NCP1595CMNTWG [ONSEMI]

SWITCHING REGULATOR;
NCP1595CMNTWG
型号: NCP1595CMNTWG
厂家: ONSEMI    ONSEMI
描述:

SWITCHING REGULATOR

转换器
文件: 总12页 (文件大小:129K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP1595, NCP1595A  
Current Mode PWM  
Converter for Low Voltage  
Outputs  
The NCP1595/NCP1595A is a current mode PWM buck converter  
with integrated power switch and synchronous rectifier. It can provide  
up to 1.5 A output current with high conversion efficiency. High  
frequency PWM control scheme can provide a low output ripple noise.  
Thus, it allows the usage of small size passive components to reduce  
the board space. In a low load condition, the controller will  
automatically change to PFM mode for provides a higher efficiency at  
low load. Additionally, the device includes soft−start, thermal  
shutdown with hysteresis, cycle−by−cycle current limit, and short  
circuit protection. This device is available in compact 3x3 DFN  
package.  
http://onsemi.com  
1
DFN6 3*3 MM, 0.95 PITCH  
CASE 506AH  
Features  
MARKING DIAGRAMS  
High Efficiency 95% @ 3.375 V  
Synchronous Rectification for Higher Efficiency in PWM Mode  
Integrated MOSFET  
1
1
N1595  
ALYW  
G
1595A  
ALYW  
G
Fully Internal Compensation  
High Switching Frequency, 1.0 MHz  
Low Output Ripple  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= Pb−Free Package  
Cycle−by−cycle Current Limit  
Current Mode Control  
Short Circuit Protection  
Built−in Slope Compensation for Current Mode PWM Converter  
$1.5% Reference Voltage  
PIN CONNECTIONS  
Thermal Shutdown with Hysteresis  
Ext. Adjustable Output Voltage  
Fast Transient Response  
FB  
GND  
LX  
NC  
VCC  
VCCP  
FB  
GND  
LX  
EN  
VCC  
VCCP  
Low Profile and Minimum External Components  
Designed for Use with Ceramic Capacitor  
Compact 3x3 DFN Package  
1595  
1595A  
These are Pb−Free Devices  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 11 of this data sheet.  
Typical Applications  
Hard Disk Drives  
USB Power Device  
Wireless and DSL Modems  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
October, 2006 − Rev. 2  
NCP1595/D  
NCP1595, NCP1595A  
L1  
V
= 4.0 V to 5.5 V  
V
= 0.8 V to 0.9 x V  
OUT IN  
IN  
LX  
VCCP  
R1  
NCP1595  
GND  
FB  
VCC  
EN  
C1  
C2  
R2  
Figure 1. Typical Operating Circuit  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
Power Supply (Pin 4, 5)  
V
7.0  
−0.3 (DC)  
V
IN  
−1.0 (100 ns)  
Input / Output Pins  
Pin 1,3,6  
V
6.5,  
−0.3 (DC)  
−1.0 (100 ns)  
V
IO  
Thermal Characteristics  
3x3 DFN Plastic Package  
Maximum Power Dissipation @ T = 25°C  
P
1450  
68.5  
mW  
°C/W  
A
D
Thermal Resistance Junction−to−Air  
Operating Junction Temperature Range (Note 4)  
Operating Ambient Temperature Range  
Storage Temperature Range  
R
q
JA  
T
−40 to + 150  
−40 to + 85  
− 55 to +150  
1
°C  
°C  
°C  
J
T
A
T
stg  
Moisture Sensitivity Level (Note 3)  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
NOTE: ESD data available upon request.  
1. This device series contains ESD protection and exceeds the following tests:  
Human Body Model (HBM) 2.0 kV per JEDEC standard: JESD22−A114.  
Machine Model (MM) 200 V per JEDEC standard: JESD22−A115.  
2. Latchup Current Maximum Rating: 150 mA per JEDEC standard: JESD78.  
3. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J−STD−020A.  
