SAA4990H-T [NXP]

IC SPECIALTY CONSUMER CIRCUIT, PQFP80, Consumer IC:Other;
SAA4990H-T
型号: SAA4990H-T
厂家: NXP    NXP
描述:

IC SPECIALTY CONSUMER CIRCUIT, PQFP80, Consumer IC:Other

商用集成电路
文件: 总28页 (文件大小:145K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
SAA4990H  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
1996 Oct 25  
Preliminary specification  
File under Integrated Circuits, IC02  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
FEATURES  
GENERAL DESCRIPTION  
Progressive scan conversion  
(262.5 to 525 or 312.5 to 625 lines/field)  
The Progressive scan-Zoom and Noise reduction IC,  
abbreviated as PROZONIC, is designed for applications  
together with:  
Field rate up-conversion (50 to 100 Hz or 60 to 120 Hz)  
Line flicker reduction  
SAA4951WP Economy Controller (ECO3)  
SAA4952H (memory controller)  
Noise and cross-colour reduction  
Variable vertical sample rate conversion  
Movie phase detection  
SAA7158WP Back END IC (BENDIC)  
SAA4995WP PANorama IC (PANIC)  
SAA4970T ECOnomical video processing Back END IC  
(ECOBENDIC)  
Synchronous No parity Eight bit Reception and  
Transmission (SNERT) interface.  
TMS4C2970/71 (serial field memories)  
TDA8755/8753A (A/D converter 4 : 1 : 1 format)  
83C652/54 type of microcontroller.  
QUICK REFERENCE DATA  
SYMBOL  
VDDD  
Tamb  
PARAMETER  
MIN.  
MAX.  
5.5  
70  
UNIT  
digital supply voltage  
operating ambient temperature  
4.5  
0
V
°C  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
SAA4990H QFP80 plastic quad flat package; 80 leads (lead length 1.95 mm); body 14 × 20 × 2.8 mm SOT318-2  
1996 Oct 25  
2
  g
UV1  
YUV  
YUV  
REFORMATTER  
REFORMATTER  
A
4
12  
12  
LINE  
MEMORY 2  
MIXER  
LINE  
MEMORY 3  
MIXER  
NOISE  
REDUCTION  
LINE  
MEMORY 1  
FORMATTER  
UV2  
B
4
YUV  
D
12  
Y1  
Y2  
LINE  
MEMORY 2  
MEDIAN  
FILTER  
8
8
LINE  
MEMORY 3  
MIXER  
NOISE  
REDUCTION  
LINE  
MEMORY 1  
4
8
8
FORMATTER  
SAA4990H  
YUV  
C
12  
MOVIE  
PHASE  
DETECTOR  
MICROPROCESSOR  
RE1  
RE2  
WE2  
INTERFACE  
(SNERT)  
CONTROL BLOCK  
3
3
2
2
MGE024  
SNCL, SNDA,  
SNRST  
CK  
VD, HD RE, WE  
Fig.1 Block diagram.  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
PINNING  
SYMBOL  
PIN  
TYPE  
DESCRIPTION  
TEST1/AP  
TEST2/SP  
RE1  
1
input  
input  
action pin for testing, to be connected to VSS  
shift pin for testing, to be connected to VSS  
read enable to FM1  
ground 1  
2
3
output  
ground  
supply  
output  
output  
output  
output  
output  
ground  
supply  
output  
output  
output  
output  
output  
output  
output  
input  
VSS1  
4
VDD1  
5
supply voltage 1  
YUVC7  
YUVC6  
YUVC5  
YUVC4  
YUVC3  
VSS2  
6
Y bit 7 to FM2  
7
Y bit 6 to FM2  
8
Y bit 5 to FM2  
9
Y bit 4 to FM2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Y bit 3 to FM2  
ground 2  
VDD2  
supply voltage 2  
YUVC2  
YUVC1  
YUVC0  
YUVC11  
YUVC10  
YUVC9  
YUVC8  
CK  
Y bit 2 to FM2  
Y bit 1 to FM2  
Y bit 0 to FM2  
UV bit 3 to FM2  
UV bit 2 to FM2  
UV bit 1 to FM2  
UV bit 0 to FM2  
master clock, nominal 27 or 32 MHz  
ground 3  
VSS3  
ground  
supply  
output  
output  
input  
VDD3  
supply voltage 3  
WE2  
write enable to FM2  
read enable to FM2  
UV bit 0 from FM2  
UV bit 1 from FM2  
UV bit 2 from FM2  
UV bit 3 from FM2  
Y bit 0 from FM2  
Y bit 1 from FM2  
Y bit 2 from FM2  
Y bit 3 from FM2  
supply voltage 4  
RE2  
YUVB8  
YUVB9  
YUVB10  
YUVB11  
YUVB0  
YUVB1  
YUVB2  
YUVB3  
VDD4  
input  
input  
input  
input  
input  
input  
input  
supply  
ground  
input  
VSS4  
ground 4  
YUVB4  
YUVB5  
YUVB6  
YUVB7  
RE  
Y bit 4 from FM2  
Y bit 5 from FM2  
Y bit 6 from FM2  
Y bit 7 from FM2  
master read enable  
field frequent reset, vertical display  
input  
input  
input  
input  
VD  
input  
1996 Oct 25  
4
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
SYMBOL  
PIN  
TYPE  
DESCRIPTION  
HD  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
input  
horizontal reference signal  
UV bit 0  
YUVD8  
YUVD9  
YUVD10  
VDD5  
output  
output  
output  
supply  
ground  
output  
output  
output  
output  
supply  
ground  
output  
output  
output  
output  
output  
supply  
ground  
input  
UV bit 1  
UV bit 2  
supply voltage 5  
ground 5  
UV bit 3  
VSS5  
YUVD11  
YUVD0  
YUVD1  
YUVD2  
VDD6  
Y bit 0  
Y bit 1  
Y bit 2  
supply voltage 6  
ground 6  
Y bit 3  
VSS6  
YUVD3  
YUVD4  
YUVD5  
YUVD6  
YUVD7  
VDD7  
Y bit 4  
Y bit 5  
Y bit 6  
Y bit 7  
supply voltage 7  
ground 7  
VSS7  
SNRST  
SNDA  
SNCL  
AUX  
field frequent reset from microcontroller; reset for SNERT interface  
data for SNERT interface  
clock for SNERT interface  
spare output from line-sequencer  
output hold to e.g. LC display  
not connected  
I/O  
input  
output  
output  
HO  
n.c.  
n.c.  
not connected  
YUVA7  
YUVA6  
YUVA5  
YUVA4  
YUVA3  
YUVA2  
VSS8  
input  
Y bit 7 from FM1  
input  
Y bit 6 from FM1  
input  
Y bit 5 from FM1  
input  
Y bit 4 from FM1  
input  
Y bit 3 from FM1  
input  
Y bit 2 from FM1  
ground  
supply  
input  
ground 8  
VDD8  
supply voltage 8  
YUVA1  
YUVA0  
YUVA11  
YUVA10  
YUVA9  
YUVA8  
Y bit 1 from FM1  
input  
Y bit 0 from FM1  
input  
UV bit 3 from FM1  
input  
UV bit 2 from FM1  
input  
UV bit 1 from FM1  
input  
UV bit 0 from FM1  
1996 Oct 25  
5
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
H
64  
TEST1/AP  
TEST2/SP  
RE1  
1
2
O
63 AUX  
3
62 SNCL  
61 SNDA  
60 SNRST  
V
4
SS1  
V
5
DD1  
YUV  
C7  
V
V
6
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
SS7  
DD7  
YUV  
C6  
7
YUV  
C5  
YUV  
YUV  
YUV  
YUV  
YUV  
V
8
D7  
D6  
D5  
