUW\ꢀGDPDJHꢀꢎVSDFHꢀV\VWHPꢍꢀ  
XQGHUVHDꢀUHSHDWHUVꢍꢀQXFOHDUꢀSRZHUꢀFRQWUROꢀV\VWHPVꢍꢀDLUFUDIWꢀFRQWUROꢀV\VWHPVꢍꢀNH\ꢀSODQWꢀV\VWHPVꢍꢀPLOLWDU\ꢀHTXLSPHQWꢍꢀHWFꢅꢏꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀ  
DQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀGDPDJHVꢀRUꢀORVVHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀDQ\ꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀWKDWꢀLVꢀ  
LQFRQVLVWHQWꢀZLWKꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢆꢀXVHUꢌVꢀPDQXDOꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢅ  
ꢑꢅ :KHQꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀUHIHUꢀWRꢀWKHꢀODWHVWꢀSURGXFWꢀLQIRUPDWLRQꢀꢎGDWDꢀVKHHWVꢆꢀXVHUꢌVꢀPDQXDOVꢆꢀDSSOLFDWLRQꢀQRWHVꢆꢀꢋ*HQHUDOꢀ1RWHVꢀIRUꢀ  
+DQGOLQJꢀDQGꢀ8VLQJꢀ6HPLFRQGXFWRUꢀ'HYLFHVꢋꢀLQꢀWKHꢀUHOLDELOLW\ꢀKDQGERRNꢆꢀHWFꢅꢏꢆꢀDQGꢀHQVXUHꢀWKDWꢀXVDJHꢀFRQGLWLRQVꢀDUHꢀZLWKLQꢀWKHꢀUDQJHVꢀVSHFLILHGꢀE\ꢀ  
5HQHVDVꢀ(OHFWURQLFVꢀZLWKꢀUHVSHFWꢀWRꢀPD[LPXPꢀUDWLQJVꢆꢀRSHUDWLQJꢀSRZHUꢀVXSSO\ꢀYROWDJHꢀUDQJHꢆꢀKHDWꢀGLVVLSDWLRQꢀFKDUDFWHULVWLFVꢆꢀLQVWDOODWLRQꢆꢀHWFꢅꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀPDOIXQFWLRQVꢆꢀIDLOXUHꢀRUꢀDFFLGHQWꢀDULVLQJꢀRXWꢀRIꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRXWVLGHꢀRIꢀVXFKꢀ  
VSHFLILHGꢀUDQJHVꢅ  
ꢒꢅ $OWKRXJKꢀ5HQHVDVꢀ(OHFWURQLFVꢀHQGHDYRUVꢀWRꢀLPSURYHꢀWKHꢀTXDOLW\ꢀDQGꢀUHOLDELOLW\ꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀVHPLFRQGXFWRUꢀSURGXFWVꢀKDYHꢀVSHFLILFꢀ  
FKDUDFWHULVWLFVꢆꢀVXFKꢀDVꢀWKHꢀRFFXUUHQFHꢀRIꢀIDLOXUHꢀDWꢀDꢀFHUWDLQꢀUDWHꢀDQGꢀPDOIXQFWLRQVꢀXQGHUꢀFHUWDLQꢀXVHꢀFRQGLWLRQVꢅꢀ8QOHVVꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀ  
SURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢆꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀ  
DUHꢀQRWꢀVXEMHFWꢀWRꢀUDGLDWLRQꢀUHVLVWDQFHꢀGHVLJQꢅꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀLPSOHPHQWLQJꢀVDIHW\ꢀPHDVXUHVꢀWRꢀJXDUGꢀDJDLQVWꢀWKHꢀSRVVLELOLW\ꢀRIꢀERGLO\ꢀLQMXU\ꢆꢀ  
LQMXU\ꢀRUꢀGDPDJHꢀFDXVHGꢀE\ꢀILUHꢆꢀDQGꢓRUꢀGDQJHUꢀWRꢀWKHꢀSXEOLFꢀLQꢀWKHꢀHYHQWꢀRIꢀDꢀIDLOXUHꢀRUꢀPDOIXQFWLRQꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀVXFKꢀDVꢀVDIHW\ꢀ  
GHVLJQꢀIRUꢀKDUGZDUHꢀDQGꢀVRIWZDUHꢆꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢀUHGXQGDQF\ꢆꢀILUHꢀFRQWUROꢀDQGꢀPDOIXQFWLRQꢀSUHYHQWLRQꢆꢀDSSURSULDWHꢀWUHDWPHQWꢀIRUꢀDJLQJꢀ  
GHJUDGDWLRQꢀRUꢀDQ\ꢀRWKHUꢀDSSURSULDWHꢀPHDVXUHVꢅꢀ%HFDXVHꢀWKHꢀHYDOXDWLRQꢀRIꢀPLFURFRPSXWHUꢀVRIWZDUHꢀDORQHꢀLVꢀYHU\ꢀGLIILFXOWꢀDQGꢀLPSUDFWLFDOꢆꢀ\RXꢀDUHꢀ  
UHVSRQVLEOHꢀIRUꢀHYDOXDWLQJꢀWKHꢀVDIHW\ꢀRIꢀWKHꢀILQDOꢀSURGXFWVꢀRUꢀV\VWHPVꢀPDQXIDFWXUHGꢀE\ꢀ\RXꢅ  