4. The maximum package power dissipation limit must not be exceeded.  
TJ(max) * TA  
PD  
+
RqJA  
http://onsemi.com  
2
 
NCP1595, NCP1595A  
ELECTRICAL CHARACTERISTICS  
(V = 5.0 V, V  
IN  
= 1.2 V, T = 25°C for typical value, −40°C v T v 85°C for min/max values unless otherwise noted)  
OUT  
A
A
Characteristic  
Symbol  
Min  
4.0  
3.2  
Typ  
Max  
5.5  
Unit  
V
Operating Voltage  
V
IN  
Under Voltage Lockout Threshold  
Under Voltage Lockout hysteresis  
P FET Leakage Current (Pin 5, 4)  
V
3.5  
180  
3.8  
V
UVLO  
UVLO_HYS  
V
mV  
mA  
I
LEAK−P  
T = 25°C  
A
1.0  
1.0  
10  
15  
A
T = −40°C to 85°C  
N FET Leakage Current (Pin 3, 2)  
I
mA  
LEAK−N  
T = 25°C  
10  
15  
A
T = −40°C to 85°C  
A
FEEDBACK VOLTAGE  
FB Input Threshold (T = −40°C to 85°C)  
V
0.788  
2.0  
0.800  
10  
0.812  
100  
V
nA  
%
A
FB  
FB Input Current  
I
FB  
Overvoltage Protect Higher than FB Threshold (T = 25°C)  
V
5.0  
10.0  
A
OVP  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold (Note 5)  
Hysteresis  
T
TBD  
160  
30  
°C  
°C  
SHDN  
T
SDHYS  
PWM SMPS MODE  
Minimum ON−Time  
TON  
F
100  
1.0  
0.2  
ns  
MHz  
W
MIN  
Switching Frequency (T = −40°C to 85°C)  
0.8  
1.2  
0.3  
A
OSC  
Internal PFET ON−Resistance (I = 100 mA, V = 5.0 V, T = 25°C)  
(Note 5)  
R
LX  
IN  
A
DS(ON)_P  
Internal NFET ON−Resistance (I = 100 mA, V = 5.0 V, T = 25°C)  
R
0.15  
0.22  
W
LX  
IN  
A
DS(ON)_N  
(Note 5)  
Maximum Duty Cycle  
D
I
100  
%
ms  
A
MAX  
Soft−Start Time (V = 5.0 V, V = 1.2 V, I  
= 0 mA, T = 25°C) (Note 6)  
T
1.0  
2.5  
IN  
o
LOAD  
A
SS  
Main PFET Switch Current Limit (Note 5)  
ENABLE (NCP1595A)  
2.0  
LIM  
Enable Threshold High (NCP1595A Only)  
Enable Threshold Low  
V
1.8  
V
V
EN_H  
V
0.4  
EN_L  
Enable bias current ( EN = 0 V)  
Total Device  
I
500  
TBD  
nA  
EN  
Quiescent Current Into V  
(V = 5 V, V = 1.0 V, T = 25°C)  
I
10  
900  
1.5  
mA  
mA  
mA  
CCP  
IN  
FB  
A
CCP  
Quiescent Current Into V (V = 5 V, V = 1.0 V, T = 25°C)  
I
CC  
IN  
FB  
A
CC  
Shutdown Quiescent Current into V and V  
(NCP1595A Only)  
I
CC_SD  
3.0  
CC  
CCP  
(EN = 0, V = 5 V, V = 1.0 V, T = 25°C)  
IN  
FB  
A
5. Values are design guarantee.  
6. Design guarantee, value depends on voltage at V  
.
OUT  
http://onsemi.com  
3
 
NCP1595, NCP1595A  
PIN FUNCTION DESCRIPTIONS  
Pin #  
NCP1595  
1
Symbol  
Pin Description  
FB  
Feedback pin. Part is internally compensated. Only necessary to place a voltage divider or connect the out-  
put directly to this pin.  
2
GND  
LX  
Ground  
3
Pin connected internally to power switch. Connect externally to inductor.  
Power connection to the power switch.  
IC power connection.  
4
VCCP  
VCC  
NC  
5
6
No Connection  
NCP1595A  
1
FB  
Feedback pin. Part is internally compensated. Only necessary to place a voltage divider or connect the out-  
put directly to this pin.  
2
3
4
5
6
GND  
LX  
Ground  
Pin connected internally to power switch. Connect externally to inductor.  
Power connection to the power switch.  
VCCP  
VCC  
EN  
IC power connection.  
