FS8308 [PTC]

Low Power PLL Frequency Synthesizer IC; 低功耗锁相环频率合成器IC
FS8308
型号: FS8308
厂家: PRINCETON TECHNOLOGY CORP    PRINCETON TECHNOLOGY CORP
描述:

Low Power PLL Frequency Synthesizer IC
低功耗锁相环频率合成器IC

文件: 总15页 (文件大小:339K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FS8308 Low Power PLL Frequency Synthesizer IC  
A d v a n c e I n f o r m a t i o n  
Princeton Technology Corp. reserves the right to change the product described in this datasheet. All information con-  
tained in this datasheet is subject to change without prior notice. Princeton Technology Corp. assumes no responsibility  
for the use of any circuits shown in this datasheet.  
Description  
The FS8308 is a serial data input, phase-locked loop IC with programmable input and ref-  
erence frequency dividers. When combined with a VCO, this IC becomes the core of a  
very low power frequency synthesizer well-suited for mobile communication applications,  
e.x. paging systems and family radio service (FRS). There are some features implemented  
in this IC, including an 18-bit programmable input frequency divider, a terminal for refer-  
ence oscillator buffer output, as well as stand-by control through programming, and etc.  
Details are listed in the following.  
Features  
‹ Up to 40 MHz external crystal oscillator reference frequency under normal condition  
‹ Low current consumption (IDD,total typically 1.2 mA at fFIN = 500 MHz and VDD1 = 1.0  
V)  
‹ With Schmitt trigger added for noise-immune programming input  
‹ 18-bit programmable input frequency divider (including a ÷ 64/65 prescaler) with  
divide ratio range from 4032 to 262143  
‹ 13-bit programmable reference frequency divider (including a ÷ 8 prescaler) with  
divide ratio range from 40 to 65528  
‹ Optional lock detector output (LD, fR/2, fV/2)  
‹ Charge pump output for passive low-pass filter  
‹ Wide tuning range of charge pump output for external VCO (VSS+0.5 to VDD2-0.5)  
‹ Switchover terminal for constant of loop filter or general open drain output  
‹ Reference oscillator buffer output  
‹ Programmable stand-by control  
‹ TSSOP 16L package (0.65mm pitch)  
Applications  
‹ Pager  
‹ Family radio service (FRS)  
‹ Wireless communication system  
Page 1  
April 2003  
A d v a n c e I n f o r m a t i o n  
FS8308  
Package and Pin Assignment: 16L, TSSOP  
1
2
3
4
5
6
7
8
16  
XIN  
XOUT  
VDD2  
NC  
BO  
15  
14  
13  
12  
11  
10  
9
TEST  
SW  
LE  
DO  
DATA  
CLK  
LD  
VSS  
FIN  
VDD1  
NC  
Dimensions in mm  
Dimensions in inch  
Symbols  
MIN.  
---  
NOM.  
---  
MAX.  
1.20  
0.15  
1.05  
0.30  
0.20  
5.10  
---  
MIN.  
---  
NOM.  
---  
MAX.  
0.048  
0.006  
0.041  
0.012  
0.008  
0.201  
---  
A
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
4.90  
---  
---  
0.002  
0.031  
0.007  
0.004  
0.193  
---  
---  
1.00  
---  
0.039  
---  
C
---  
---  
D
E
5.00  
6.40  
4.40  
0.65  
0.60  
---  
0.197  
0.252  
0.173  
0.026  
0.024  
---  
E1  
e
4.30  
---  
4.50  
---  
0.169  
---  
0.177  
---  
L
0.45  
---  
0.75  
0.10  
0.018  
---  
0.030  
0.004  
y
θ
---  
---  
0
°
8
°
0
°
8
°
Note: Tolerance + 0.1mm unless otherwise specified  
Page 2  
April 2003  
A d v a n c e I n f o r m a t i o n  
FS8308  
Pin Descriptions  
Number  
1
Name  
XIN  
I/O  
I
Description  
Reference crystal oscillator or external clock input with internally biased amplifier  
(any external input to XIN must be ac-coupled)  
