5962L1422603VXC [RENESAS]

Operational Amplifier;
5962L1422603VXC
型号: 5962L1422603VXC
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Operational Amplifier

文件: 总23页 (文件大小:1383K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL70419SEH, ISL73419SEH  
Radiation Hardened 36V Quad Precision Low Power Operational Amplifiers with  
Enhanced SET Performance  
FN8653  
Rev.3.00  
Nov 21, 2019  
The ISL70419SEH and ISL73419SEH contain four very high  
Features  
precision amplifiers featuring the perfect combination of low  
• Electrically screened to DLA SMD# 5962-14226  
noise vs power consumption. Low offset voltage, low I  
BIAS  
current, and low temperature drift make it the ideal choice for  
applications requiring both high DC accuracy and AC  
performance. The combination of high precision, low noise,  
low power, and small footprint provides the user with  
outstanding value and flexibility relative to similar competitive  
parts.  
• Low input offset voltage. . . . . . . . . . . . . . . . . . . ±110µV, Max.  
• Superb offset temperature coefficient. . . . . . . 1µV/°C, Max.  
• Input bias current . . . . . . . . . . . . . . . . . . . . . . . . . ±15nA, Max.  
• Input bias current TC . . . . . . . . . . . . . . . . . . . . ±5pA/°C, Max.  
Low current consumption . . . . . . . . . . . . . . . . . . . . . . . 440µA  
• Voltage noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8nV/Hz  
• Wide supply range . . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 36V  
• Operating temperature range. . . . . . . . . . . .-55°C to +125°C  
Applications for these amplifiers include precision active  
filters, medical and analytical instrumentation, precision  
power supply controls, and industrial controls.  
The ISL7x419SEH are offered in a 14 Ld hermetic ceramic  
flatpack package. These devices are offered in an industry  
standard pin configuration and operate across the extended  
temperature range from -55°C to +125°C.  
• ISL70419SEH radiation acceptance testing  
- High dose rate (50-300rad(Si)/s): 300krad(Si)  
- Low dose rate (10mrad(Si)/s): 50krad(Si)  
Applications  
• Precision instrumentation  
• Spectral analysis equipment  
• Active filter blocks  
• ISL73419SEH radiation acceptance testing  
- Low dose rate (10mrad(Si)/s): 50krad(Si)  
• SEE hardness (see SEE report for details)  
2
- SEL/SEB LET (V = ±18V): 86.4MeV•cm /mg  
• Thermocouples and RTD reference buffers  
• Data acquisition  
TH  
S
• Power supply control  
Related Literature  
For a full list of related documents, visit our website:  
ISL70419SEH, ISL73419SEH device pages  
10  
CH2 = V  
- B  
OUT  
= ±15V  
S
9
8
7
6
5
4
3
2
1
0
V
C
1
8.2nF  
V
+
-
ISL70419SEH  
+
OUTPUT  
R
R
2
1
V
IN  
1.84k  
4.93k  
3.3nF  
C
2
V
-
-8  
-6  
-4  
-2  
0
2
4
SET EXTREME DEVIATION (V)  
SALLEN-KEY LOW PASS FILTER (f = 10kHz)  
C
2
FIGURE 1. TYPICAL APPLICATION  
FIGURE 2. SET DEVIATION vs DURATION FOR LET = 60MeV•cm /mg  
FN8653 Rev.3.00  
Nov 21, 2019  
Page 1 of 23  
ISL70419SEH, ISL73419SEH  
Ordering Information  
ORDERING/  
SMD NUMBER  
(Note 2)  
PART NUMBER  
(Note 1)  
RADIATION HARDNESS  
(Total Ionizing Dose)  
TEMPERATURE  
RANGE (°C)  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
5962F1422601VXC  
ISL70419SEHVF  
HDR to 300krad(Si),  
LDR to 50krad(Si)  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
14 Ld Flatpack with EPAD K14.C  
5962F1422601V9AX ISL70419SEHVX (Note 3)  
DIE  
5962L1422603VXC  
ISL73419SEHVF  
LDR to 50krad(Si)  
14 Ld Flatpack with EPAD K14.C  
5962L1422603V9A  
ISL73419SEHVX (Note 3)  
ISL70419SEHF/PROTO (Note 4)  
ISL73419SEHF/PROTO (Note 4)  
DIE  
N/A  
N/A  
N/A  
N/A  
14 Ld Flatpack with EPAD K14.C  
14 Ld Flatpack with EPAD K14.C  
N/A  
ISL70419SEHX/SAMPLE (Notes 3, 4) N/A  
ISL73419SEHX/SAMPLE (Notes 3, 4) N/A  
DIE  
DIE  
N/A  
N/A  
ISL70419SEHEV1Z (Note 5)  
Evaluation Board  
NOTES:  
1. These Pb-free Hermetic packaged products employ 100% Au plate - e4 termination finish, which is RoHS compliant and compatible with both SnPb  
and Pb-free soldering operations.  
2. Specifications for Rad Hard QML devices are controlled by the Defense Logistics Agency Land and Maritime (DLA). The SMD numbers listed must be  
used when ordering.  
3. Die product tested at T = + 25°C. The wafer probe test includes functional and parametric testing sufficient to make the die capable of meeting the  
A
electrical performance outlined in “Electrical Specifications” on page 4.  
4. The /PROTO and /SAMPLE are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE) immunity. These parts are intended for  
engineering evaluation purposes only. The /PROTO parts meet the electrical limits and conditions across temperature specified in the DLA SMD and  
are in the same form and fit as the qualified device. The /SAMPLE parts are capable of meeting the electrical limits and conditions specified in the  
DLA SMD. The /SAMPLE parts do not receive 100% screening across temperature to the DLA SMD electrical limits. These part types do not come  
with a Certificate of Conformance because they are not DLA qualified devices.  
5. Evaluation boards use the /PROTO parts and /PROTO parts are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE) immunity.  
FN8653 Rev.3.00  
Nov 21, 2019  
Page 2 of 23  
ISL70419SEH, ISL73419SEH  
Pin Configuration  
14 LD FLATPACK  
TOP VIEW  
OUT_A  
OUT_D  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
A
D
-IN_A  
+IN_A  
V+  
-IN_D  
+IN_D  
V-  
-
-
+
+
-
-
+IN_B  
-IN_B  
OUT_B  
+IN_C  
-IN_C  
OUT_C  
+
B
+
C
8
Pin Descriptions  
PIN NUMBER  
PIN NAME  
EQUIVALENT CIRCUIT  
Circuit 2  
Circuit 1  
Circuit 1  
Circuit 3  
Circuit 1  
Circuit 1  
Circuit 2  
Circuit 2  
Circuit 1  
Circuit 1  
Circuit 3  
Circuit 1  
Circuit 1  
Circuit 2  
N/A  
DESCRIPTION  
1
2
OUT_A  
-IN_A  
+IN_A  
V+  
Amplifier A output  
Amplifier A inverting input  
Amplifier A non-inverting input  
Positive power supply  
3
4
5
+IN_B  
-IN_B  
OUT_B  
OUT_C  
-IN_C  
+IN_C  
V-  
Amplifier B non-inverting input  