Device Enable pin. This pin has an internal current source pull up. No connect is enable the device. With this  
pin pulled down below 0.4 V, the device is disabled and enters the shutdown mode.  
VCCP  
VCC  
Power Reset  
Under Voltage  
Logout  
Thermal  
+
NC/EN  
Shutdown  
Oscillator  
V
IN  
Over Voltage  
Protection  
C1  
Soft Start  
V
= 0.8 V  
OUT  
L1  
LX  
to 0.9   V  
IN  
+
FB  
+
+
Control Logic  
R1  
R2  
C2  
GND  
Figure 2. Detail Block Diagram  
http://onsemi.com  
4
NCP1595, NCP1595A  
EXTERNAL COMPONENT REFERENCE DATA  
Device  
V
Inductor Model  
Inductor (L1)  
C
IN  
(C1)  
C (C2)  
OUT  
R1  
R2  
OUT  
NCP1595/  
NCP1595A  
3.3 V  
2.5 V  
1.5 V  
1.2 V  
CDC5D23 3R3 (1 A)  
CDRH6D38 3R3 (1.5 A)  
3.3 mH  
22 mF  
22 mF x 2  
22 mF  
22 mF x 2  
31 k  
10 k  
NCP1595/  
NCP1595A  
CDC5D23 3R3 (1 A)  
CDRH6D38 3R3 (1.5 A)  
3.3 mH  
3.3 mH  
3.3 mH  
22 mF  
22 mF x 2  
22 mF  
22 mF x 2  
21 k  
8 k  
10 k  
10 k  
10 k  
NCP1595/  
NCP1595A  
CDC5D23 3R3 (1 A)  
CDRH6D38 3R3 (1.5 A)  
22 mF  
22 mF x 2  
22 mF  
22 mF x 2  
NCP1595/  
NCP1595A  
CDC5D23 3R3 (1 A)  
CDRH6D38 3R3 (1.5 A)  
22 mF  
22 mF x 2  
22 mF  
22 mF x 2  
5 k  
http://onsemi.com  
5
NCP1595, NCP1595A  
TYPICAL OPERATING CHARACTERISTICS  
0.815  
0.810  
0.805  
0.800  
0.795  
0.790  
0.785  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
−40  
0
25  
85  
−40  
0
25  
85  
LOW SIDE AMBIENT TEMPERATURE, (T /°C)  
AMBIENT TEMPERATURE, (T /°C)  
A
A
Figure 3. Switch ON Resistance vs.  
Temperature  
Figure 4. Feedback Input Threshold vs.  
Temperature  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
3.0  
2.8  
2.5  
2.3  
2.0  
1.8  
1.5  
−40  
0
25  
85  
−40  
0
25  
85  
AMBIENT TEMPERATURE, (T /°C)  
AMBIENT TEMPERATURE, (T /°C)  
A
A
Figure 5. Switching Frequency vs.  
Temperature  
Figure 6. Main P−FET Current Limit vs.  
Temperature  
1200  
1100  
1000  
900  
6
5
4
3
2
1
0
800  
700  
600  
−40  
0
25  
85  
−40  
0
25  
85  
AMBIENT TEMPERATURE, (T /°C)  
AMBIENT TEMPERATURE, (T /°C)  
A
A
Figure 7. Quiescent Current Into VCC vs.  
Figure 8. Shutdown Quiescent Current vs.  
Temperature  
Temperature  
http://onsemi.com  
6
NCP1595, NCP1595A  
100  
90  
1.5  
1.0  
V
= 4.0 V  
V
= 3.3 V  
IN  
OUT  
L = 3.3 mH  
V
= 5.0 V  
IN  
C
C
= 22 mF  
= 22 mF  
IN  
OUT  
80  
0.5  
70  
V
= 4.0 V  
= 5.0 V  
60  
50  
40  
30  
20  
0.0  
IN  
V
IN  
−0.5  
−1.0  
−1.5  
V
= 3.3 V  
OUT  
L = 3.3 mH  
C
C
= 22 mF  
= 22 mF  
IN  
OUT  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
Figure 9. Output Voltage Change vs. Output  
Current  
Figure 10. Efficiency vs. Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
1.5  
1.0  
V
= 1.8 V  
OUT  
V
= 4.0 V  
IN  
L = 3.3 mH  
C
C
V
= 5.0 V  
= 22 mF  
= 22 mF  
IN  
IN  
OUT  
0.5  
V
= 4.0 V  
IN  
0.0  
V
= 5.0 V  
IN  
−0.5  
−1.0  
−1.5  
V
= 1.8 V  
OUT  
L = 3.3 mH  
C
C
= 22 mF  
IN  
OUT  
= 22 mF  
10000  
10  
100  
1000  
10000  
10  
100  
1000  
Figure 11. Output Voltage Change vs.  