2
3
4
5
6
XOUT  
VDD2  
NC  
O
Reference crystal oscillator or external clock output  
POWER Nominal 3.0 V supply voltage  
NC  
O
No connection  
DO  
Single-ended charge pump output for passive low-pass filter  
Ground  
VSS  
GND  
VCO frequency input with internally biased input amplifier  
(any external input to FIN must be ac-coupled)  
7
FIN  
I
8
VDD1  
NC  
POWER Nominal 1.0 V supply voltage  
9
NC  
O
I
No connection  
10  
11  
12  
13  
14  
15  
16  
LD  
Lock detector output (high when PLL is locked)  
Shift register clock input  
CLK  
DATA  
LE  
I
Serial data input  
I
Latch enable input  
SW  
O
I
Switchover terminal for constant of loop filter or a general open drain output  
Test mode control input with internal pull-down resistor  
Terminal of reference crystal oscillator buffer output  
TEST  
BO  
O
Block Diagram  
FIN  
÷ 64/65  
N-COUNTER  
N-LATCH  
CHARGE  
PUMP  
DATA  
CLK  
LE  
DO  
LD  
CONTROL  
LOGIC  
SHIFT REGISTER  
PFD  
TEST  
LOCK  
DETECTOR  
S-LATCH  
R-LATCH  
BO  
R-COUNTER  
XIN  
÷ 8  
WINDOW  
GENERATOR  
XOUT  
SW  
SW  
Page 3  
April 2003  
A d v a n c e I n f o r m a t i o n  
FS8308  
Absolute Maximum Ratings  
VSS = 0 V  
Parameter  
Symbol  
VDD1  
VDD2  
VFIN  
Rating  
Unit  
V
VSS – 0.3 to VSS + 2.0  
VSS – 0.3 to VSS + 6.0  
VSS – 0.3 to VDD + 0.3  
Supply voltage  
V
Input voltage range  
V
oC  
oC  
oC  
s
TPS  
Operating temperature range  
Storage temperature range  
Soldering temperature range  
Soldering time range  
–30 to 60  
–40 to 125  
255  
TSTG  
TSLD  
tSLD  
10  
Recommended Operating Conditions  
VSS = 0 V  
Value  
Parameter  
Symbol  
Unit  
min.  
0.95  
typ.  
1.0  
max.  
2.0  
VDD1  
VDD2  
TA  
V
V
Supply voltage range  
Operating temperature  
2.4  
3.0  
25  
3.6  
60  
oC  
–30  
Page 4  
April 2003  
A d v a n c e I n f o r m a t i o n  
FS8308  
Electrical Characteristics  
(VDD1 = 0.95 to 2.0 V, VDD2 = 2.4 to 3.6 V, VSS = 0 V, TA = 0 to 60  
°
C
unless otherwise noted)  
Value  
Parameter  
Symbol  
IDD,total  
Condition  
Unit  
mA  
min.  
typ.  
max.  
1.5  
VDD1 = 1.0 V  
fFIN = 500 MHz  
Current consumption  
1.2  
fXIN =24 MHz  
IDD,standby  
fFIN  
Standby current consumption  
FIN operating frequency range  
PS=”H”  
10  
500  
40  
µA  
PFIN = -15dBm  
20  
MHz  
VDD1 = 1.0 V, PS=”L”  
fXIN  
PFIN  
VXIN  
VIL  
VDD1 = 1.0 V  
XIN operating frequency range  
FIN input voltage swing  
7
MHz  
dBm  
Vpk-pk  
V
-15  
0.3  
XIN input voltage swing  
CLK, DATA, LE logic LOW input voltage  
0.3  
VDD  
0.3  
-
VIH  
CLK, DATA, LE logic HIGH input voltage  
V
IIL,XIN  
IIH,XIN  
IIL,FIN  
IIH,FIN  
IDO  
VIL = 0 V  
VIH = VDD1  
XIN logic LOW input current  
XIN logic HIGH input current  
FIN logic LOW input current  
FIN logic HIGH input current  
Charge Pump Drive Current  
10  
10  
60  
60  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
mA  
VIL = 0 V  
VIH = VDD1  
VDD2 = 3.0V, VDO = 1.5V  
VDD2 = 3.0V, VDO = 1.5V  
VOL = 0.4 V  
1.0  
1.0  
IDO  
Charge Pump Sink Current  
IOL  
LD, FV, FR logic LOW output current  
LD, FV, FR logic HIGH output current  
0.1  
0.1  
IOH  
VOH = VDD2 – 0.4 V  
SW = ’L’  
VSW = VDD2 = 3.0V  
ISW,OFF  
SW logic LOW output current  
SW logic HIGH output current  
10  
µA  
SW = ’H’  
VSW = VDD2 = 3.0V  
ISW,ON  
tSU1  
tSU2  
2.8  
mA  
DATA to CLK setup time  
CLK to LE setup time  
Hold time  
2
2
2
µs  
µs  
µs  
