NLAS325US [ONSEMI]

Dual SPST Analog Switch Low Voltage Single Supply; 双SPST模拟开关低电压单电源
NLAS325US
型号: NLAS325US
厂家: ONSEMI    ONSEMI
描述:

Dual SPST Analog Switch Low Voltage Single Supply
双SPST模拟开关低电压单电源

开关
文件: 总12页 (文件大小:120K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NLAS325  
Dual SPST Analog Switch,  
Low Voltage, Single Supply  
The NLAS325 is a dual SPST (Single Pole, Single Throw) switch,  
similar to 1/2 a standard 4066. The device permits the independent  
selection of 2 analog/digital signals. Available in the Ultra–Small 8  
package.  
http://onsemi.com  
The use of advanced 0.6 µ CMOS process, improves the R  
ON  
resistance considerably compared to older higher voltage  
technologies.  
MARKING  
DIAGRAM  
On Resistance is 20 Typical at 5.0 V  
Matching is < 1 Between Sections  
2 – 6 V Operating Range  
Ultra Low < 5 pC Charge Injection  
Ultra Low Leakage < 1 nA at 5.0 V, 25 C  
Wide Bandwidth > 200 MHz, –3 dB  
CMOS/TTL Compatible  
8
8
D
1
L7  
US8  
US SUFFIX  
CASE 493  
1
2000 V ESD (HBM)  
Ron Flatness +/– 6 at 5.0 V  
US8 Package  
L7 = Device Code  
D = Date Code  
Independent Enables; One Positive, One Negative  
PIN ASSIGNMENT  
1
2
NO1  
COM1  
IN2  
3
4
5
NO1  
COM1  
IN2  
1
2
3
4
8
7
6
5
V
CC  
GND  
NC2  
COM2  
IN1  
IN1  
6
7
8
V
CC  
COM2  
NC2  
FUNCTION TABLE  
GND  
On/Off  
Analog  
Analog  
Enable Input  
Switch 1  
Switch 2  
L
Off  
On  
On  
Off  
Figure 1. Pinout  
H
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 9 of this data sheet.  
Semiconductor Components Industries, LLC, 2002  
1
Publication Order Number:  
January, 2002 – Rev. 2  
NLAS325/D  
NLAS325  
MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
*0.5 to )7.0  
*0.5 to )7.0  
*0.5 to )7.0  
*50  
Unit  
V
V
V
V
DC Supply Voltage  
CC  
I
DC Input Voltage  
V
DC Output Voltage  
V
O
I
I
I
I
I
DC Input Diode Current  
DC Output Diode Current  
DC Output Sink Current  
DC Supply Current per Supply Pin  
DC Ground Current per Ground Pin  
Storage Temperature Range  
V < GND  
mA  
mA  
mA  
mA  
mA  
_C  
_C  
_C  
_C/W  
mW  
IK  
I
V
< GND  
O
*50  
OK  
O
$50  
$100  
CC  
GND  
$100  
T
T
T
q
*65 to )150  
260  
STG  
Lead Temperature, 1 mm from Case for 10 Seconds  
Junction Temperature under Bias  
Thermal Resistance  
L
J
)150  
(Note 1)  
250  
JA  
P
Power Dissipation in Still Air at 85_C  
Moisture Sensitivity  
250  
D
MSL  
Level 1  
F
R
Flammability Rating  
Oxygen Index: 28 to 34  
UL 94 V–0 @ 0.125 in  
V
ESD  
ESD Withstand Voltage  
Human Body Model (Note 2)  
Machine Model (Note 3)  