ꢔꢅ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀIRUꢀGHWDLOVꢀDVꢀWRꢀHQYLURQPHQWDOꢀPDWWHUVꢀVXFKꢀDVꢀWKHꢀHQYLURQPHQWDOꢀFRPSDWLELOLW\ꢀRIꢀHDFKꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWꢅꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀFDUHIXOO\ꢀDQGꢀVXIILFLHQWO\ꢀLQYHVWLJDWLQJꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢀWKDWꢀUHJXODWHꢀWKHꢀLQFOXVLRQꢀRUꢀXVHꢀRIꢀ  
FRQWUROOHGꢀVXEVWDQFHVꢆꢀLQFOXGLQJꢀZLWKRXWꢀOLPLWDWLRQꢆꢀWKHꢀ(8ꢀ5R+6ꢀ'LUHFWLYHꢆꢀDQGꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀLQꢀFRPSOLDQFHꢀZLWKꢀDOOꢀWKHVHꢀ  
DSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀGDPDJHVꢀRUꢀORVVHVꢀRFFXUULQJꢀDVꢀDꢀUHVXOWꢀRIꢀ\RXUꢀQRQFRPSOLDQFHꢀ  
ZLWKꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢅ  
ꢄꢅ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDQGꢀWHFKQRORJLHVꢀVKDOOꢀQRWꢀEHꢀXVHGꢀIRUꢀRUꢀLQFRUSRUDWHGꢀLQWRꢀDQ\ꢀSURGXFWVꢀRUꢀV\VWHPVꢀZKRVHꢀPDQXIDFWXUHꢆꢀXVHꢆꢀRUꢀVDOHꢀLVꢀ  
SURKLELWHGꢀXQGHUꢀDQ\ꢀDSSOLFDEOHꢀGRPHVWLFꢀRUꢀIRUHLJQꢀODZVꢀRUꢀUHJXODWLRQVꢅꢀ<RXꢀVKDOOꢀFRPSO\ꢀZLWKꢀDQ\ꢀDSSOLFDEOHꢀH[SRUWꢀFRQWUROꢀODZVꢀDQGꢀUHJXODWLRQVꢀ  
SURPXOJDWHGꢀDQGꢀDGPLQLVWHUHGꢀE\ꢀWKHꢀJRYHUQPHQWVꢀRIꢀDQ\ꢀFRXQWULHVꢀDVVHUWLQJꢀMXULVGLFWLRQꢀRYHUꢀWKHꢀSDUWLHVꢀRUꢀWUDQVDFWLRQVꢅ  
ꢃꢂꢅ ,WꢀLVꢀWKHꢀUHVSRQVLELOLW\ꢀRIꢀWKHꢀEX\HUꢀRUꢀGLVWULEXWRUꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀRUꢀDQ\ꢀRWKHUꢀSDUW\ꢀZKRꢀGLVWULEXWHVꢆꢀGLVSRVHVꢀRIꢆꢀRUꢀRWKHUZLVHꢀVHOOVꢀRUꢀ  
WUDQVIHUVꢀWKHꢀSURGXFWꢀWRꢀDꢀWKLUGꢀSDUW\ꢆꢀWRꢀQRWLI\ꢀVXFKꢀWKLUGꢀSDUW\ꢀLQꢀDGYDQFHꢀRIꢀWKHꢀFRQWHQWVꢀDQGꢀFRQGLWLRQVꢀVHWꢀIRUWKꢀLQꢀWKLVꢀGRFXPHQWꢅ  
ꢃꢃꢅ 7KLVꢀGRFXPHQWꢀVKDOOꢀQRWꢀEHꢀUHSULQWHGꢆꢀUHSURGXFHGꢀRUꢀGXSOLFDWHGꢀLQꢀDQ\ꢀIRUPꢆꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢆꢀZLWKRXWꢀSULRUꢀZULWWHQꢀFRQVHQWꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢅ  
ꢃꢁꢅ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀLIꢀ\RXꢀKDYHꢀDQ\ꢀTXHVWLRQVꢀUHJDUGLQJꢀWKHꢀLQIRUPDWLRQꢀFRQWDLQHGꢀLQꢀWKLVꢀGRFXPHQWꢀRUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWVꢅ  
ꢎ1RWHꢃꢏ ꢋ5HQHVDVꢀ(OHFWURQLFVꢋꢀDVꢀXVHGꢀLQꢀWKLVꢀGRFXPHQWꢀPHDQVꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢀDQGꢀDOVRꢀLQFOXGHVꢀLWVꢀGLUHFWO\ꢀRUꢀLQGLUHFWO\ꢀFRQWUROOHGꢀ  
VXEVLGLDULHVꢅ  
ꢎ1RWHꢁꢏ ꢋ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢎVꢏꢋꢀPHDQVꢀDQ\ꢀSURGXFWꢀGHYHORSHGꢀRUꢀPDQXIDFWXUHGꢀE\ꢀRUꢀIRUꢀ5HQHVDVꢀ(OHFWURQLFVꢅ  
ꢎ5HYꢅꢈꢅꢂꢐꢃꢀꢀ1RYHPEHUꢀꢁꢂꢃꢒꢏ  
Corporate Headquarters  
ContactInformation
TOYOSU FORESIA, 3-2-24 Toyosu,  
For further information on a product, technology, the most up-to-date  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
version of a document, or your nearest sales office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas Electronics  
Corporation. All trademarks and registered trademarks are the property  
of their respective owners.  
‹ꢀꢁꢂꢃꢄꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢅꢀ$OOꢀULJKWVꢀUHVHUYHGꢅ  