tHOLD  
Page 5  
April 2003  
A d v a n c e I n f o r m a t i o n  
FS8308  
Functional Description  
Programmable Input Frequency Divider  
The VCO input to the FIN pin is divided by the programmable divider and then internally  
output to the phase/frequency detector (PFD) as fV. The programmable input frequency  
divider consists of a ÷ 64/65 (P/P+1) dual-modulus prescaler in prior to a 18-bit (N)  
counter, which is further comprised of a 6-bit swallow (A) counter, and a 12-bit main (B)  
counter. The total divide ratio, N, is related to values for P, A, and B through the relation  
N = (P+ 1) × A+ P× (BA) = P× B+ A,  
with BA. The minimum available programmable divisor for continuous counting is  
given by P× (P1) = 64× 63 = 4032, and the valid total divide ratio range for the  
input divider is M = 4032 to 262143.  
Take N=10000 for example, since P=64 and hence that B=156 and A=16. Therefore, the  
binary codes of B and A should be 0000 1001 1100 and 010000, respectively. An alterna-  
tive approach is to translate the decimal N into binary code directly. And then just take the  
last 6-bit as A and the remaining 12-bit as B. By far the binary code of N=10000 is  
00 0010 0111 0001 0000. One can get the same result as the former method.  
Programmable Reference Frequency Divider  
The crystal oscillator output is divided by the programmable divider and then internally  
output to the PFD as fR. The programmable reference frequency divider consists of a fixed  
÷ 8 (S) prescaler and a 13-bit reference (R) counter. The total divide ratio, T, is related to  
values for S and R through the relation  
T = S× R = 8× R.  
The usable divisior range of the reference counter is R = 5 to 8191 and therefore, the  
T = 40 to 65528  
valid total divide ratio range for the reference divider is  
8.)  
(in steps of  
Page 6  
April 2003  
A d v a n c e I n f o r m a t i o n  
FS8308  
Serial Input Data Format  
The divsors of the input and reference dividers are input using a 20-bit serial interface  
consisting of separate clock (CLK), data (DATA), and latch enable (LE) lines. The format  
of the serial data is shown in Fig. 1. The data on the DATA line is written to the shift reg-  
ister on the rising edge of the CLK signal and is input with MSB first. The last two bits are  
recognized as the latch select control bits. Data on the DATA line should be changed on  
the falling edge of CLK, and LE should be held low while data is being written to the shift  
register. Data is transferred from the shift register to either one of the frequency divider  
latches or the optional control latch when LE is set high. When the latch select control bits  
are set high-low or low-low, data is loaded to the 18-bit N-counter latch, and when the  
latch select control bits are set high-high, the 2 MSBs are ignored, the next 13 data bits are  
loaded to the 13-bit R-counter latch and the remaining 3 LSBs are used to control testing  
modes and should be set as follows for normal operation: R14 = high, R15 = low, R16 =  
low. To disable LD output (i.e. set LD low), R14 should be set low. When the latch select  
control bits are set low-high, the 2 MSBs are recognized as PS and SW, which are used as  
stand-by control and open drain output control, respectively. The detail of two control bits  
setting is summarized in Table 1. In normal work condition, PS is set to low. When PS is  