Charged Device Model (Note 4)  
> 2000  
> 200  
N/A  
V
Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those  
indicated may adversely affect device reliability. Functional operation under absolute maximum–rated conditions is not implied. Functional  
operation should be restricted to the Recommended Operating Conditions.  
1. Measured with minimum pad spacing on an FR4 board, using 10 mm–by–1 inch, 2–ounce copper trace with no air flow.  
2. Tested to EIA/JESD22–A114–A.  
3. Tested to EIA/JESD22–A115–A.  
4. Tested to JESD22–C101–A.  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
2.0  
Max  
5.5  
Unit  
V
V
V
V
T
DC Supply Voltage  
CC  
IN  
Digital Select Input Voltage  
GND  
GND  
*55  
5.5  
V
Analog Input Voltage (NC, NO, COM)  
Operating Temperature Range  
Input Rise or Fall Time, SELECT  
V
CC  
V
IS  
)125  
_C  
ns/V  
A
t , t  
V
CC  
V
CC  
= 3.3 V $ 0.3 V  
= 5.0 V $ 0.5 V  
0
0
100  
20  
r
f
DEVICE JUNCTION TEMPERATURE VERSUS  
TIME TO 0.1% BOND FAILURES  
FAILURE RATE OF PLASTIC = CERAMIC  
UNTIL INTERMETALLICS OCCUR  
Junction  
Temperature °C  
Time, Hours  
1,032,200  
419,300  
178,700  
79,600  
Time, Years  
80  
117.8  
47.9  
20.4  
9.4  
90  
1
100  
110  
120  
130  
140  
1
10  
100  
1000  
37,000  
4.2  
TIME, YEARS  
17,800  
2.0  
Figure 2. Failure Rate vs. Time Junction Temperature  
8,900  
1.0  
http://onsemi.com  
2
NLAS325  
DC CHARACTERISTICS – Digital Section (Voltages Referenced to GND)  
Guaranteed Limit  
Symbol  
Parameter  
Condition  
V
*55_C to 25_C  
t85_C t125_C Unit  
CC  
V
IH  
Minimum High–Level Input  
Voltage, Select Inputs  
2.0  
2.5  
3.0  
4.5  
5.5  
1.5  
1.5  
1.5  
V
1.9  
1.9  
1.9  
2.1  
2.1  
2.1  
3.15  
3.85  
3.15  
3.85  
3.15  
3.85  
V
IL  
Maximum Low–Level Input  
Voltage, Select Inputs  
2.0  
2.5  
3.0  
4.5  
5.5  
0.5  
0.6  
0.5  
0.6  
0.5  
0.6  
V
0.9  
0.9  
0.9  
1.35  
1.65  
1.35  
1.65  
1.35  
1.65  
I
I
Maximum Input Leakage  
Current, Select Inputs  
V
= 5.5 V or GND  
0 V to 5.5 V  
$0.2  
$2.0  
$2.0  
m A  
m A  
IN  
IN  
Maximum Quiescent Supply  
Current  
Select and V = V or GND  
5.5  
4.0  
4.0  
8.0  
CC  
IS  
CC  
DC ELECTRICAL CHARACTERISTICS – Analog Section  
Guaranteed Limit  
Symbol  
Parameter  
Condition  
= V or V  
V
*55_C to 25_C  
t85_C t125_C Unit  
CC  
R
R
Maximum “ON” Resistance  
(Figures 16 – 22)  
V
V
2.5  
3.0  
4.5  
5.5  
85  
45  
30  
25  
95  
50  
35  
30  
105  
W
ON  
IN  
IL  
IH  
= GND to V  
55  
IS  
CC  
I
IN  
I v 10.0 mA  
40  
35  
ON Resistance Flatness  