D4  
D3  
YUV  
C4  
9
YUV  
C3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
V
SS2  
V
DD2  
SAA4990H  
YUV  
C2  
SS6  
YUV  
C1  
V
DD6  
YUV  
C0  
YUV  
YUV  
YUV  
YUV  
V
D2  
YUV  
C11  
D1  
YUV  
C10  
D0  
YUV  
C9  
D11  
YUV  
C8  
SS5  
V
CK 20  
DD5  
V
V
YUV  
YUV  
YUV  
21  
22  
SS3  
D10  
D9  
DD3  
WE2 23  
RE2 24  
D8  
41 HD  
MGE023  
Fig.2 Pin configuration.  
6
1996 Oct 25  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
FUNCTIONAL DESCRIPTION  
Field rate up-conversion with line flicker reduction  
frame  
frame  
handbook, halfpage  
field  
l, k = 1  
l, k = 2  
The line flicker reduction in conjunction with field rate  
up-conversion is performed by generating a 50 Hz  
interlace on the 100 Hz field rate display. Median filtering  
supplies the data for the interlaced output fields.  
A
n
B
n,m  
A
B
m
field  
field  
field  
m,n  
DEFINITIONS  
Framel: l is the number of an input/output frame  
temporarily combinating an A and B field.  
Fieldxn : x is the field raster where A means an odd field and  
B means an even field.  
Framel, k: l is the number of an output frame temporarily  
combinating an origin/interpolated A and B field;  
k indicates the origin input field with  
t
k = 1: odd input field and raster A  
MGE026  
k = 2: even input field and raster B within framel.  
y
Fieldxn, m : n, m = lines of fieldn, m are interpolated by  
2 lines of fieldn and 1 line of fieldm using the median filter  
(see Fig.3); x is the field raster where A means an odd field  
and B means an even field.  
Fig.3 Generation of fieldnB, m (median filter).  
frame  
frame  
2
1
B
2
B
4
A
1
A
3
field  
field  
field  
field  
input  
1f , 1f  
H
v
median  
median  
median  
median  
output  
2f , 2f  
H
v
A
1
B
1, 2  
A
field  
B
2
A
3
B
3, 4  
A
4, 3  
B
4
field  
field  
field  
field  
field  
field  
field  
2, 1  
frame  
1, 1  
frame  
frame  
2, 1  
frame  
2, 2  
1, 2  
MGE027  
Fig.4 Scan rate up-conversion.  
7
1996 Oct 25  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
Progressive scan  
NON-INTERLACE MODE  
Progressive scan conversion produces a double number  
of lines per field on the output. The field frequency is not  
changed, while the line frequency is doubled.  
With non-interlaced progressive scan output, line flicker is  
removed because interlace is removed.  
INTERLACE MODE  
Processing for progressive scan is different for two  
successive output fields, e.g. the first output field has a  
median operation on the odd lines, while the second has  
the median operation on the even lines.  
With interlaced progressive scan the output line structure  
and line flicker is less visible (projection TV).  
PROGRESSIVE SCAN CONVERSION  
frame  
frame  
2
1
B
2
B
4
A
1
A
3
A
5
field  
field  
field  
field  
field  
output  
1f , 1f  
H
v
median  
median  
median  
median  
output  
2f , 1f  
H
v
A
1
B
1, 2  
B
2
A
2,3  
A
3
B
3, 4  
B
4
A
4,5  
field  
field  
field  
field  
field  
field  
field  
field  
frame  
1, 1  
frame  
1, 2  
frame  
2, 1  
frame  
2, 2  
a. Non-interlaced output; (625/50/1:1) or (525/60/1:1):  
frame  
1, 1  
frame  
1, 2  
frame  
2, 1  
frame  
2, 2  
b. Interlaced output; (1250/50/2:1) or (1050/60/2:1):  
A
1,1  
B
1,2  
A
2,1  
B
2,2  
field  
field  
field  
field  
MGE028  
frame  
frame  
2
1
Fig.5 Progressive scan conversion.  
8
1996 Oct 25  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
To latter remark, note that recursion is done over a field,  
and the pixel positions one field apart always have a  
vertical offset of one frame line. So averaging is not only  
done in the dimension of time but also in the vertical  
direction. Therefore averaging vertically on e.g. a vertical  
black to white edge would provide a grey result if this was  
not adapted for.  
Noise and cross-colour reduction  
The noise reduction is field recursive with an average ratio  
between fresh and over previous fields averaged  
luminance and chrominance.  
Two operating modes can be used in principal: the fixed  
and the adaptive mode (see Table 6).  
The averaging in chrominance is slaved to the luminance  
averaging. This implies that differences in the  
chrominance are not taken into account for the k-factor  
setting.  
In the fixed mode, the averaging produces a constant  
linear combination of the inputs. Except for k = 1, the fixed  
mode should not be used for normal operation, because of  
its smearing effects.  
The noise reduction scheme effectively decreases both  
noise and cross-colour patterns.  
In the adaptive mode, the averaging ratio switches softly  
on the basis of absolute differences in luminance among  
the inputs. When the absolute difference is low, only a  
small part of the fresh data will be added. When the  
difference is high, much of the fresh data will be taken.  
This occurs in either the situation of movement or where a  
significant vertical contrast is seen.  
The cross-colour pattern does not produce an increase of  
the measured luminance difference, therefore this pattern  
will be averaged over many fields.  
Y
A
k
Y
out  
(1)  
Y
B
FIELD  
MEMORY  
TF1  
TF2  
FILTER  
LIMITER  
FILTER  
MULTIPLIER  
(2)  
k-CURVE  
(3)  
MGE029  
(1) Yout = YA × k + YB × (1 k).  
(2) see Table 9.  
(3) see Fig.11.  
Fig.6 Noise reduction scheme.  
1996 Oct 25  
9
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
Vertical sample rate conversion  
Movie phase detection  
The variable vertical sample rate conversion is performed  
on top of the noise reduced and progressively scanned  
data.  
While processing video, that was originally film  