programmed to high, it will enter stand-by mode.  
Serial input data timing waveforms are shown in Fig. 2.  
Fig. 1 – Serial input data format  
18-bit data for N-counter  
13-bit data for R-counter  
ignored  
optionalcontrol  
ignored  
Table 1: Control Bit Setting  
1st CB  
2nd CB  
Fetching Target of Serial Data Input  
X
0
0
1
1
N-counter  
PS and SW  
R-counter  
1
Page 7  
April 2003  
A d v a n c e I n f o r m a t i o n  
FS8308  
Fig. 2 – Serial input data timing waveforms  
DATA  
CLK  
LE  
tHOLD  
tSU1  
tSU2  
DATA  
CLK  
LE  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
Page 8  
April 2003  
A d v a n c e I n f o r m a t i o n  
FS8308  
Phase/Frequency Detector (PFD)  
The PFD compares an internal input frequency divider output signal, fV, with an internal  
reference frequency divider output signal, fR, and generates an error signal, DO, which is  
proportional to the phase error between fV and fR. The DO output is intended for use with  
a passive filter as shown in Fig. 2.  
Lock Detector (LD)  
When phase comparator detects phase difference, LD terminal outputs “L”. When phase  
comparator locks, LD terminal outputs “H”. On standby, outputs “H”. The criteria for lock  
condition is that the phase difference between fV and fR is less than 2/xin and continues for  
more than three consecutive times.  
The input/output waveforms for the PFD and LD are shown in Fig. 3.  
Fig. 2 – Passive low-pass filter circuit  
DO  
to VCO  
R1  
C1  
C2  
Fig. 3 – PFD input/output waveforms  
2/xin  
fR  
fV  
high-Z  
high-Z  
high-Z  
DO  
LD  
< 2/xin  
< 2/xin  
< 2/xin  
Page 9  
April 2003  
A d v a n c e I n f o r m a t i o n  
FS8308  
Stand-by Mode  
The stand-by mode for the PLL is entered by programming the PS bit to high. In the stand-  
by mode, the XIN and FIN amplifiers, N-counter, and R-counter are stopped, as well as the  
internal current bias for charge pump block, the N- and R-counters are also reset, and the  
DO and DB outputs are set to the high impedance state. As long as voltage is supplied to  
VDD2, data loaded to the latches is kept. To exit from stand-by mode to normal operation,  
the PS bit must be programmed to low.  
Reference Crystal Oscillator Buffer Output (BO)  
This IC provides a reference crystal oscillator buffer output intended to be used as a crys-  
tal local oscillator to a 2nd mixer. The terminal is represented as BO. For cases to enhance  
the buffer output swing, increasing VDD1 will be an efficient way.  
Filter Switch Control (SW)  
Control of SW terminal by “SW” bit. This terminal is for switching time-constant of loop  
filter. Output type of this terminal is open drain output. When constant of loop filter  
doesn’t change by this switch, general open drain output is available. Note that there is an  
internal 200resistor connected between and drain terminal and output pin.  
Page 10  
April 2003  
A d v a n c e I n f o r m a t i o n  
FS8308  
Application Circuit  
1st IF  
amplifier  
2nd IF  
amplifier Discriminator  
Wave  
shaper  
LNA  
1st mixer  
2nd mixer  
LPF  
Frequency  
multiplier (×4,5)  
2nd LO  
1st LO  
XIN  
XOUT  
VDD2  
NC  
BO  
RAM  
CPU  
ROM  
TEST  
SW  
LE  
DO  
DATA  
CLK  
LD  
Decoder  
VSS  
FIN  
VDD1  
NC  
LCD driver  
LCD  
Driver  
DC/DC  
converter  
Page 11  
April 2003  
A d v a n c e I n f o r m a t i o n  
FS8308  
Typical Characteristics  
FIN Input Sensitivity vs. Input Frequency  