Output Current  
Figure 12. Efficiency vs. Output Current  
1.5  
1.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
V
= 1.2 V  
OUT  
V
= 4.0 V  
IN  
L = 3.3 mH  
C
C
= 22 mF  
= 22 mF  
IN  
OUT  
0.5  
V
= 5.0 V  
IN  
V
= 4.0 V  
IN  
0.0  
V
= 5.0 V  
IN  
−0.5  
−1.0  
−1.5  
V
= 1.2 V  
OUT  
L = 3.3 mH  
C
C
= 22 mF  
= 22 mF  
IN  
OUT  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
Figure 14. Output Voltage Change vs.  
Output Current  
Figure 13. Efficiency vs. Output Current  
http://onsemi.com  
7
NCP1595, NCP1595A  
(V = 5 V, I  
IN  
= 100 mA, L = 3.3 mH, C  
= 20 mF)  
(V = 5 V, I  
IN  
= 700 mA, L = 3.3 mH, C  
= 20 mF)  
LOAD  
OUT  
LOAD  
OUT  
Upper Trace: L Pin Switching Waveform, 2 V / div.  
Upper Trace: L Pin Switching Waveform, 2 V / div.  
X
X
Middle Trace: Output Ripple Voltage, 20 mV / div.  
Lower Trace: Inductor Current, 1 A / div.  
Middle Trace: Output Ripple Voltage, 20 mV / div.  
Lower Trace: Inductor Current, 1 A / div.  
Figure 15. DCM Switching Waveform for  
Figure 16. CCM Switching Waveform for  
VOUT = 3.3 V  
VOUT = 3.3 V  
(V = 5 V, I  
IN  
= 100 mA, L = 3.3 mH, C  
= 20 mF)  
(V = 5 V, I  
IN  
= 700 mA, L = 3.3 mH, C  
= 20 mF)  
LOAD  
OUT  
LOAD  
OUT  
Upper Trace: L Pin Switching Waveform, 2 V / div.  
Upper Trace: L Pin Switching Waveform, 2 V / div.  
X
X
Middle Trace: Output Ripple Voltage, 20 mV / div.  
Lower Trace: Inductor Current, 1 A / div.  
Middle Trace: Output Ripple Voltage, 20 mV / div.  
Lower Trace: Inductor Current, 1 A / div.  
Figure 17. DCM Switching Waveform for  
Figure 18. CCM Switching Waveform for  
VOUT = 1.2 V  
VOUT = 1.2 V  
(V = 5 V, I  
IN  
= 10 mA, L = 3.3 mH, C  
= 20 mF x 2)  
(V = 5 V, I  
= 10 mA, L = 3.3 mH, C  
= 20 mF x 2)  
LOAD  
OUT  
IN  
LOAD  
OUT  
Upper Trace: Input Voltage, 2 V/ div.  
Middle Trace: Output Voltage, 1 V/ div.  
Lower Trace: Input Current, 1 A / div.  
Upper Trace: Input Voltage, 2 V/ div.  
Middle Trace: Output Voltage, 1 V / div.  
Lower Trace: Input Current, 1 A / div.  
Figure 19. Soft−Start Waveforms for VOUT = 3.3 V  
Figure 20. Soft−Start Waveforms for VOUT = 1.2 V  
http://onsemi.com  
8
NCP1595, NCP1595A  
(V = 5 V, L = 3.3 mH, C  
= 20 mF x 2)  
(V = 5 V, L = 3.3 mH, C  
= 20 mF x 2)  
IN  
OUT  
IN  
OUT  
Upper Trace: Output Dynamic Voltage, 100 mV / div.  
Lower Trace: Output Current, 500 mA / div.  
Upper Trace: Output Dynamic Voltage, 100 mV / div.  