(25 movement phases per second in the case of 50 Hz  
field rates), median filtering is not needed when fields are  
combined that have the same movement phase. As this  
phase is not generally known, the PROZONIC has a  
detection circuit to help determine it. The detection is  
based on measurement of absolute luminance differences  
between successive input fields, pixel by pixel. These  
differences are summed over all active video and give a  
number every field. In case of video from film with sufficient  
movement, the measured number will alternately be HIGH  
and LOW. With the controlling microcontroller, this data  
can be filtered appropriately to switch to movie processing  
in the correct phase.  
The vertical sample rate conversion is intended to cope  
with the various letter box formats, to be displayed on  
displays with e.g. 16:9 aspect ratio. For this sample rate  
conversion, which usually has both a vertical and a  
horizontal component, the vertical sample rate conversion  
is taken care of in the PROZONIC, while the horizontal  
compression can be done in e.g. TDA8753A or  
SAA4995WP.  
The vertical sample rate conversion can also be used to  
convert from an NTSC 525 lines source to a 625 line  
display, by setting a vertical sample rate conversion factor  
of 65 and necessarily some line-time reduction.  
The PROZONIC has a provision to generate a rectangular  
box, which is position and size programmable. This box  
can be used to enable the measurement in the movie  
phase detection circuit, only within this rectangle.  
Otherwise, the active video part in a field is marked with a  
derivative of the RE pulse.  
Conversion from 625 to 525 lines is possible with  
progressive scan output, by setting a vertical sample rate  
conversion of 56.  
The principle of vertical sample rate conversion is based  
on linear interpolation from two successive lines of video in  
a frame to produce an output line in either a field or a  
frame.  
Box generation  
A rectangular box is defined by the coordinates of the  
left-upper edge (hor_start_box, vert_start_box) and the  
right-lower edge (hor_stop_box, vert_stop_box). The  
reference for the coordinates are the HD positive edge  
(with some processing delay) for the horizontal direction  
and the VD positive edge for the vertical.  
The vertical sample rate conversion factor can be switched  
to the following settings for increasing the number of  
output lines w.r.t. the number of input lines; see Table 1.  
Table 1 Vertical sample rate conversion factor  
The box can serve the following purposes:  
INPUT LINES  
OUTPUT LINES  
FACTOR  
Switch between adaptive and fixed k in noise reduction.  
If k-fixed is set to 0, then the box switches between  
adaptive noise reduced and fully still picture areas. This  
provides an option for producing multi picture (still)  
images. If no noise reduction is desired in the area  
where NR is adaptive, the adaptive setting can be  
programmed with k steps to all zeros.  
2
14  
12  
10  
8
2
1.00  
1.14  
1.16  
1.20  
1.25  
1.33  
1.40  
1.50  
1.60  
1.67  
1.75  
2.00  
16  
14  
12  
10  
8
6
Switch the movie phase detect measurement to a  
defined area of the video.  
10  
4
14  
6
10  
6
16  
10  
14  
4
8
2
Decreasing the number of lines on the display w.r.t. the  
number of input lines is only possible with progressive  
scan output.  
1996 Oct 25  
10  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
RE2  
Read enable for FM2, processed from RE by PROZONIC.  
hor_start_box  
hor_stop_box  
handbook, halfpage  
WE2  
Write enable for FM2, processed from RE by PROZONIC.  
vert_start_box  
HO  
Holds the writing of the LC display when active.  
AUX  
vert_stop_box  
MGE033  
Spare output from line-sequencer.  
VD  
Field frequent reset signal, used in PROZONIC to reset  
line counting for boxing. The rising edge of VD is taken as  
reference. This may be the display related vertical pulse.  
Fig.7 Box dimensions and position.  
Control and microcontroller (SNERT-) interface  
SNRST  
Field frequent asynchronous reset signal, used in  
PROZONIC to reset the communication with  
microcontroller. After the rising edge of SNRST,  
communication is in its defined state. SNRST is also used  
to define the initial phase of the line-sequencer.  
CONTROL SIGNALS  
CK  
Line-locked clock of nominal 27 or 32 MHz. This is the  
system clock, nominally 864 or 1024 × fh, where fh is the  
line frequency. Within the PROZONIC, CK is distributed to  
different blocks.  
SNCL  
microcontroller interface clock signal. This signal is  
transferred asynchronous to CK by a microcontroller  
(UART of 8051 family, mode 0) as communication clock  
signal at a frequency of 1 MHz.  
HD  
Horizontal reference signal. This signal defines with its  
rising edge the start phase of the UV 4 : 1 : 1 format. If the  
HD signal has a period equal to 4 clock periods, the UV  
data will remain in phase without disruptions, once it has  
become in phase. For any mismatch between the applied  
HD to the UV data phase, an appropriate HD delay can be  
set in the PROZONIC. HD is also used to count lines for  
boxing.  
SNDA  
microcontroller interface data signal. This signal is  
transferred or received (asynchronous to CK) by a  
microcontroller (UART of 8051 family, mode 0) as  
communication data signal at 1 MBaud, related to SNCL.  
RE  
EXTERNAL CONTROL  
Master read enable from memory controller or  
The PROZONIC is controlled via the microcontroller  
(SNERT) interface, by sending an address byte and a data  