Amplifier B inverting input  
Amplifier B output  
6
7
8
Amplifier C output  
9
Amplifier C inverting input  
Amplifier C non-inverting input  
Negative power supply  
10  
11  
12  
13  
14  
+IN_D  
-IN_D  
OUT_D  
EPAD  
Amplifier D non-inverting input  
Amplifier D inverting input  
Amplifier D output  
EPAD under Package (unbiased, tied to package lid)  
V+  
V+  
V+  
500Ω  
500Ω  
CAPACITIVELY  
COUPLED  
ESD CLAMP  
IN-  
IN+  
OUT  
V-  
V-  
V-  
CIRCUIT 1  
CIRCUIT 2  
CIRCUIT 3  
FN8653 Rev.3.00  
Nov 21, 2019  
Page 3 of 23  
ISL70419SEH, ISL73419SEH  
Absolute Maximum Ratings  
Thermal Information  
Maximum Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42V  
Maximum Supply Voltage (LET = 86.4MeVcm /mg) . . . . . . . . . . . . . 36V  
Thermal Resistance (Typical)  
14 Ld Flatpack (Notes 6, 7). . . . . . . . . . . . .  
(°C/W)  
35  
(°C/W)  
8
JA  
JC  
2
Maximum Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA  
Maximum Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20V  
Min/Max Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V  
Max/Min Input current for Input Voltage >V+ or <V-. . . . . . . . . . . . . . . . ±20mA  
Output Short-Circuit Duration (1 output at a time). . . . . . . . . . . . . . . . Indefinite  
ESD Rating  
Human Body Model (Tested per MIL-PRF-883 3015.7). . . . . . . . . . . 2kV  
Machine Model (Tested per EIA/JESD22-A115-A) . . . . . . . . . . . . . . 200V  
Charged Device Model (Tested per JESD22-C101D) . . . . . . . . . . . . 750V  
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C  
Maximum Junction Temperature (T ) . . . . . . . . . . . . . . . . . . . . .+150°C  
JMAX  
Recommended Operating Conditions  
Ambient Operating Temperature Range . . . . . . . . . . . . . .-55°C to +125°C  
Maximum Operating Junction Temperature . . . . . . . . . . . . . . . . . .+150°C  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10V (±5V) to 30V (±15V)  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
6. is measured in free air with the component mounted on a high-effective thermal conductivity test board with direct attach features. See TB379.  
JA  
7. For , the case temperature location is the center of the package underside.  
JC  
Electrical Specifications  
V
± 15V, V = 0, V = 0V, T = +25°C, unless otherwise noted. Boldface limits apply across the operating  
CM  
S
O
A
temperature range, -55°C to +125°C; over a total ionizing dose of 300krad(Si) with exposure at a high dose rate of 50 - 300rad(Si)/s (ISL70419SEH only);  
or across a total ionizing dose of 50krad(Si) with exposure at a low dose rate of <10mrad(Si)/s.  
MIN  
MAX  
PARAMETER  
Input Offset Voltage  
SYMBOL  
TEST CONDITIONS  
(Note 8)  
TYP  
10  
(Note 8)  
UNIT  
µV  
V
85  
110  
1
OS  
µV  
Offset Voltage Drift  
Input Bias Current  
TCV  
Established by characterization not  
tested  
0.1  
µV/°C  
OS  
I
-2.5  
-5  
0.08  
2.5  
5
nA  
nA  
B
T
= -55°C to +125°C  
A
Over high and low dose radiation  
-15  
-5  
15  
5
nA  
Input Bias Current Temperature  
Coefficient  
TCI  
Established by characterization not  
tested  
1
pA/°C  
B
Input Offset Current  
I
-2.5  
-3  
0.08  
2.5  
3
nA  
nA  
OS  
T
= -55°C to +125°C  
A
Over high and low dose radiation  
-10  
-3  
10  
3
nA  
Input Offset Current Temperature  
Coefficient  
TCI  
Established by characterization not  
tested  
0.42  
pA/°C  
OS  
Input Voltage Range  
V
Established by CMRR test  
-13  
120  
13  
V
dB  
dB  
dB  
dB  
V/mV  
V
CM  
Common-Mode Rejection Ratio  
CMRR  
V
V
V
= -13V to +13V  
145  
145  
CM  
120  
Power Supply Rejection Ratio  
PSRR  
= ±2.25V to ±20V  
120  
S
120  
Open-Loop Gain  
A
= -13V to +13V, R = 10kΩ to ground  
3,000  
13.5  
13.2  
13.3  
13.0  
14,000  
13.7  
VOL  
O
L
Output Voltage High  
V
R
= 10kΩ to ground  
OH  
L
V
R
= 2kΩ to ground  
13.55  
V
L
V
FN8653 Rev.3.00  
Nov 21, 2019  
Page 4 of 23  
ISL70419SEH, ISL73419SEH  
Electrical Specifications  
V
± 15V, V = 0, V = 0V, T = +25°C, unless otherwise noted. Boldface limits apply across the operating  
CM  
S
O
A
temperature range, -55°C to +125°C; over a total ionizing dose of 300krad(Si) with exposure at a high dose rate of 50 - 300rad(Si)/s (ISL70419SEH only);  
or across a total ionizing dose of 50krad(Si) with exposure at a low dose rate of <10mrad(Si)/s. (Continued)  
MIN  
MAX  
PARAMETER  
Output Voltage Low  
SYMBOL  
TEST CONDITIONS  
= 10kΩ to ground  
(Note 8)  
TYP  
(Note 8)  
UNIT  
V
V
R
R
-13.7  
-13.5  
-13.2  
-13.3  
-13.0  
0.625  
0.75  
OL  
L
L
V
= 2kΩ to ground  
-13.55  
0.44  
43  
V
V
Supply Current/Amplifier  
I
mA  
mA  
mA  
V
S
Short-Circuit Current  
Supply Voltage Range  
AC SPECIFICATIONS  
Gain Bandwidth Product  
I
SC  
V
Established by PSRR  
± 2.25  
± 20  
SUPPLY  
GBWP  
A
= 1k, R = 2kΩ  
1.5  
0.25  
10  
MHz  
V
L
Voltage Noise V  
e
0.1Hz to 10Hz  
f = 10Hz  
µV  
P-P  
P-P  
nVp-p  
Voltage Noise Density  
Voltage Noise Density  
Voltage Noise Density  
Voltage Noise Density  
Current Noise Density  
Total Harmonic Distortion  
e
e
e
e
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
pA/Hz  
%
n
n
n
n
f = 100Hz  
f = 1kHz  
8.2  
8
f = 10kHz  
f = 1kHz  
8
in  
THD + N  
0.1  
1kHz, G = 1, V = 3.5V  
, R = 2kΩ  
0.0009  
0.0005  
O
RMS  
L
1kHz, G = 1, V = 3.5V  
, R = 10kΩ  
%
O
RMS  
L
TRANSIENT RESPONSE  
Slew Rate, V  
20% to 80%  
SR  
A
= 11, R = 2kΩV = 4V  
0.3  
0.5  
130  
130  
V/µs  
V/µs  
ns  
OUT  
V
L
O
P-P  
0.2  
Rise Time  
10% to 90% of V  
t , t ,  
A
= 1,  
V
= 50mV  
,
450  
625  
600  
700  
r
f
V
OUT  
P-P  
small signal  
RL = 10kΩto V  
OUT  
OUT  
CM  
ns  
Fall Time  
90% to 10% of V  
A
= 1,  
V
= 50mV , RL = 10kΩto V  
P-P CM  
ns  
V
OUT  
ns  
Settling Time to 0.1%  
10V Step; 10% to V  
t
A
A
A
A
= -1,  
= -1,  
= -1,  
= -1,  
V
= 10V , RL = 5kΩto V  
P-P CM  
21  
24  
13  
18  
µs  
s
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
Settling Time to 0.01%  
10V Step; 10% to V  
V
V
V
= 10V , RL = 5kΩto V  
P-P  
µs  
µs  
µs  
CM  