相关型号:

5962L1324502VXA

Aerospace Dual Low Noise, Rail-to-Rail I/O, Low Power Operational Amplifiers
ADI

5962L1324802V9A

Operational Amplifier
RENESAS

5962L1324802VXC

Operational Amplifier
RENESAS

5962L1420901VXC

具有待机模式和环回功能的耐辐射加固保障 (RHA) 3.3V CAN 收发器 | HKX | 8 | -55 to 125
TI

5962L1422603VXC

Operational Amplifier
RENESAS

5962L1423101VXC

高分辨率模数转换器 (ADC) | HKV | 28 | -55 to 125
TI

5962L1423102VXC

高分辨率模数转换器 (ADC) | HKV | 28 | -55 to 115
TI

5962L1522801V9A

3.3V Radiation Tolerant CAN Transceiver, 1Mbps, Listen Mode, Loopback
INTERSIL

5962L1522801VXC

3.3V Radiation Tolerant CAN Transceiver, 1Mbps, Listen Mode, Loopback
INTERSIL

5962L1522802V9A

3.3V Radiation Tolerant CAN Transceiver, 1Mbps, Listen Mode, Split Termination Output
INTERSIL

5962L1522802VXC

3.3V Radiation Tolerant CAN Transceiver, 1Mbps, Listen Mode, Split Termination Output
INTERSIL

5962L1522803V9A

3.3V Radiation Tolerant CAN Transceiver, 1Mbps, Low Power Shutdown, Split Termination Output
INTERSIL