(Figures 16 – 22)  
V
= V or V  
IH  
4.5  
4
4
5
W
FLAT (ON)  
IN  
IL  
I
IN  
I v 10.0 mA  
V
IS  
= 1 V, 2 V, 3.5 V  
I
I
NO or NC Off Leakage  
Current (Figure 8)  
V
V
= V or V  
IH  
5.5  
1
1
10  
10  
100  
100  
nA  
nA  
NC(OFF)  
IN  
IL  
or V = 1.0 V 4.5 V  
COM  
NO(OFF)  
NO  
NC  
I
COM ON Leakage Current  
(Figure 8)  
V
V
= V or V  
IH  
5.5  
COM(ON)  
IN  
IL  
1.0 V or 4.5 V with V  
NO  
NC  
NO  
floating or  
V
NO  
1.0 V or 4.5 V with V  
floating  
V
COM  
= 1.0 V or 4.5 V  
http://onsemi.com  
3
NLAS325  
AC ELECTRICAL CHARACTERISTICS (Input t = t = 3.0 ns)  
r
f
Guaranteed Maximum Limit  
V
V
*55_C to 25_C  
t85_C  
t125_C  
CC  
IS  
Symbol  
Parameter  
Turn–On Time  
Test Conditions  
R = 300 WC = 35 pF  
(V)  
(V) Min Typ* Max Min Max Min Max Unit  
t
t
t
,
L
2.5  
3.0  
4.5  
5.5  
2.0  
2.0  
3.0  
3.0  
5
5
2
2
23  
16  
11  
9
35  
24  
16  
14  
5
5
2
2
38  
27  
19  
17  
5
5
2
2
41  
30  
22  
20  
ns  
ns  
ns  
ON  
L
(Figures 11 and 12)  
(Figures 4 and 5)  
Turn–Off Time  
R = 300 WC, = 35 pF  
L L  
2.5  
3.0  
4.5  
5.5  
2.0  
2.0  
3.0  
3.0  
1
1
1
1
7
5
4
3
12  
10  
6
1
1
1
1
15  
13  
9
1
1
1
1
18  
16  
12  
11  
OFF  
BBM  
(Figures 11 and 12)  
(Figures 4 and 5)  
5
8
Minimum Break–Before–Make  
Time  
V
IS  
= 3.0 V (Figure 3)  
2.5  
3.0  
4.5  
5.5  
2.0  
2.0  
3.0  
3.0  
1
1
1
1
12  
11  
6
1
1
1
1
1
1
1
1
R = 300 WC, = 35 pF  
L L  
5
*Typical Characteristics are at 25_C.  
Typical @ 25, V = 5.0 V  
CC  
C
C
C
C
Maximum Input Capacitance, Select Input  
Analog I/O (switch off)  
8
pF  
IN  
or C  
10  
10  
20  
NO  
NC  
Common I/O (switch off)  
COM  
(ON)  
Feedthrough (switch on)  
ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)  
V
CC  
Typical  
Symbol  
Parameter  
Condition  
V
25°C  
Unit  
BW  
Maximum On–Channel –3dB  
Bandwidth or Minimum Frequency  
Response (Figure 10)  
V
V
= 0 dBm  
3.0  
4.5  
5.5  
145  
170  
175  
MHz  
IN  
centered between V and GND  
IN  
CC  
(Figure 6)  
V
V
Maximum Feedthrough On Loss  
V
V
= 0 dBm @ 100 kHz to 50 MHz  
3.0  
4.5  
5.5  
*2  
*2  
*2  
dB  
dB  
pC  
ONL  
IN  
centered between V and GND  
IN  
CC  
(Figure 6)  
Off–Channel Isolation (Figure 9)  
f = 100 kHz; V = 1 V RMS  
3.0  
4.5  
5.5  
*93  
*93  
*93  
ISO  
IS  
V
IN  
centered between V and GND  
CC  
(Figure 6)  
Q
Charge Injection Select Input to  
Common I/O (Figure 14)  
V
V
GND, F = 20 kHz  
IN = CC to IS  
t = t = 3 ns  
r
3.0  
5.5  
1.5  
3.0  
f
R
= 0 W, C = 1000 pF  
L
IS  
Q = C * D V  
L
OUT  
(Figure 7)  