byte to it, with the controllable items as in the register  
descriptions in Tables 2 and 3.  
ECOBENDIC. This signal controls the memory read  
enable if only one field memory is present. To control two  
field memories, the PROZONIC generates RE1, RE2 and  
WE2 from RE. The vertical sample rate conversion  
function has a major influence on these signals.  
RE1  
Read enable for FM1, processed from RE by PROZONIC.  
1996 Oct 25  
11  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
Table 2 Write registers  
REGISTER  
BIT  
NAME  
FUNCTION  
Register 10H to 13H (Kstep)  
10H  
11H  
12H  
13H  
0 to 3 Kstep0  
step in adaptive curve from k = 116 to k = 18; weight of 1  
step in adaptive curve from k = 18 to k = 28; weight of 1  
step in adaptive curve from k = 28 to k = 38; weight of 2  
step in adaptive curve from k = 38 to k = 48; weight of 2  
step in adaptive curve from k = 48 to k = 58; weight of 4  
step in adaptive curve from k = 58 to k = 68; weight of 4  
step in adaptive curve from k = 68 to k = 78; weight of 8  
step in adaptive curve from k = 78 to k = 88; weight of 8  
4 to 7 Kstep1  
0 to 3 Kstep2  
4 to 7 Kstep3  
0 to 3 Kstep4  
4 to 7 Kstep5  
0 to 3 Kstep6  
4 to 7 Kstep7  
Register 14H (fixed_k)  
14H 0 to 3 fixed_k  
4 to 5 mult  
determines k value in fixed k mode; see Table 8  
weighting of TF2 output; see Table 9  
6
7
_upbox  
_adfix  
microcontroller (_upbox = 0) or box controlled (_upbox = 1); see Table 6  
adaptive (_adfix = 0) or fixed k (_adfix = 1); see Table 6  
Register 15H (Tfilter)  
15H  
0 to 1 Tfilter1_select determines filter1 characteristic; see Table 5  
2 to 7 Tfilter2_select determines filter2 characteristic; see Table 7  
Register 16H (hor_start_box)  
16H  
0 to 7 hor_start_box horizontal start position of box w.r.t. picture  
Register 17H (hor_stop_box)  
17H  
0 to 7 hor_stop_box horizontal stop position of box w.r.t. picture  
Register 18H and 19H (vert_start_box)  
18H (bit 8 = 0)  
19H (bit 8 = 1)  
0 to 7 vert_start_box vertical start position of box w.r.t. picture; bit 8 (MSB) is encoded in the  
address  
Register 1AH and 1BH (vert_stop_box)  
1AH (bit 8 = 0)  
1BH (bit 8 = 1)  
0 to 7 vert_stop_box vertical stop position of box w.r.t. picture; bit 8 (MSB) is encoded in the  
address  
Register 1CH (box generation and UV processing)  
1CH  
0
1
UV8bit  
UVbin  
U/V signals are taken from input as 8-bit values instead of 7-bit  
U/V signals are taken from input as binary signals instead of  
twos complement  
2
inv_box  
en_box  
inversion of box signal (inv_box = 1)  
overall enable box signal  
3
4
en_box_mpd enable box signal to define movie phase detection area  
5
boxPSC  
box generation for progressive scan with more than 511 lines  
reserved  
6, 7  
Register 1DH (reserved)  
1996 Oct 25  
12  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
REGISTER  
Register 1EH (horizontal delay)  
1EH 0 to 2 in_del  
BIT  
NAME  
FUNCTION  
programmable horizontal delay (0 to 7 clock periods) of the luminance data  
input in comparison to the U/V data input (from FM1)  
3, 4  
5, 6  
7
HD_del  
determines 1 to 4 clock pulse shift for horizontal reference HD  
determines 1 to 4 clock pulse shift for WE2 output  
reserved  
WE2_del  
Register 1FH (sequence data)  
1FH 0 to 2 mix  
setting of mixer to 0, 14, 14, 12, 12, 34, 34, 1; setting per line in 1 to 16 lines  
of line sequencer  
3
4
5
6
7
post_zoom  
setting of multiplexer pre or post LM_zoom to MIX; setting per line in  
1 to 16 lines of line sequencer  
post_lfr  
mem_hold  
o_hold  
aux  
setting of multiplexer pre or post LM_lfr to MIX; setting per line in  
1 to 16 lines of line sequencer  
setting of field and line memory hold; setting per line in 1 to 16 lines of line  
sequencer  
setting of output hold, may stop e.g. LC display; setting per line in  
1 to 16 lines of line sequencer  
setting of auxiliary sequencer output signal; setting per line in 1 to 16 lines  
of line sequencer  
Register 20H (sequence length)  
20H  
0 to 3 seq_length  
4 to 7  
setting of sequence length to 1, 2, 3 to 16 lines  
reserved  
Register 21H (field control 1); note 1  
21H  
0
FCM4  
see Fig.12 and Table 10  
1
FCM23  
FCM1  
2
3, 4  
5, 6  
7
fixselUV  
fixselY  
RAM1wr  
defines UV data output; see Fig.12 and Table 11  
defines Y data output; see Fig.12 and Table 11  
selects RAM1 for write operation; note 2; see Fig.13  
Register 22H (field control 2); note 1  
22H  
0
WE2act  
RE1del  
RE2del  
WE2del  
UV_av  
activates field controlled write enable 2 for FM2  
1, 2  
3, 4  
5, 6  
7
line delay for read enable 1 (FM1) w.r.t. RE input (pin 39)  
line delay for read enable 2 (FM2) w.r.t. RE input (pin 39)  
line delay for write enable 2 (FM2) w.r.t. RE input (pin 39)  
UV averaged while luminance signal is median filtered  
Notes  
1. Data will be active after next VD pulse (pin 40).  
2. In normal conditions control bit should be toggled field by field.  
1996 Oct 25  
13  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
Table 3 Read registers  
Table 6 Adaptive/fixed_k selection  
Dynamic box signal, active in user defined rectangular  
part of the picture, enable with en_box, may be inverted  
with inv_box.  
REGISTER  
Register 26H (MPD_LSB)  
26H 0 to 7  
Register 27H (MPD_MSB)  
27H 0 to 7  
BIT  
NAME  
MPD_LSB  
_upbox  
_adfix  
box  
k
0
0
0
0
1
1
1
1
0
0
X(1)  
X(1)  
X(1)  
X(1)  
0
adapt  
adapt  
fixed  
fixed  
fixed  
adapt  
fixed  
adapt  
MPD_MSB  
1
Table 4 Output multiplex control  
1
X(1)  
X(1)  
X(1)  
X(1)  
output_mux[2:0]  
THROUGHPUT  
1
000  
011  
111  
video  
grey  
0
1
sawtooth  
Note  