OUT  
Settling Time to 0.1%  
4V Step; 10% to V  
= 4V , RL = 5kΩto V  
P-P  
CM  
OUT  
Settling Time to 0.01%  
4V Step; 10% to V  
= 4V , RL = 5kΩto V  
P-P  
CM  
OUT  
Output Positive Overload Recovery Time  
Output Negative Overload Recovery Time  
Positive Overshoot  
t
A
A
A
= -100, V = 0.2  
V
V
RL = 2kΩto V  
5.6  
10.6  
15  
µs  
µs  
%
OL  
V
V
V
IN  
P-P,  
P-P,  
CM  
= -100, V = 0.2  
IN  
RL = 2kΩto V  
CM  
OS+  
OS-  
= 1,  
V
= 10V , R = 0Ω  
P-P  
OUT  
f
RL = 2kΩto V  
CM  
33  
33  
%
Negative Overshoot  
A
= 1,  
V
= 10V , R = 0Ω  
P-P  
15  
%
V
OUT  
f
RL = 2kΩto V  
CM  
%
FN8653 Rev.3.00  
Nov 21, 2019  
Page 5 of 23  
ISL70419SEH, ISL73419SEH  
Electrical Specifications  
V
± 5V, V = 0, V = 0V, T = +25°C, unless otherwise noted. Boldface limits apply over the operating  
CM  
S
O
A
temperature range, -55°C to +125°C; over a total ionizing dose of 300krad(Si) with exposure at a high dose rate of 50 - 300krad(Si)/s (ISL70419SEH only);  
or over a total ionizing dose of 50krad(Si) with exposure at a low dose rate of <10mrad(Si)/s.  
MAX  
MIN  
PARAMETER  
Input Offset Voltage  
SYMBOL  
CONDITIONS  
TYP  
10  
(Note 8)  
UNIT  
µV  
(Note 8)  
V
150  
OS  
250  
1
µV  
Offset Voltage Drift  
Input Bias Current  
TCV  
Established by characterization not  
tested  
0.1  
µV/°C  
OS  
I
-2.5  
-5  
0.08  
2.5  
5
nA  
nA  
nA  
B
T
= -55°C to +125°C  
A
Over high and low dose radiation  
-15  
15  
Input Bias Current Temperature  
Coefficient  
TCI  
Established by characterization not  
tested  
-5  
1
5
pA/°C  
B
Input Offset Current  
I
-2.5  
-3  
0.08  
2.5  
3
nA  
nA  
nA  
OS  
T
= -55°C to +125°C  
A
Over high and low dose radiation  
-10  
10  
Input Offset Current Temperature  
Coefficient  
TCI  
Established by characterization not  
tested  
-3  
0.42  
3
pA/°C  
OS  
Input Voltage Range  
V
Established by CMRR test  
-3  
3
V
dB  
CM  
Common-Mode Rejection Ratio  
CMRR  
V
V
V
= -3V to +3V  
120  
120  
120  
120  
3000  
145  
145  
CM  
dB  
Power Supply Rejection Ratio  
PSRR  
= ±2.25V to ±5V  
dB  
S
dB  
Open-Loop Gain  
A
= -3.0V to +3.0V  
14000  
3.7  
V/mV  
VOL  
O
R
= 10kΩ to ground  
L
Output Voltage High  
V
R
= 10kΩ to ground  
= 2kΩ to ground  
= 10kΩ to ground  
= 2kΩ to ground  
3.5  
3.2  
3.3  
3.0  
V
V
OH  
L
R
R
R
3.55  
-3.7  
V
L
L
L
V
Output Voltage Low  
V
-3.5  
-3.2  
V
OL  
V
-3.55  
0.44  
43  
-3.3  
V
-3.0  
V
Supply Current/Amplifier  
I
0.625  
0.75  
mA  
mA  
mA  
S
Short-Circuit Current  
AC SPECIFICATIONS  
Gain Bandwidth Product  
Voltage Noise  
I
SC  
GBWP  
A
= 1k, R = 2kΩ  
1.5  
0.25  
12  
8.6  
8
MHz  
V
L
e
0.1Hz to 10Hz  
f = 10Hz  
µV  
P-P  
np-p  
Voltage Noise Density  
Voltage Noise Density  
Voltage Noise Density  
Voltage Noise Density  
Current Noise Density  
e
e
e
e
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
pA/Hz  
n
n
n
n
f = 100Hz  
f = 1kHz  
f = 10kHz  
f = 1kHz  
8
in  
0.1  
FN8653 Rev.3.00  
Nov 21, 2019  
Page 6 of 23  
ISL70419SEH, ISL73419SEH  
Electrical Specifications  
V
± 5V, V = 0, V = 0V, T = +25°C, unless otherwise noted. Boldface limits apply over the operating  
CM  
S
O
A
temperature range, -55°C to +125°C; over a total ionizing dose of 300krad(Si) with exposure at a high dose rate of 50 - 300krad(Si)/s (ISL70419SEH only);  
or over a total ionizing dose of 50krad(Si) with exposure at a low dose rate of <10mrad(Si)/s. (Continued)  
MAX  
MIN  
PARAMETER  
TRANSIENT RESPONSE  
SYMBOL  
SR  
CONDITIONS  
TYP  
(Note 8)  
UNIT  
(Note 8)  
Slew Rate, V  
Rise Time  
20% to 80%  
A
A
= 11, R = 2kΩV = 4V  
0.5  
V/µs  
ns  
OUT  
V
L
O
P-P  
t , t ,  
= 1, V  
= 50mV ,  
P-P  
130  
r
f
V
OUT  
10% to 90% of V  
small signal  
R
= 10kΩ to V  
OUT  
OUT  
L
CM  
Fall Time  
90% to 10% of V  
A
= 1,  
V
= 50mV  
,
130  
12  
19  
7
ns  
µs  
µs  
µs  
µs  
%
V
OUT  
P-P  
,
RL = 10kΩto V  
CM  
Settling Time to 0.1%  
4V Step; 10% to V  
t
A
= -1,  
V
= 4V  
CM  
s
V
OUT  
P-P  
RL = 5kΩto V  
OUT  
Settling Time to 0.01%  
4V Step; 10% to V  
A
= -1,  
V
= 4V  
CM  
,
V
OUT  
P-P  
RL = 5kΩto V  
OUT  
Output Positive Overload Recovery Time  
Output Negative Overload Recovery Time  
Positive Overshoot  
t
A
= -100, V = 0.2V  
OL  
V IN P-P  
RL = 2kΩto V  
CM  
A
= -100, V = 0.2V  
5.8  
15  
15  
V
IN P-P  
RL = 2kΩto V  
CM  
= 10V , R = 0Ω  
OS+  
OS-  
A = 1, V  
V
OUT  
RL = 2kΩto V  
P-P  
f
CM  
= 10V , R = 0Ω  
Negative Overshoot  
A
= 1,  
V
%
V
OUT  
P-P  
f
RL = 2kΩto V  
CM  
NOTE:  
8. Compliance to datasheet limits is assured by one or more methods: production test, characterization, and/or design.  
FN8653 Rev.3.00  
Nov 21, 2019  
Page 7 of 23  
ISL70419SEH, ISL73419SEH  
Typical Performance Curves  
V
= ±15V, V = 0V, R = Open, T = +25°C, unless otherwise specified.  
CM  
S
L
A
100  
100  
80  
V
= ±15V  
S
V
= ±5V  
S
75  
50  
60  
40  
25  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-25  
-50  
-75  
-100  
-70 -50 -30 -10  
10  
30  
50  
70  
90  
110 130  
-70 -50 -30 -10  
10  
30  
50  
70  
90  
110 130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 3. V vs TEMPERATURE  
OS  
FIGURE 4. V vs TEMPERATURE  
OS  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
V
= ±15V  
S
V
= ±15V  
S
-100  
-200  
-300  
-400  
-500  
-100  
-200  
-300  
-400  
-500  
-70 -50 -30 -10  
10  
30  
50  
70  
90 110 130  
-70 -50 -30 -10  
10  
30  
50  
70  
90  
110 130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 5. I + vs TEMPERATURE  
FIGURE 6. I - vs TEMPERATURE  
B
B
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
V
= ±5V  
S
V
= ±5V  
S
-100  
-200  
-300  
-400  
-500  
-100  
-200  
-300  
-400  
-500  
-70 -50 -30 -10  
10  
30  
50  
70  
90  
110 130  
-70 -50 -30 -10  
10  
30  
50  
70  
90  
110 130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 7. I + vs TEMPERATURE  
FIGURE 8. I - vs TEMPERATURE  
B
B
FN8653 Rev.3.00  
Nov 21, 2019  
Page 8 of 23  
ISL70419SEH, ISL73419SEH  
Typical Performance Curves  
V