THD  
VCT  
Total Harmonic Distortion THD +  
Noise (Figure 13)  
F
= 20 Hz to 100 kHz, R = Rgen = 600 W, C = 50 pF  
%
IS  
L
L
V
= 5.0 V sine wave  
PP  
5.5  
0.1  
IS  
Channel–to–Channel Crosstalk  
f = 100 kHz; V = 1 V RMS  
dB  
IS  
V
centered between V and GND  
CC  
5.5  
3.0  
*90  
*90  
IN  
(Figure 6)  
http://onsemi.com  
4
NLAS325  
V
CC  
DUT  
Input  
V
CC  
Output  
GND  
V
OUT  
0.1 m F  
t
BMM  
300 Ω  
35 pF  
90% of V  
90%  
OH  
Output  
Switch Select Pin  
GND  
Figure 3. tBBM (Time Break–Before–Make)  
V
CC  
50%  
50%  
90%  
Input  
DUT  
0 V  
V
CC  
Output  
V
OUT  
V
0.1 m F  
OH  
Open  
90%  
300 Ω  
35 pF  
Output  
V
OL  
Input  
t
t
OFF  
ON  
Figure 4. tON/tOFF  
V
CC  
V
CC  
50%  
50%  
Input  
DUT  
0 V  
300 Ω  
Output  
V
OUT  
V
OH  
Open  
35 pF  
Output  
V
10%  
10%  
OL  
Input  
t
t
ON  
OFF  
Figure 5. tON/tOFF  
http://onsemi.com  
5
NLAS325  
50 Ω  
DUT  
Reference  
Transmitted  
Input  
Output  
50 Generator  
50 Ω  
Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is  
the bandwidth of an On switch. V , Bandwidth and V are independent of the input signal direction.  
ISO  
ONL  
V
V
OUT  
IN  
= Off Channel Isolation = 20 Log ǒ Ǔ for V  
V
V
at 100 kHz  
IN  
ISO  
V
OUT  
= On Channel Loss = 20 Log ǒ Ǔ for V  
at 100 kHz to 50 MHz  
ONL  
IN  
V
IN  
Bandwidth (BW) = the frequency 3 dB below V  
= Use V setup and test to all other switch analog input/outputs terminated with 50  
ONL  
V
CT  
W
ISO  
Figure 6. Off Channel Isolation/On Channel Loss (BW)/Crosstalk  
(On Channel to Off Channel)/VONL  
DUT  
V
CC  
V
IN  
Output  
Open  
GND  
C
L
Output  
Off  
V  
OUT  
Off  
On  
V
IN  
Figure 7. Charge Injection: (Q)  
100  
10  
1
I
COM(ON)  
0.1  
0.01  
I
COM(OFF)  
V
CC  
= 5.0 V  
85  
I
NO(OFF)  
0.001  
–55  
–20  
25  
70  
125  
TEMPERATURE (°C)  
Figure 8. Switch Leakage vs. Temperature  
http://onsemi.com  
6
NLAS325  
+15  
+10  
+5  
0
0
1.0  
Bandwidth  
(ON–RESPONSE)  
2.0  
3.0  
–20  
–40  
0
PHASE SHIFT  
4.0  
5.0  
–5  
Off Isolation  
–10  
–15  
–20  
–25  
6.0  
–60  
7.0  
V
CC  
= 5.0 V  
8.0  
–80  
T = 25_C  
A
V
= 5.0 V  
CC  
9.0  
–30  
–35  
100 300  
T = 25°C  
A
10.0  
0.01  
–100  
0.1  
1
10  
0.01  
0.1  
1
10  
100 200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. Off–Channel Isolation  
Figure 10. Typical Bandwidth and Phase Shift  
30  
25  
20  
15  
10  
30  
25  
20  
15  
10  
5
V
CC  
= 4.5 V  
t
(ns)  
ON  
t
ON  
t
t
(ns)  
3.5  
OFF  
5
0
OFF  
0
–55  
2.5  
3
4
4.5  
5
–40  
25  
Temperature (°C)  