Table 5 Filter1 characteristic  
1. X = don’t care bits.  
Tfilter1_select[1:0]  
Tfilter1-TRANSFER (z)  
00  
01  
10  
11  
1
12 × z + 1 + 12 × z1  
1
2
12 × z + 12 + 12 × z1  
MGE035  
15  
handbook, halfpage  
10  
IH_TF1I  
(dB)  
5
0
(1)  
5  
(2)  
10  
15  
20  
25  
1/4 f  
1/2 f  
s
s
⁄ ⁄ .  
TF1(z) = 1 2 z + a + 1 2 z1  
(1) a = 1.  
(2) a = 12.  
Fig.8 Characteristic pre-filter TF1.  
14  
1996 Oct 25  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
Table 7 Filter2 characteristic  
Tfilter2_select[5:0]  
Tfilter2-TRANSFER (z)  
12 × z2 + 12 × z + 1 + 12 × z1 + 12 × z2  
HEX  
DECIMAL  
00  
01  
02  
04  
05  
06  
08  
09  
0A  
10  
11  
12  
14  
15  
16  
18  
19  
1A  
20  
21  
22  
24  
25  
26  
28  
29  
2A  
00  
01  
02  
04  
05  
06  
08  
09  
10  
16  
17  
18  
20  
21  
22  
24  
25  
26  
32  
33  
34  
36  
37  
38  
40  
41  
42  
1 × z2 + 12 × z + 1 + 12 × z1 + 1 × z2  
0 × z2 + 12 × z + 1 + 12 × z1 + 0 × z2  
12 × z2 + 1 × z + 1 + 1 × z1 + 12 × z2  
1 × z2 + 1 × z + 1 + 1 × z1 + 1 × z2  
0 × z2 + 1 × z + 1 + 1 × z1 + 0 × z2  
12 × z2 + 0 × z + 1 + 0 × z1 + 12 × z2  
1 × z2 + 0 × z + 1 + 0 × z1 + 1 × z2  
0 × z2 + 0 × z + 1 + 0 × z1 + 0 × z2  
12 × z2 + 12 × z + 2 + 12 × z1 + 12 × z2  
1 × z2 + 12 × z + 2 + 12 × z1 + 1 × z2  
0 × z2 + 12 × z + 2 + 12 × z1 + 0 × z2  
12 × z2 + 1 × z + 2 + 1 × z1 + 12 × z2  
1 × z2 + 1 × z + 2 + 1 × z1 + 1 × z2  
0 × z2 + 1 × z + 2 + 1 × z1 + 0 × z2  
12 × z2 + 0 × z + 2 + 0 × z1 + 12 × z2  
1 × z2 + 0 × z + 2 + 0 × z1 + 1 × z2  
0 × z2 + 0 × z + 2 + 0 × z1 + 0 × z2  
12 × z2 + 12 × z + 0 + 12 × z1 + 12 × z2  
1 × z2 + 12 × z + 0 + 12 × z1 + 1 × z2  
0 × z2 + 12 × z + 0 + 12 × z1 + 0 × z2  
12 × z2 + 1 × z + 0 + 1 × z1 + 12 × z2  
1 × z2 + 1 × z + 0 + 1 × z1 + 1 × z2  
0 × z2 + 1 × z + 0 + 1 × z1 + 0 × z2  
12 × z2 + 0 × z + 0 + 0 × z1 + 12 × z2  
1 × z2 + 0 × z + 0 + 0 × z1 + 1 × z2  
0 × z2 + 0 × z + 0 + 0 × z1 + 0 × z2  
1996 Oct 25  
15  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
MGE037  
MGE036  
15  
15  
handbook, halfpage  
handbook, halfpage  
10  
10  
IH_TF2I  
(dB)  
IH_TF2I  
(dB)  
5
5
(2)  
0
5  
0
(1)  
(2)  
(1)  
5  
10  
15  
20  
25  
10  
15  
20  
25  
1/4 f  
1/2 f  
s
1/4 f  
1/2 f  
s
s
s
TF2(z) = a z2 + b z + 2 c + b z1 + a z2  
.
TF2(z) = a z2 + b z + 2 c + b z1 + a z2  
.
(1) b = 1.  
(2) b = 0.  
(1) c = 0.  
(2) c = 1.  
Fig.9 Characteristic pre-filter TF2 (a = 0; b = 1).  
Fig.10 Characteristic pre-filter TF2 (a = 1; c = 1).  
Table 8 Fixed_k setting  
Table 9 Mult setting  
Fixed_k SETTING [3:0]  
k
MULT SETTING [1:0]  
FACTOR  
HEX  
DECIMAL  
HEX  
DECIMAL  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
0
00  
01  
02  
03  
00  
01  
02  
03  
1
2
4
8
1
2
3
4
5
6
7
8
9
16  
16  
16  
16  
16  
16  
16  
16  
16  
10  
11  
12  
13  
14  
16  
16  
16  
16  
16  
16  
16  
1996 Oct 25  
16  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
MGE034  
1
14/16  
k
12/16  
10/16  
8/16  
6/16  
4/16  
2/16  
0
1
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
128  
input amplitude  
Fig.11 k factor curve (example) from filter TF2 and multiplier (see Fig.6).  
a
FM1  
MUX2  
b
a
a
b
MEDIAN (Y)  
or  
MULTIPLEXER (UV)  
data  
output  
MUX1  
LM1  
MUX4  
LM2  
b
a
b
MUX3  
FM2  
fixselY  
fixselUV  
CONTROL LOGIC  
FCM23  
FCM1  
FCM4  
MGE030  
FM1 and FM2: field memories (external).  
LM1 and LM2: line memories.  
Fig.12 Extract of the Progressive scan-Zoom and Noise reduction IC (PROZONIC) data path.  
17  
1996 Oct 25  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
Table 10 Field controlled output  
FIELD CONTROLLED OUTPUT TO MEDIAN (Y) OR MULTIPLEXER (UV)  
MUX1 MUX2 MUX3 MUX4  
FCM23(1)  
FCM1(2)  
FCM4(3)  
0
0
1
1
1
1
X
X
0
0
1
1
0
1
0
1
0
1
X
FM1  
FM1  
FM1  
FM1  
FM2  
FM2  
FM1  
FM2  
FM1  
X
FM2  
FM2  
FM1  
FM1  
FM2/1H delay  
FM2/1H delay  
FM2  
FM2/1H delay  
FM1/1H delay  
FM2  
FM1/1H delay  
FM1/1H delay  
FM2  
Notes  
1. FCM23 is the field controlled MUX2, MUX3.  
2. FCM1 is the field controlled MUX1.  
3. FCM4 is the field controlled MUX4.  
Table 11 Data output  
fixselY/fixselUV  
DATA OUTPUT FROM  
HEX  
DECIMAL  
00  
01  
02  
03  
00  
01  
02  
03  
MUX2  
MUX4/1H delay  
MUX3  
MEDIAN (Y)/median controlled MULTIPLEXER (UV)  
RAM1  
sequence data 1  
sequence data 2  
to  
(1)  
sequence data n  
from SNERT  
register  
to internal  
processing  
RAM2  
R/W control  
(RAM1wr)  
sequence data 1  
sequence data 2  
to  
(1)  
sequence data n  
MGE031  
(1) n = sequence length + 1  
Fig.13 Internal RAM control.  
18  
1996 Oct 25  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
For each of the functions vert_start_box and  
Microcontroller interface (SNERT)  
vert_stop_box, two addresses are used, in which the LSB  
from the address is taken as an extra MSB for the data.  
This is done because vert_start_box and vert_stop_box  
must be supplied with 9-bit data. All other data from the  
SNERT-bus has only relevance in the 7:0 range.  
In the microcontroller interface the external signals SNDA  
and SNCL are processed to address and data. Data  
enable pulses are derived from the received addresses.  
The data enable pulses are used elsewhere for input  
enabling the delivered data into various control registers.  
During the data phases (phase 8 to 15), each negative  
edge produces a shift pulse for the movie phase detect  
circuit that produces output data on the SNDA signal. The  
data enables for the movie phase detect circuit are active  
in all of the data phases, when an address 26 or 27 has  
been decoded.  
The microcontroller interface operates in a few stages:  