= ±15V, V = 0V, R = Open, T = +25°C, unless otherwise specified. (Continued)  
CM  
S
L
A
500  
500  
400  
300  
200  
100  
0
V
= ±5V  
V
= ±15V  
S
400  
300  
200  
100  
0
S
-100  
-200  
-300  
-400  
-500  
-100  
-200  
-300  
-400  
-500  
-70 -50 -30 -10  
10  
30  
50  
70  
90  
110 130  
-70 -50 -30 -10  
10  
30  
50  
70  
90 110 130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 9. I vs TEMPERATURE  
OS  
FIGURE 10. I vs TEMPERATURE  
OS  
0.65  
25000  
20000  
15000  
10000  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
V
= ±13V  
O
15V  
5V  
-75  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-70 -50 -30 -10  
10  
30  
50  
70  
90  
110 130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 11. SUPPLY CURRENT PER AMP vs TEMPERATURE  
FIGURE 12. AV vs TEMPERATURE  
OL  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
-120  
-130  
-140  
-150  
-160  
V
= ±2.25V TO ±20V  
S
V
= ±13V  
CM  
-70 -50 -30 -10  
10  
30  
50  
70  
90  
110 130  
-70 -50 -30 -10  
10  
30  
50  
70  
90  
110 130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 13. PSRR vs TEMPERATURE  
FIGURE 14. CMRR vs TEMPERATURE  
FN8653 Rev.3.00  
Nov 21, 2019  
Page 9 of 23  
ISL70419SEH, ISL73419SEH  
Typical Performance Curves  
V
= ±15V, V = 0V, R = Open, T = +25°C, unless otherwise specified. (Continued)  
CM  
S
L
A
-20  
60  
I
- AT ±15V  
SC  
I
+ AT ±15V  
SC  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
55  
50  
45  
40  
35  
30  
25  
20  
-70 -50 -30 -10  
10  
30  
50  
70  
90  
110 130  
-70 -50 -30 -10  
10  
30  
50  
70  
90  
110 130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 15. SHORT CIRCUIT CURRENT vs TEMPERATURE  
FIGURE 16. SHORT CIRCUIT CURRENT vs TEMPERATURE  
100  
100  
80  
75  
50  
V
(µ) -55°C  
OS  
60  
+125°C  
25  
40  
0
20  
0
+25°C  
-55°C  
-25  
-50  
-75  
-100  
V
(µ) +25°C  
OSD  
-20  
-40  
-60  
V
(µ) +125°C  
OSD  
0
-5  
-3  
-1  
1
3
5
-15  
-10  
-5  
5
10  
15  
VCM (V)  
V
(V)  
CM  
FIGURE 17. INPUT V vs INPUT COMMON MODE VOLTAGE,  
OS  
FIGURE 18. INPUT V vs INPUT COMMON MODE VOLTAGE,  
OS  
V
= ±15  
V = ±5V  
S
S
14.1  
14.0  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
13.3  
13.2  
13.1  
-13.1  
-13.2  
-13.3  
-13.4  
-13.5  
-13.6  
-13.7  
-13.8  
-13.9  
-14.0  
-14.1  
V
= +15V  
S
V
R
= +15V  
= 10kΩ  
S
R
= 10kΩ  
L
L
-70 -50 -30 -10  
10  
30  
50  
70  
90  
110 130  
-70 -50 -30 -10  
10  
30  
50  
70  
90  
110 130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 19. V  
vs TEMPERATURE  
FIGURE 20. V  
vs TEMPERATURE  
OUT  
OUT  
FN8653 Rev.3.00  
Nov 21, 2019  
Page 10 of 23  
ISL70419SEH, ISL73419SEH  
Typical Performance Curves  
V
= ±15V, V = 0V, R = Open, T = +25°C, unless otherwise specified. (Continued)  
CM  
S
L
A
14.1  
-13.1  
V
R
= +15V  
= 2kΩ  
S
-13.2  
-13.3  
-13.4  
-13.5  
-13.6  
-13.7  
-13.8  
-13.9  
-14.0  
-14.1  
14.0  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
13.3  
13.2  
13.1  
V
R
= +15V  
= 2kΩ  
S
L
L
.2  
-14  
-70 -50 -30 -10  
10  
30  
50  
70  
90  
110 130  
-70 -50 -30 -10  
10  
30  
50  
70  
90 110 130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 22. V  
vs TEMPERATURE  
FIGURE 21. V  
vs TEMPERATURE  
OUT  
OUT  
250  
200  
150  
100  
50  
100  
10  
1
V
= ±18.2V  
S
AV = 1  
0
-50  
-100  
-150  
-200  
-250  
V+ = 36.4V  
= 10, R = 100k  
R
g
f
AV = 10,000  
1
10  
100  
1k  
10k  
100k  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (Hz)  
TIME (s)  
FIGURE 23. INPUT NOISE VOLTAGE 0.1Hz to 10Hz  
FIGURE 24. INPUT NOISE VOLTAGE SPECTRAL DENSITY  
1
200  
180  
160  
140  
120  
100  
80  
V
= ±18.2V  
S
AV = 1  
PHASE  
60  
40  
20  
0
GAIN  
-20  
-40  
-60  
-80  
-100  
R
C
= 10k  
L
= 10pF  
L
SIMULATION  
0.1  
1
0.1m 1m 10m 100m 1  
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FIGURE 25. INPUT NOISE CURRENT SPECTRAL DENSITY  
FIGURE 26. OPEN-LOOP GAIN, PHASE vs FREQUENCY, R = 10k  
L
C = 10pF  
L
FN8653 Rev.3.00  
Nov 21, 2019  
Page 11 of 23  
ISL70419SEH, ISL73419SEH  
Typical Performance Curves  
V
= ±15V, V = 0V, R = Open, T = +25°C, unless otherwise specified. (Continued)  
CM  
S
L
A
220  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
V
= ±2.5V  
S
V
S
= ±5V  
PHASE  
V
= ±15V  
S
GAIN  
0
-20  
-40  
-60  
60  
R
C
= 10k  
L
L
R
C
= INF  
L
L
= 100pF  
40  
= 10pF  
SIMULATION  
20  
-80  
SIMULATION  
-100  
0
0.1m 1m 10m 100m  
1
10 100 1k 10k 100k 1M 10M 100M  
1m 10m 100m  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 27. OPEN-LOOP GAIN, PHASE vs FREQUENCY, R = 10k  
FIGURE 28. CMRR vs FREQUENCY, V = ±2.25, ±5V, ±15V  
S
L
C = 100pF  
L
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
R
= 100, R = 100k  
f
g
AV = 1000  
AV = 100  
AV = 10  
60  
50  
40  
30  
20  
10  
0
R
= 1k, R = 100k  
f
g
V
C
R
= ±20V  
= 4pF  
= 10k  
S
L
PSRR+ AND PSRR- V = ±2.25V  
S
L
R
C
= INF  
= 4pF  
L
L
V
= 50mV  
P-P  
OUT  
AV = +1  
= 1V  
V
R
= 10k, R = 100k  
f
CM  
P-P  
g
AV = 1  
PSRR+ AND PSRR- V = ±15V  
S
R
= OPEN, R = 0  
f
g
-10  
-10  
10  
100  
1k  
10k  
100k  
1M  
10M  
10M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 29. PSRR vs FREQUENCY, V = ±5V, ±15V  
S
FIGURE 30. FREQUENCY RESPONSE vs CLOSED LOOP GAIN  
4
2
2
R
= 10k  
L
R = R = 100k  
1
0
f
g
0
-2  
-4  
-6  
-8  
-10  
R = R = 10k  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
f
g
R
= 4.99k  
= 1k  
L
R = R = 1k  
f
g
R
L
R = R = 100  
f
g
V
= ±20V  
= 10k  
S
V
= ±20V  
C = 4pF  
L
R
R
= 499  
S
L
L
L
C
= 4pF  
-12  
-14  
-16  
AV = +2  
= 50mV  
AV = +1  
= 50mV  
R
= 100  
100k  
L
V
V
OUT  
P-P  
OUT  
P-P  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 31. FREQUENCY RESPONSE vs FEEDBACK RESISTANCE  
R /R  
FIGURE 32. GAIN vs FREQUENCY vs R  
L
f
g
FN8653 Rev.3.00  
Nov 21, 2019  
Page 12 of 23  
ISL70419SEH, ISL73419SEH  
Typical Performance Curves  
V
= ±15V, V = 0V, R = Open, T = +25°C, unless otherwise specified. (Continued)  
CM  
S
L
A
12  
2
1
V
= ±2.25V  
S
V
= ±2.5V  
= 10k  
S
10  
8
R
L
V
= ±5V  
S
0
AV = +1  
= 50mV  