85  
125  
V
CC  
(VOLTS)  
Figure 11. tON and tOFF vs. VCC at 255C  
Figure 12. tON and tOFF vs. Temp  
1
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
V
V
= 3.0 V  
= 3.6 V  
INpp  
CC  
V
CC  
= 5 V  
0.1  
V
INpp  
= 5.0 V  
= 5.5 V  
V
CC  
V
CC  
= 3 V  
0
0.01  
–0.5  
1
10  
FREQUENCY (kHz)  
100  
0
1
2
3
4
5
V
COM  
(V)  
Figure 13. Total Harmonic Distortion  
Plus Noise vs. Frequency  
Figure 14. Charge Injection vs. COM Voltage  
http://onsemi.com  
7
NLAS325  
100  
80  
60  
40  
20  
0
100  
10  
V
= 2.0 V  
CC  
1
0.1  
V
CC  
= 2.5 V  
0.01  
V
= 3.0 V  
V
= 3.0 V  
CC  
CC  
V
= 4.0 V  
5.0  
0.001  
0.0001  
CC  
V
CC  
= 5.0 V  
V
CC  
= 5.5 V  
3.0  
0.00001  
0.0  
1.0  
2.0  
4.0  
6.0  
–40  
–20  
0
20  
60  
80  
100  
120  
Temperature (°C)  
V
IS  
(VDC)  
Figure 15. ICC vs. Temp, VCC = 3 V & 5 V  
Figure 16. RON vs. VCC, Temp = 255C  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
125°C  
25°C  
25°C  
–55°C  
–55°C  
85°C  
85°C  
0.5  
125°C  
0.0  
1.0  
1.5  
(VDC)  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
V (VDC)  
IS  
2.0  
2.5  
3.0  
V
IS  
Figure 17. RON vs Temp, VCC = 2.0 V  
Figure 18. RON vs. Temp, VCC = 2.5 V  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
125°C  
125°C  
85°C  
25°C  
85°C  
25°C  
–55°C  
–55°C  
0.5  
0
0.0  
0
1.0  
1.5  
2.0  
(VDC)  
2.5  
3.0  
3.5  
0.0 0.5  
1.0 1.5  
2.0 2.5  
(VDC)  
3.0 3.5  
4.0 4.5  
V
IS  
V
IS  
Figure 20. RON vs. Temp, VCC = 4.5 V  
Figure 19. RON vs. Temp, VCC = 3.0 V  
http://onsemi.com  
8
NLAS325  
25  
20  
15  
10  
5
25  
125°C  
20  
15  
10  
5
125°C  
25°C  
25°C  
–55°C  
–55°C  
85°C  
85°C  
0
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
V
IS  
(VDC)  
V
IS  
(VDC)  
Figure 21. RON vs. Temp, VCC = 5.0 V  
Figure 22. RON vs. Temp, VCC = 5.5 V  
DEVICE ORDERING INFORMATION  
Device Nomenclature  
Circuit  
Indicator  
Device  
Function  
Package  
Suffix  
Device  
Order Number  
Tape and  
Reel Size  
Technology  
Package Type  
178 mm (7)  
3000 Unit  
NLAS325US  
NL  
AS  
325  
US  
US8  
TAPE TRAILER  
TAPE LEADER  
(Connected to Reel Hub)  
NO COMPONENTS  
160 mm MIN  
NO COMPONENTS  
400 mm MIN  
COMPONENTS  
CAVITY TOP TAPE  
TAPE  
DIRECTION OF FEED  
Figure 23. Tape Ends for Finished Goods  
TAPE DIMENSIONS mm  
4.00  
4.00  
Ğ1.50 TYP  
2.00  
1.75  
3.50 $ 0.25  
+ 0.30  
8.00  
– 0.10  
1
Ğ1.00 ± 0.25 TYP  
DIRECTION OF FEED  
Figure 24. US8 Reel Configuration/Orientation  
http://onsemi.com  
9
NLAS325  
t MAX  
13.0 mm $0.2 mm  
(0.512 in $0.008 in)  