1. SNCL positive and negative edges are sampled  
2. on each negative edge of SNCL and SNDA data is  
shifted in a shift register  
3. starting from phase 0, a counter counts positive edges  
of SNCL  
After an MPD read transmission it is necessary to send a  
second (dummy) transmission to the PROZONIC.  
4. during phase 7, but waited for a negative edge of  
SNCL, so after the 8th negative edge of SNCL, an  
address latch enable pulse is made, whereby the shift  
register contents are taken over in the address register  
5. in the address range 10H to 27H, the addresses are  
decoded in two steps  
6. during phase 15, but waited for a negative edge of  
SNCL, so after the 16th negative edge of SNCL, the  
address has been decoded and will be passed to any  
of the data enable pulses.  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL PARAMETER  
VI  
MIN.  
0.5  
MAX.  
+7  
UNIT  
input voltage  
V
VDDD  
VDDA  
Tstg  
digital supply voltage  
analog supply voltage  
storage temperature  
0.5  
0.5  
65  
0
+7  
V
+7  
V
+150  
70  
°C  
°C  
Tamb  
operating ambient temperature  
1996 Oct 25  
19  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
CHARACTERISTICS  
VDDD = 4.5 to 5.5 V; Tamb = 0 to 70 °C; unless otherwise specified.  
SYMBOL  
Supply  
VDDD  
IDDD  
PARAMETER  
CONDITIONS  
MIN.  
MAX.  
UNIT  
supply voltage  
supply current  
4.5  
5.5  
V
180  
mA  
Digital inputs  
VIL  
LOW level input voltage except CK  
LOW level input voltage for CK  
HIGH level input voltage except CK  
HIGH level input voltage for CK  
input leakage current  
0.5  
0.5  
2.0  
2.4  
+0.8  
V
+0.6  
V
VIH  
VDDD + 0.5  
V
VDDD + 0.5  
V
ILI  
CI  
10  
10  
µA  
pF  
input capacitance  
Digital outputs  
VOH  
VOL  
HIGH level output voltage  
LOW level output voltage  
note 1  
note 1  
2.4  
0
VDDD  
0.6  
V
V
Timing  
TcyCK  
δCK  
tr  
CK cycle time  
27  
40  
ns  
%
CK duty factor tCKH/tCKL  
CK rise time  
60  
5
ns  
ns  
ns  
ns  
ns  
ns  
tf  
CK fall time  
6
tSU  
tHD  
tOH  
tOD  
input data set-up time  
input data hold time  
output data hold time  
output data delay time  
3
3
note 1  
note 1  
3
23  
Data output loads (3-state outputs)  
CL  
output load capacitance  
10  
10  
20  
35  
pF  
pF  
output load capacitance for RE1, RE2, WE2  
and SNDA  
Note  
1. Timings and levels have to be measured with load circuits 1.2 kconnected to 3.0 V (TTL load) and CL = 20 pF.  
1996 Oct 25  
20  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
Input/output timing  
t
t
r
f
2.4 V  
1.5 V  
CLOCK  
CK1, CK2  
0.6 V  
T
cyCKH  
T
cyCK  
t
HD  
t
SU  
2.0 V  
0.8 V  
INPUT  
DATA  
t
OD  
t
OH  
2.4 V  
OUTPUT  
DATA  
0.6 V  
MGE032  
Fig.14 Timing diagram.  
1996 Oct 25  
21  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
APPLICATION INFORMATION  
Table 12 Abbreviations used in Fig.15  
BLND horizontal blanking signal, display related  
The basic application of PROZONIC in a feature box is  
shown in Fig.15. Here, apart from the data streams, the  
‘timed control data’ streams indicate that some memory  
control signals have to be processed by the PROZONIC,  
in order to let the vertical sample rate conversion function  
correctly.  
HDFL  
horizontal synchronization signal, deflection  
related  
HA  
horizontal synchronization signal, acquisition  
related  
HRA  
HRD  
horizontal reference signal, acquisition related  
horizontal reference signal, display related  
Horizontal scaling factors are performed by the memory  
controller SAA4951WP/SAA4952H.  
HRDFL horizontal reference signal, deflection related  
All basic clock signals in the feature box are provided by  
the memory controller, nominal frequencies on the double  
scan parts of the system are 27, 32 or 36 MHz. In any case  
the display frequency is decoupled from the acquisition  
clock.  
IE  
input enable signal  
LLA  
LLD  
line locked clock signal, acquisition related  
line locked clock signal, display related  
LLDFL line locked clock signal, deflection related  
RE read enable signal  
The memory controller supplies the deflection processor  
with clock, horizontal and vertical pulses.  
RSTR reset read signal  
RSTW reset write signal  
The SNERT-bus is used to control the PROZONIC at a  
data rate of typically 1 Mbits/s.  
SCL  
SDA  
serial clock signal (I2C-bus)  
serial data signal (I2C-bus)  
SNERT synchronous no parity eight bit reception and  
transmission (serial control bus)  
SRC  
SWC  
VA  
serial read clock signal  
serial write clock signal  
vertical synchronization signal,  
acquisition related  
VDFL  
vertical synchronization signal,  
deflection related  
1996 Oct 25  
22  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
WE2  
RE2  
n.c.  
+5 V  
C0  
C1  
18,19,  
20  
1,36 16,17 21  
B0  
B1  
24 23  
63,64,  
65,66  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
31  
30  
29  
28  
27  
26  
25  
24  
35  
34  
33  
32  
15  
14  
13  
10  
9
6
29  
30  
31  
32  
35  
36  
37  
38  
25  
26  
27  
28  
7
C2  
B2  
8
C3  
B3  
9
C4  
B4  
10  
11  
12  
13  
2
C5  
B5  
8
FM 2  
C6  
B6  
TMS4C2970  
7
C7  
B7  
6
C8  
B8  
19  
18  
17  
16  
C9  
B9  
3
C10  
C11  
B10  
B11  
4
PROZONIC  
SAA4990H  
5
15,22 14,23  
+5 V  
RSTR  
5,12,22,33,45  
51,58,74  
40,60  
20  
+5 V  
SRC  
RE1  
1.5  
µF  
10  
nF  
220  
nF  
220  
nF  
+5 V  
1,2,4,11,21,34  
46,52,59,73  
10 kΩ  
3
2
4
13  
8
A0  
A1  
D0  
9,25,  
40,62,  
65,66  
0
1
18,19, 1,36 22  
20  
23 21  
8,27,  
60,63,  
68  
59  
24  
25  
26  
27  
28  
29  
30  
31  
19  
20  
21  
22  
28  
29  
30  
31  
32  
33  
34  
35  
24  