V
OUT  
P-P  
6
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
4
V
= ±15V  
S
2
C = 0.01µF  
L
C
= 47pF  
L
V
= ±20V  
S
0
-2  
-4  
-6  
-8  
C
= 100pF  
C
R
= 4pF  
= 10k  
L
L
L
C
= 4pF  
C
= 270pF  
L
L
AV = +1  
C
= 470pF  
L
V
= 50mV  
OUT  
P-P  
C
= 1000pF  
10k  
L
10  
100  
1k  
100k  
1M  
10M  
10k  
FREQUENCY (Hz)  
10  
100  
1k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 33. GAIN vs FREQUENCY vs C  
FIGURE 34. GAIN vs FREQUENCY vs SUPPLY VOLTAGE  
L
180  
160  
140  
120  
100  
80  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
V
S
= ±15V, R = 2k, 10k  
L
S
V
= ±15V  
S
R -DRIVER CH. = OPEN  
V
= ±5V, R = 2k, 10k  
L
L
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
-2.4  
R -RECEIVING CH. = 10k  
L
60  
C
= 4pF  
L
C
= 4pF  
L
40  
AV = +1  
AV = +1  
V
= 4V  
V
= 1V  
OUT  
P-P  
20  
SOURCE  
P-P  
1k  
0
10  
100  
10k  
100k  
1M  
10M  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
FREQUENCY (Hz)  
TIME (µs)  
FIGURE 35. CROSSTALK, V = ±15V  
S
FIGURE 36. LARGE SIGNAL TRANSIENT RESPONSE vs R V = ±5V,  
L
S
±15V  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
60  
50  
40  
30  
20  
10  
0
SR+  
V
=±5, ±15V  
S
R
C
= 10k  
= 4pF  
L
L
SR-  
R
L
= 2k, 10k  
= 7pF  
AV = +1  
= 50mV  
C
L
V
OUT  
P-P  
AV = 1  
V
= 4V  
OUT  
= ±5V, ±15V  
P-P  
V
S
-10  
-70 -50 -30 -10  
10  
30  
50  
70  
90 110 130  
0
5
10  
15  
20  
TIME (µs)  
25  
30  
35  
40  
TEMPERATURE (°C)  
FIGURE 38. SMALL SIGNAL TRANSIENT RESPONSE, V = ±5V, ±15V  
S
FIGURE 37. SLEW RATE vs TEMPERATURE V = ±5V, ±15V  
S
FN8653 Rev.3.00  
Nov 21, 2019  
Page 13 of 23  
ISL70419SEH, ISL73419SEH  
Typical Performance Curves  
V
= ±15V, V = 0V, R = Open, T = +25°C, unless otherwise specified. (Continued)  
CM  
S
L
A
0.04  
0.00  
14  
0.24  
2
12  
10  
8
0.20  
0.16  
0.12  
0.08  
0.04  
0.00  
-0.04  
-0.08  
0
-0.04  
-0.08  
-0.12  
-2  
-4  
IN  
6
-6  
OUT 5V  
OUT 15V  
IN  
OUT 5V  
OUT 15V  
-0.16  
4
-8  
-0.20  
2
-10  
-12  
-14  
-0.24  
-0.28  
0
-2  
0
10 20 30 40 50 60 70 80 90 100  
TIME (µs)  
FIGURE 39. POSITIVE OUTPUT OVERLOAD RESPONSE TIME,  
= ±5V, ±15V, R = 2k, C = 4pF, A = -100, R = 100k,  
0
10 20 30 40 50 60 70 80 90 100  
TIME (µs)  
FIGURE 40. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME,  
= ±5V, ±15V, R = 2k, C = 4pF, A = -100, R = 100k,  
V
V
S
S
L
L
V
f
L
L
V
f
R
= 1k, V = 200mV  
R
= 1k, V = 200mV  
g
IN  
p-p  
g
IN p-p  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
5
V
R
= ±15V  
= 10k  
S
L
4
AV = 1  
= 50mV  
3
V
OUT  
P-P  
2
V
AT -55°C  
OUT  
1
0
-1  
-2  
-3  
-4  
-5  
-6  
R
= 10k  
= 7pF  
L
L
V
AT +25°C  
OUT  
C
AV = 1  
= ±5.9V  
V
AT +125°C  
OUT  
V
IN  
P-P  
V
= ±5V  
S
V
IN  
1
10  
100  
1k  
10k  
100k  
0
0.2  
0.4  
0.6  
0.8  
1.0 1.2  
1.4 1.6 1.8  
2.0  
CAPACITANCE (pF)  
TIME (ms)  
FIGURE 42. OUTPUT PHASE REVERSAL RESPONSE vs TEMPERATURE  
FIGURE 41. % OVERSHOOT vs LOAD CAPACITANCE, V = ±15V  
S
FN8653 Rev.3.00  
Nov 21, 2019  
Page 14 of 23  
ISL70419SEH, ISL73419SEH  
Post High Dose Radiation Characteristics Unless otherwise specified, V ± 15V, V = 0, V = 0V, T = +25°C. This data is  
S
CM  
O
A
typical mean test data post radiation exposure at a high dose rate of 50 - 300rad(Si)/s. This data is intended to show typical parameter shifts due to high  
dose rate radiation. These are not limits nor are they guaranteed. ISL70419SEH only.  
25  
20  
15  
10  
5
3
2
1
0
0
-5  
ICC HDR BIASED  
IEE HDR BIASED  
ICC HDR GROUNDED  
IEE HDR GROUNDED  
-1  
-2  
-3  
CHA HDR BIASED  
CHB HDR BIASED  
CHC HDR BIASED  
CHD HDR BIASED  
CHA HDR GROUNDED  
CHB HDR GROUNDED  
CHC HDR GROUNDED  
CHD HDR GROUNDED  
-10  
-15  
-20  
-25  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
krad(Si)  
krad(Si)  
FIGURE 43. SUPPLY CURRENT vs HIGH DOSE RATE RADIATION  
FIGURE 44. V vs HIGH DOSE RATE RADIATION  
OS  
5
4
5
4
3
2
1
0
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-1  
CHA HDR GROUNDED  
-2  
-3  
-4  
-5  
CHA HDR BIASED  
CHA HDR GROUNDED  
CHB HDR GROUNDED  
CHC HDR GROUNDED  
CHD HDR GROUNDED  
CHA HDR BIASED  
CHB HDR BIASED  
CHC HDR BIASED  
CHD HDR BIASED  
CHB HDR GROUNDED  
CHC HDR GROUNDED  
CHD HDR GROUNDED  
CHB HDR BIASED  
CHC HDR BIASED  
CHD HDR BIASED  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
krad(Si)  
krad(Si)  
FIGURE 45. I + vs HIGH DOSE RATE RADIATION  
B
FIGURE 46. I - vs HIGH DOSE RATE RADIATION  
B
5
4
3
2
1
0
-1  
CHA HDR GROUNDED  
CHB HDR GROUNDED  
CHC HDR GROUNDED  
CHD HDR GROUNDED  
CHA HDR BIASED  
CHB HDR BIASED  
CHC HDR BIASED  
CHD HDR BIASED  
-2  
-3  
-4  
-5  
0
50  
100  
150  
200  
250  
300  
krad(Si)  
FIGURE 47. I vs HIGH DOSE RATE RADIATION  
OS  
FN8653 Rev.3.00  
Nov 21, 2019  
Page 15 of 23  
ISL70419SEH, ISL73419SEH  
Post Low Dose Radiation Characteristics Unless otherwise specified, V ± 15V, V = 0, V = 0V, T = +25°C. This data is  
S
CM  
O
A
typical mean test data post radiation exposure at a low dose rate of <10mrad(Si)/s. This data is intended to show typical parameter shifts due to low  
dose rate radiation. These are not limits nor are they guaranteed  
2.5  
2.0  
1.5  
1.0  
0.5  
0
50  
40  
30  
ICC GROUNDED  
ICC BIASED  
20  
10  
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-10  
-20  
-30  
-40  
-50  
CHA BIASED  
CHC BIASED  
CHA GROUNDED  
CHC GROUNDED  
CHB BIASED  
CHD BIASED  
CHB GROUNDED  
CHD GROUNDED  
IEE GROUNDED  
IEE BIASED  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
krad(Si)  
krad(Si)  
FIGURE 48. SUPPLY CURRENT vs LOW DOSE RATE RADIATION  
FIGURE 49. V vs LOW DOSE RATE RADIATION  
OS  
15  
10  
5
15  
10  
5
0
0
CHB BIASED  
CHA BIASED  
CHC BIASED  
CHA BIASED  
CHC BIASED  
CHB BIASED  
CHD BIASED  
-5  
-5  
CHD BIASED  
CHA GROUNDED  
CHC GROUNDED  
CHA GROUNDED  
CHC GROUNDED  
CHB GROUNDED  
CHD GROUNDED  
CHB GROUNDED  
CHD GROUNDED  
-10  
-15  
-10  
-15  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
krad(Si)  
krad(Si)  
FIGURE 50. I + vs LOW DOSE RATE RADIATION  
B