1.5 mm MIN  
(0.06 in)  
50 mm MIN  
(1.969 in)  
20.2 mm MIN  
(0.795 in)  
A
FULL RADIUS  
G
Figure 25. Reel Dimensions  
REEL DIMENSIONS  
Tape Size  
T and R Suffix  
A Max  
G
t Max  
8 mm  
US  
178 mm  
(7 in)  
8.4 mm, + 1.5 mm, –0.0  
(0.33 in + 0.059 in, –0.00)  
14.4 mm  
(0.56 in)  
DIRECTION OF FEED  
BARCODE LABEL  
POCKET  
HOLE  
Figure 26. Reel Winding Direction  
http://onsemi.com  
10  
NLAS325  
PACKAGE DIMENSIONS  
US8  
US SUFFIX  
CASE 493–01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–X–  
A
J
2. CONTROLLING DIMENSION: MILLIMETERS  
3. DIMENSION A" DOES NOT INCLUDE MOLD  
FLASH, PROTRUSION OR GATE BURR. MOLD  
FLASH. PROTRUSION AND GATE BURR SHALL  
NOT EXCEED 0.140 MM (0.0055") PER SIDE.  
4. DIMENSION B" DOES NOT INCLUDE  
INTER-LEAD FLASH OR PROTRUSION.  
INTER-LEAD FLASH AND PROTRUSION SHALL  
NOT E3XCEED 0.140 (0.0055") PER SIDE.  
5. LEAD FINISH IS SOLDER PLATING WITH  
THICKNESS OF 0.0076-0. 0203 MM. (300-800  
INCH).  
8
5
–Y–  
DETAIL E  
B
L
6. ALL TOLERANCE UNLESS OTHERWISE  
SPECIFIED ±0.0508 (0.0002").  
1
4
R
S
G
MILLIMETERS  
INCHES  
MIN  
P
DIM MIN  
MAX  
2.10  
2.40  
0.90  
0.25  
0.35  
MAX  
0.083  
0.094  
0.035  
0.010  
0.014  
U
A
B
C
D
F
1.90  
2.20  
0.60  
0.17  
0.20  
0.075  
0.087  
0.024  
0.007  
0.008  
C
H
–T–  
0.10 (0.004)  
T
K
G
H
J
0.50 BSC  
0.40 REF  
0.020 BSC  
0.016 REF  
SEATING  
PLANE  
D
N
0.10  
0.18  
0.10  
3.20  
6
0.004  
0.007  
0.004  
0.126  
6
M
R 0.10 TYP  
M
0.10 (0.004)  
T
X Y  
K
L
0.00  
3.00  
0
0.000  
0.118  
0
M
N
P
R
S
U
V
_
_
_
_
5
10  
5
10  
V
_
_
_
_
0.28  
0.23  
0.37  
0.60  
0.44  
0.33  
0.47  
0.80  
0.011  
0.009  
0.015  
0.024  
0.017  
0.013  
0.019  
0.031  
0.12 BSC  
0.005 BSC  
F
DETAIL E  
3.8  
1.8 TYP  
0.5 TYP  
0.3 TYP  
1.0  
(mm)  
http://onsemi.com  
11  
NLAS325  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
NLAS325/D  

相关型号:

NLAS325USG

Dual SPST Analog Switch, Low Voltage, Single Supply
ONSEMI

NLAS325_06

Dual SPST Analog Switch, Low Voltage, Single Supply
ONSEMI

NLAS3699

Dual DPDT Ultra-Low RON Switch
ONSEMI

NLAS3699B

Dual DPDT Ultra−Low RON Switch
ONSEMI

NLAS3699BMN1R2G

Dual DPDT Ultra−Low RON Switch
ONSEMI

NLAS3699MN1R2G

Dual DPDT Ultra-Low RON Switch
ONSEMI

NLAS3699_05

Dual DPDT Ultra-Low RON Switch
ONSEMI

NLAS3799

Dual DPDT Ultra−Low RON Switch
ONSEMI

NLAS3799B

Dual DPDT Ultra−Low RON Switch
ONSEMI

NLAS3799BL

Dual DPDT Ultra−Low RON Switch
ONSEMI

NLAS3799BLMNR2G

Dual DPDT Ultra−Low RON Switch
ONSEMI

NLAS3799BMNR2G

Dual DPDT Ultra−Low RON Switch
ONSEMI