25  
26  
27  
76  
75  
72  
71  
70  
69  
68  
67  
80  
79  
78  
77  
48  
49  
50  
53  
54  
55  
56  
57  
42  
43  
44  
47  
9
45  
46  
47  
48  
49  
50  
51  
52  
41  
42  
43  
44  
D1  
D2  
8
Y
(RY)  
(BY)  
A2  
in  
in  
in  
2
3
9
7
7
Y
out  
A3  
D3  
3
61  
67  
64  
6
(RY)  
(BY)  
A4  
D4  
4
out  
out  
5
A5  
D5  
5
ADC  
4
FM 1  
TMS4C2970  
BENDIC  
SAA7158  
A6  
D6  
6
TDA8755  
100 nF  
100 nF  
3
18 nF  
33 nF  
33 nF  
54  
57  
A7  
D7  
7
5
2
A8  
D8  
8
13  
12  
11  
10  
A9  
D9  
9
11  
12  
A10  
A11  
D10  
D11  
10  
11  
10,  
18  
6,23,  
32  
20,21,  
22  
39  
41  
62  
61  
26 19  
23  
24  
15 16 17  
14  
15  
17  
16  
IE  
SWC RSTW WE  
RE  
1
2
0
1
2
SNERT  
BLND  
+5 V  
2
0
1
6
2
13  
11  
3
42  
8
7
4
18  
20  
0
1
2
3
4
5
6
7
8
9
25  
26  
27  
28  
29  
30  
31  
32  
21  
22  
43  
42  
41  
40  
39  
38  
37  
36  
33  
22  
12,24,34,44  
+5 V  
35,44  
10  
ECO 3  
SAA4951  
µC  
S87C654  
2.2 µF  
2,10,23,36  
39  
+5 V  
8
9
VA  
SCL  
SDA  
18,19  
15 14  
37  
1
11  
35  
33  
13  
43  
LLD  
38  
20  
21  
HDFL HRD HRA HRDFL  
LLDFL LLA  
12 MHz  
22 pF  
22 pF  
VDFL  
LLDFL  
DEFLECTION PLL  
ACQUISITION PLL  
DISPLAY PLL  
HA  
HDFL  
MGE025  
Fig.15 Application circuit.  
23  
1996 Oct 25  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
PACKAGE OUTLINE  
QFP80: plastic quad flat package; 80 leads (lead length 1.95 mm); body 14 x 20 x 2.8 mm  
SOT318-2  
y
X
A
64  
65  
41  
40  
Z
E
e
A
2
H
A
E
(A )  
3
E
A
1
w M  
p
θ
pin 1 index  
L
p
b
L
80  
25  
detail X  
1
24  
w M  
Z
v
M
M
D
A
B
b
p
e
D
B
H
v
D
0
5
scale  
10 mm  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.25 2.90  
0.05 2.65  
0.45 0.25 20.1 14.1  
0.30 0.14 19.9 13.9  
24.2 18.2  
23.6 17.6  
1.0  
0.6  
1.0  
0.6  
1.2  
0.8  
mm  
3.2  
0.25  
0.8  
1.95  
0.2  
0.2  
0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-02-04  
97-08-01  
SOT318-2  
1996 Oct 25  
24  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
If wave soldering cannot be avoided, the following  
conditions must be observed:  
SOLDERING  
Introduction  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave)  
soldering technique should be used.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
The footprint must be at an angle of 45° to the board  
direction and must incorporate solder thieves  
downstream and at the side corners.  
Even with these conditions, do not consider wave  
soldering the following packages: QFP52 (SOT379-1),  
QFP100 (SOT317-1), QFP100 (SOT317-2),  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
QFP100 (SOT382-1) or QFP160 (SOT322-1).  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Reflow soldering  
Reflow soldering techniques are suitable for all QFP  
packages.  
The choice of heating method may be influenced by larger  
plastic QFP packages (44 leads, or more). If infrared or  
vapour phase heating is used and the large packages are  
not absolutely dry (less than 0.1% moisture content by  
weight), vaporization of the small amount of moisture in  
them can cause cracking of the plastic body. For more  
information, refer to the Drypack chapter in our “Quality  
Reference Handbook” (order code 9397 750 00192).  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Repairing soldered joints  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
Several techniques exist for reflowing; for example,  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
Wave soldering  
Wave soldering is not recommended for QFP packages.  
This is because of the likelihood of solder bridging due to  
closely-spaced leads and the possibility of incomplete  
solder penetration in multi-lead devices.  
1996 Oct 25  
25  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1996 Oct 25  
26  
Philips Semiconductors  
Preliminary specification  
Progressive scan-Zoom and Noise  
reduction IC (PROZONIC)  
SAA4990H  
NOTES  
1996 Oct 25  
27  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Belgium: see The Netherlands  
Brazil: see South America  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 247 9145, Fax. +7 095 247 9144  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. +65 350 2538, Fax. +65 251 6500  
Colombia: see South America  
Czech Republic: see Austria  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. +45 32 88 2636, Fax. +45 31 57 1949  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580/xxx  
South America: Rua do Rocio 220, 5th floor, Suite 51,  
04552-903 São Paulo, SÃO PAULO - SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 829 1849  
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 3 301 6312, Fax. +34 3 301 4107  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 632 2000, Fax. +46 8 632 2745  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2686, Fax. +41 1 481 7730  
Hungary: see Austria  
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.  
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722  
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66,  
Chung Hsiao West Road, Sec. 1, P.O. Box 22978,  
TAIPEI 100, Tel. +886 2 382 4443, Fax. +886 2 382 4444  
Indonesia: see Singapore  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,  
Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,  
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,  
Internet: http://www.semiconductors.philips.com  
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1996  
SCA52  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
537021/1200/01/pp28  
Date of release: 1996 Oct 25  
Document order number: 9397 750 01435  