FIGURE 51. I - vs LOW DOSE RATE RADIATION  
B
10  
8
6
4
2
0
-2  
CHB BIASED  
CHD BIASED  
CHA BIASED  
CHC BIASED  
CHA GROUNDED  
CHC GROUNDED  
-4  
-6  
CHB GROUNDED  
CHD GROUNDED  
-8  
-10  
0
10  
20  
30  
40  
50  
krad(Si)  
FIGURE 52. I vs LOW DOSE RATE RADIATION  
OS  
FN8653 Rev.3.00  
Nov 21, 2019  
Page 16 of 23  
ISL70419SEH, ISL73419SEH  
Input ESD Diode Protection  
Applications Information  
Functional Description  
The ISL7x419SEH contain four low noise precision operational  
amplifiers (op amps). These devices are fabricated in a precision  
40V complementary bipolar DI process. A super-beta NPN input  
stage with input bias current cancellation provides low input bias  
current (180pA typical), low input offset voltage (13µV typical),  
low input noise voltage (8nV/Hz), and low 1/f noise corner  
frequency (~8Hz). The ISL7x419SEH also feature high open-loop  
gain (14kV/mV) for excellent CMRR (145dB) and THD+N  
The input terminals (IN+ and IN-) have internal ESD protection  
diodes to the positive and negative supply rails, series connected  
500Ω current limiting resistors, and an anti-parallel diode pair  
across the inputs (Figure 53).  
V+  
500  
500  
V
OUT  
performance (0.0005% at 3.5V  
, 1kHz into 2kΩ). A  
RMS  
V
R
IN  
L
complementary bipolar output stage enables high capacitive  
load drive without external compensation.  
V-  
Operating Voltage Range  
The ISL7x419SEH are designed to operate across the 4.5V  
(±2.25V) to 36V (±18V) voltage range and is fully characterized  
at 10V (±5V) and 30V (±15V). The Power Supply Rejection Ratio  
typically exceeds 140dB across the full operating voltage range  
and 120dB minimum across the -55°C to +125°C temperature  
range. The worst case common-mode input voltage range  
over-temperature is 2V to each rail. With ±15V supplies,  
Common-Mode Rejection Ratio (CMRR) performance is typically  
>130dB over-temperature. The minimum CMRR performance  
across the -55°C to +125°C temperature range is >120dB for  
power supply voltages from ±5V (10V) to ±15V (30V).  
FIGURE 53. INPUT ESD DIODE CURRENT LIMITING- UNITY GAIN  
The series resistors limit the high feed-through currents that can  
occur in pulse applications when the input dV/dT exceeds the  
0.5V/µs slew rate of the amplifier. Without the series resistors,  
the input can forward-bias the anti-parallel diodes, causing  
current to flow to the output resulting in severe distortion and  
possible diode failure.  
Figure 36 provides an example of distortion free large signal  
response using a 4V  
input pulse with an input rise time of  
P-P  
<1ns. The series resistors enable the input differential voltage to  
be equal to the maximum power supply voltage (36V) without  
damage.  
Input Performance  
The super-beta NPN input pair provides excellent frequency  
response while maintaining high input precision. High NPN beta  
(>1000) reduces input bias current while maintaining good  
frequency response, low input bias current, and low noise. Input  
bias cancellation circuits provide additional bias current  
reduction to <5nA and excellent temperature stabilization.  
Figures 6 through 8 show the high degree of bias current stability  
at ±5V and ±15V supplies that is maintained across the -55°C to  
+125°C temperature range. The low bias current TC also  
produces very low input offset current TC, which reduces DC  
input offset errors in precision high impedance amplifiers.  
In applications where one or both amplifier input terminals are at  
risk of exposure to high voltages beyond the power supply rails,  
current limiting resistors may be needed at the input terminal to  
limit the current through the power supply ESD diodes to 20mA  
maximum.  
Output Current Limiting  
The output current is internally limited to approximately ±45mA  
at +25°C and can withstand a short-circuit to either rail if the  
power dissipation limits are not exceeded. This applies to only  
one amplifier at a time for the quad operational amplifier.  
Continuous operation under these conditions may degrade long  
term reliability. Figures 15 and 16 on page 10 show the current  
limit variation with temperature.  
The +25°C maximum input offset voltage (V ) is 75µV at ±15V  
OS  
supplies. The input offset voltage temperature coefficient  
(V TC) is a maximum of ±1.0µV/°C. The V temperature  
OS OS  
behavior is smooth (Figures 3 through 4), maintaining constant  
TC across the entire temperature range.  
Output Phase Reversal  
Output phase reversal is a change of polarity in the amplifier  
transfer function when the input voltage exceeds the supply  
voltage. The ISL7x419SEH are immune to output phase reversal,  
even when the input voltage is 1V beyond the supplies.  
FN8653 Rev.3.00  
Nov 21, 2019  
Page 17 of 23  
ISL70419SEH, ISL73419SEH  
Power Dissipation  
It is possible to exceed the +150°C maximum junction  
temperatures under certain load and power supply conditions. It  
is therefore important to calculate the maximum junction  
temperature (T  
) for all applications to determine if power  
JMAX  
supply voltages, load conditions, or package type need to be  
modified to remain in the safe operating area. These parameters  
are related using Equation 1:  
(EQ. 1)  
T
= T  
+ xPD  
MAX JA MAXTOTAL  
JMAX  
where:  
• P  
is the sum of the maximum power dissipation of  
DMAXTOTAL  
each amplifier in the package (PD  
)
MAX  
• PD  
for each amplifier can be calculated using Equation 2:  
MAX  
V
OUTMAX  
R
L
----------------------------  
PD  
= V I  
+ V - V    
OUTMAX  
(EQ. 2)  
MAX  
S
qMAX  
S
where:  
• T  
= Maximum ambient temperature  
MAX  
= Thermal resistance of the package  
JA  
• PD  
= Maximum power dissipation of one amplifier  
MAX  
• V = Total supply voltage  
S
• I  
qMAX  
= Maximum quiescent supply current of one amplifier  
= Maximum output voltage swing of the application  
• V  
OUTMAX  
FN8653 Rev.3.00  
Nov 21, 2019  
Page 18 of 23  
ISL70419SEH, ISL73419SEH  
TOP METALLIZATION  