0
-4  
Vdd2=3.0V  
fXIN=24MHz, R=5  
-8  
-12  
-16  
-20  
-24  
-28  
-32  
-36  
-40  
Vdd1=1.0V  
Vdd1=1.1V  
Vdd1=1.2V  
0
100 200 300 400 500 600  
fFIN (MHz)  
Page 12  
April 2003  
A d v a n c e I n f o r m a t i o n  
FS8308  
Current Consumption of Idd1 vs. Operating Frequency  
Vdd2=3.0V, Pfin=-15dBm  
fXIN=24MHz, R=5  
2.0  
1.6  
1.2  
0.8  
Vdd1=1.0V  
Vdd1=1.1V  
0.4  
Vdd1=1.2V  
0.0  
0
100 200 300 400 500 600  
fFIN (MHz)  
Current Consumption of Idd2 vs. Supply Voltage Vdd2  
0.40  
0.36  
0.32  
0.28  
0.24  
0.20  
0.16  
1.6 2.0 2.4 2.8 3.2 3.6 4.0  
Vdd2 (V)  
Page 13  
April 2003  
A d v a n c e I n f o r m a t i o n  
FS8308  
Charge Pump Output Characteristics  
Vdd2=3.0V  
1.2  
0.8  
FR > FV  
0.4  
Drive Current  
Sink Current  
0.0  
-0.4  
-0.8  
-1.2  
FR < FV  
0.0 0.5 1.0 1.5 2.0 2.5 3.0  
VDO (V)  
Charge Pump Output Current vs. Power Supply Voltage  
Charge Pump Output Current  
1.1  
1.0  
0.9  
1
2
Vdd2  
VDO  
=
0.8  
0.7  
0.6  
0.5  
0.4  
Drive Current  
Sink Current  
1.5 2.0 2.5 3.0 3.5 4.0  
Vdd2 (V)  
Page 14  
April 2003  
A d v a n c e I n f o r m a t i o n  
FS8308  
Single Voltage Operation  
This IC requires two separate power supplies to operate. If only one voltage source is  
available, ex. use battery to serve as power source, the user can apply the configuration as  
shown in the following which is referred to as single voltage operation.  
POWER SUPPLY  
VDD2  
R
VDD1  
Since there is only one voltage source provided in the so-called single voltage configura-  
tion, which is directly connected to Vdd2, one needs to choose a reasonable R value to set  
Vdd1 to operate within the safe region, whose requirement is Vdd1 > 0.95V. Keep in mind  
that the lower Vdd1 is, the less current this IC will consume, but the poorer crystal buffer  
output it drives. In order to balance the trade-off between the current consumption and  
crystal buffer driving capability, Vdd1 is suggested to be about 1.1V. Vdd1 vs. Vdd2 for vari-  
ous R at fin=470MHz is plotted in the following figure. Note that although smaller resistor  
R makes this IC consume more current, the reward is with wider power supply input  
range. Typical value of R is recommended to be around 1.6KΩ..  
Single Voltage Characteristic: Vdd1 vs. Vdd2 for Various R  
R=1.2K  
R=1.6K  
1.5  
R=1.8K  
R=2.0K  
1.4  
1.3  
1.2  
1.1  
Safe Operation Region  
1.0  
0.9  
fin=470MHz, Pfin=-10dBm  
xin=24MHz, N=4032, R=5  
0.8  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Vdd2 (V)  
Page 15  
April 2003  

相关型号:

FS8601HA

One Cell Lithium-ion/Polymer Battery Protection IC With Built-in MOSFET
FORTUNE

FS8601HD

One Cell Lithium-ion/Polymer Battery Protection IC With Built-in MOSFET
FORTUNE

FS8601HX

One Cell Lithium-ion/Polymer Battery Protection IC With Built-in MOSFET
FORTUNE

FS8806

加密芯片
ETC

FS8820P

One Cell Lithium-ion/Polymer Battery Protection IC With Built-in MOSFET
FORTUNE

FS8820P-T

One Cell Lithium-ion/Polymer Battery Protection IC With Built-in MOSFET
FORTUNE

FS8826

加密芯片
ETC

FS8844

250 mA Low Quiescent Current LDO Linear Regulator
FORTUNE

FS8844-18GC

250 mA Low Quiescent Current LDO Linear Regulator
FORTUNE

FS8844-28GC

250 mA Low Quiescent Current LDO Linear Regulator
FORTUNE

FS8844-30GC

250 mA Low Quiescent Current LDO Linear Regulator
FORTUNE

FS8844-33GC

250 mA Low Quiescent Current LDO Linear Regulator
FORTUNE