相关型号:

SAA4990H/V0

IC SPECIALTY CONSUMER CIRCUIT, PQFP80, PLASTIC, SOT-318, QFP-80, Consumer IC:Other
NXP

SAA4990H/V1

IC SPECIALTY CONSUMER CIRCUIT, PQFP80, PLASTIC, SOT-318, QFP-80, Consumer IC:Other
NXP

SAA4990H/V2

IC SPECIALTY CONSUMER CIRCUIT, PQFP80, PLASTIC, SOT-318, QFP-80, Consumer IC:Other
NXP

SAA4992

Field and line rate converter with noise reduction
NXP

SAA4992H

Field and line rate converter with noise reduction
NXP

SAA4992H

Color Signal Converter, CMOS, PQFP160
PHILIPS

SAA4993H

Field and line rate converter with noise reduction
NXP

SAA4994H

Field and line rate converter with noise reduction
NXP

SAA4995WP

PANorama-IC PAN-IC
NXP

SAA4995WP-T

IC SPECIALTY CONSUMER CIRCUIT, PQCC44, PLASTIC, SOT-187, LCC-44, Consumer IC:Other
NXP

SAA4995WP/V1

IC SPECIALTY CONSUMER CIRCUIT, PQCC44, PLASTIC, SOT-187, LCC-44, Consumer IC:Other
NXP

SAA4995WPA

IC SPECIALTY CONSUMER CIRCUIT, PQCC44, PLASTIC, SOT-187, LCC-44, Consumer IC:Other
NXP