Package Characteristics  
Weight of Packaged Device  
Type: AlCu (99.5%/0.5%)  
Thickness: 30kÅ  
0.6043 grams (Typical)  
BACKSIDE FINISH  
Silicon  
Lid Characteristics  
Finish: Gold  
Potential: Unbiased; tied to EPAD  
Case Isolation to Any Lead: 20 x 10 Ω (min)  
PROCESS  
Dielectrically Isolated Complementary Bipolar - PR40  
9
ASSEMBLY RELATED INFORMATION  
Die Characteristics  
Die Dimensions  
SUBSTRATE POTENTIAL  
Floating  
2406µm x 2935µm (95 mils x 116 mils)  
Thickness: 483µm ±25µm (19mils ±1 mil)  
ADDITIONAL INFORMATION  
WORST CASE CURRENT DENSITY  
Interface Materials  
5
2
< 2 x 10 A/cm  
GLASSIVATION  
Type: Nitrox  
Thickness: 15kÅ  
Metallization Mask Layout  
-IN_A  
OUT_A  
OUT_D  
-IN_D  
+IN_A  
+IN_D  
PLACE HOLDER  
V+  
V-  
+IN_B  
+IN_C  
-IN_B  
-IN_C  
OUT_C  
OUT_B  
FN8653 Rev.3.00  
Nov 21, 2019  
Page 19 of 23  
ISL70419SEH, ISL73419SEH  
TABLE 1. DIE LAYOUT X-Y COORDINATES  
X
(µm)  
Y
(µm)  
dX  
(µm)  
dY  
(µm)  
BOND WIRES  
PER PAD  
PAD NAME  
OUT_A  
-IN_A  
PAD NUMBER  
3
4
-445.5  
-815  
1308.5  
1308.5  
1092  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+IN_A  
V+  
5
-1040.5  
-1044  
-1040.5  
-815  
9
0
+IN_B  
-IN_B  
13  
14  
15  
16  
17  
18  
22  
26  
1
-1092  
-1308.5  
-1308.5  
-1308.5  
-1308.5  
-1092  
0
OUT_B  
OUT_C  
-IN_C  
-445.5  
445.5  
815  
+IN_C  
V-  
1040.5  
1044  
+IN_D  
-IN_D  
OUT_D  
1040.5  
815  
1092  
1308.5  
1308.5  
2
445.5  
NOTE:  
9. Origin of coordinates is the center of die.  
FN8653 Rev.3.00  
Nov 21, 2019  
Page 20 of 23  
ISL70419SEH, ISL73419SEH  
Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted.  
Please go to web to make sure you have the latest Revision.  
DATE  
REVISION  
FN8653.3  
CHANGE  
Nov 21, 2019  
Added the ISL73419SEH to the datasheet.  
Updated the rad levels on Features list and included rad levels in the Ordering Information table.  
Added Note 3.  
Updated figures 39 and 40.  
Oct 15, 2018  
Jul 11, 2014  
FN8653.2  
FN8653.1  
Updated Related Literature section.  
Updated Ordering Information table.  
Added Notes 3 and 4.  
Removed Pb-Free Reflow reference as it is not applicable to this type of package.  
Removed About Intersil section.  
Updated disclaimer and moved to end of document.  
Modified in Features on page 1  
2
SEL/SEB LET (VS = ±36V). . . . . . . . . 86.4MeV•cm /mg  
TH  
to  
2
SEB LET (VS = ±18V). . . . . . . . . 86.4MeV•cm /mg  
TH  
Added in Features on page 1  
"SEL Immune (SOI Process)"  
under in the radiation environment section  
Jun 24, 2014  
FN8653.0  
Initial Release  
FN8653 Rev.3.00  
Nov 21, 2019  
Page 21 of 23  
ISL70419SEH, ISL73419SEH  
For the most recent package outline drawing, see K14.C.  
Package Outline Drawing  
K14.C  
14 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE  
Rev 0, 9/12  
A
A
0.050 (1.27 BSC)  
PIN NO. 1  
ID AREA  
0.390 (9.91)  
0.376 (9.55)  
1
TOP VIEW  
0.022 (0.56)  
0.015 (0.38)  
0.005 (0.13)  
MIN  
3
0.115 (2.92)  
0.009 (0.23)  
0.004 (0.10)  
-D-  
0.045 (1.14)  
0.085 (2.16)  
5
0.260 (6.60)  
0.248 (6.30)  
0.026 (0.66)  
-H-  
0.370 (9.40)  
0.270 (6.86)  
0.03 (0.76) MIN  
-C-  
0.183 (4.65)  
0.167 (4.24)  
BOTTOM  
METAL  
6
SEATING AND  
BASE PLANE  
SIDE VIEW  
BOTTOM METAL  
0.005 (0.127) REF.  
OFFSET FROM  
CERAMIC EDGE  
OPTIONAL  
PIN 1 INDEX  
BOTTOM VIEW  
NOTES:  
Index area: A notch or a pin one identification mark shall be located  
adjacent to pin one and shall be located within the shaded area shown.  
The manufacturer’s identification shall not be used as a pin one  
identification mark.  
1.  
0.006 (0.15)  
0.004 (0.10)  
LEAD FINISH  
2. The maximum limits of lead dimensions (section A-A) shall be  
measured at the centroid of the finished lead surfaces, when solder  
dip or tin plate lead finish is applied.  
3. Measure dimension at all four corners.  
0.009 (0.23)  
0.004 (0.10)  
BASE  
METAL  
4. For bottom-brazed lead packages, no organic or polymeric materials  
shall be molded to the bottom of the package to cover the leads.  
0.019 (0.48)  
0.015 (0.38)  
5. Dimension shall be measured at the point of exit (beyond the  
meniscus) of the lead from the body. Dimension minimum shall  
be reduced by 0.0015 inch (0.038mm) maximum when solder dip  
lead finish is applied.  
0.0015 (0.04)  
MAX  
0.022 (0.56)  
0.015 (0.38)  
6. The bottom of the package is a solderable metal surface.  
7. Dimensioning and tolerancing per ANSI Y14.5M - 1982.  
8. Dimensions: INCH (mm). Controlling dimension: INCH.  
2
SECTION A-A  
FN8653 Rev.3.00  
Nov 21, 2019  
Page 22 of 23  
IMPORTANT NOTICE AND DISCLAIMER  
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL  
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING  
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND  
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,  
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A  
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible  
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)  
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These  
resources are subject to change without notice. Renesas grants you permission to use these resources only for  
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly  
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.  
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,  
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject  
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources  
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.  
(Rev.1.0 Mar 2020)  
Corporate Headquarters  
Contact Information  
TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
For further information on a product, technology, the most  
up-to-date version of a document, or your nearest sales  
office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas  
Electronics Corporation. All trademarks and registered  
trademarks are the property of their respective owners.  
© 2020 Renesas Electronics Corporation. All rights reserved.  

相关型号:

5962L1423101VXC

高分辨率模数转换器 (ADC) | HKV | 28 | -55 to 125
TI

5962L1423102VXC

高分辨率模数转换器 (ADC) | HKV | 28 | -55 to 115
TI

5962L1522801V9A

3.3V Radiation Tolerant CAN Transceiver, 1Mbps, Listen Mode, Loopback
INTERSIL

5962L1522801VXC

3.3V Radiation Tolerant CAN Transceiver, 1Mbps, Listen Mode, Loopback
INTERSIL

5962L1522802V9A

3.3V Radiation Tolerant CAN Transceiver, 1Mbps, Listen Mode, Split Termination Output
INTERSIL

5962L1522802VXC

3.3V Radiation Tolerant CAN Transceiver, 1Mbps, Listen Mode, Split Termination Output
INTERSIL

5962L1522803V9A

3.3V Radiation Tolerant CAN Transceiver, 1Mbps, Low Power Shutdown, Split Termination Output
INTERSIL

5962L1522803VXC

3.3V Radiation Tolerant CAN Transceiver, 1Mbps, Low Power Shutdown, Split Termination Output
INTERSIL

5962L1524602VXC

Instrumentation Amplifier
RENESAS

5962L1524701V9A

Single-Ended Multiplexer
RENESAS

5962L1524701VXC

Single-Ended Multiplexer
RENESAS

5962L1524801V9A

Single-Ended Multiplexer
RENESAS