Lower Trace: Output Current, 500 mA / div.  
Figure 21. Load Regulation for VOUT = 3.3 V  
Figure 22. Load Regulation for VOUT = 3.3 V  
(V = 5 V, L = 3.3 H, C  
= 20 mF x 2)  
(V = 5 V, L = 3.3 H, C  
= 20 mF x 2)  
IN  
OUT  
IN  
OUT  
Upper Trace: Output Dynamic Voltage, 100 mV / div.  
Lower Trace: Output Current, 500 mA / div.  
Upper Trace: Output Dynamic Voltage, 100 mV / div.  
Lower Trace: Output Current, 500 mA / div.  
Figure 23. Load Regulation for VOUT = 1.2 V  
Figure 24. Load Regulation for VOUT = 1.2 V  
http://onsemi.com  
9
NCP1595, NCP1595A  
DETAILED OPERATING DESCRIPTION  
Introduction  
Soft−Start and Current Limit  
NCP1595 operates as a current mode buck converter with  
switching frequency at 1.0 MHz. The P−Channel main  
switch is set by the positive edge of the clock cycle going  
into the PWM latch. The main switch is reset by the  
PWM latch in the following three cases:  
A soft start circuit is internally implemented to reduce the  
in−rush current during startup. This helps to reduce the  
output voltage overshoot.  
The current limit is set to allow peak switch current in  
excess of 2 A. The intended output current of the system is  
1.5 A. The ripple current is calculated to be approximately  
350 mA with a 3.3 mH inductor. Therefore, the peak current  
at 1.5 A output will be approximately 1.7 A. A 2 A set point  
will allow for transient currents during load step. The current  
limit circuit is implemented as a cycle−by−cycle current  
limit. Each on−cycle is treated as a separate situation.  
Current limiting is implemented by monitoring the  
P−Channel switch current buildup during conduction with a  
current limit comparator. The output of the current limit  
comparator resets the PWM latch, immediately terminating  
the current cycle.  
1. PWM comparator output trips as the peak inductor  
current signal reaches a threshold level established  
by the error amplifier.  
2. The inductor current has reached the current limit.  
3. Overvoltage at output occurs.  
After a minimum dead time, the N−Channel synchronized  
switch will turn on and the inductor current will ramp down.  
If the inductor current ramps down to zero before the  
initiation of next clock cycle, the regulator runs at  
discontinuous conduction mode (DCM). Otherwise the  
regulator is at continuous conduction mode (CCM). The  
N−Channel switch will turn off when the clock cycle starts.  
The duty cycle is given by the ratio of output voltage to input  
voltage. The duty cycle is allowed to go to 100% to increase  
transient load response when going from light load to heavy  
load.  
Over−Voltage Protection  
Overvoltage occurs when the feedback voltage exceeds  
5% of its regulated voltage. In this case, the P−Channel main  
switch will be reset and the N−Channel synchronized switch  
is turn on to sink current from the output voltage which helps  
to drop its feedback voltage back to the regulated voltage.  
Error Amplifier and Slope Compensation  
A fully internal compensated error amplifier is provided  
inside NCP1595. No external circuitry is needed to stabilize  
the device. The error amplifier provides an error signal to the  
PWM comparator by comparing the feedback voltage  
(800 mV) with internal voltage reference of 1.2 V.  
Current mode converter can exhibit instability at duty  
cycles over 50%. A slope compensation circuit is provided  
inside NCP1595 to overcome the potential instability. Slope  
compensation consists of a ramp signal generated by the  
synchronization block and adding this to the inductor  
current signal. The summed signal is then applied to the  
PWM comparator.  
Thermal Shutdown  
Internal Thermal Shutdown circuitry is provided to  
protect the integrated circuit in the event when maximum  
junction temperature is exceeded. When activated, typically  
at 160°C, the shutdown signal will disable the P−Channel  
and N−Channel switch. The thermal shutdown circuit is  
designed with 30°C of hysteresis. This means that the  
switching will not start until the die temperature drops by  
this amount. This feature is provided to prevent catastrophic  
failures from accidental device overheating. It is not  
intended as a substitute for proper heat sinking.  
NCP1595 is contained in the thermally enhanced  
DFN package.  
http://onsemi.com  
10  
NCP1595, NCP1595A  
APPLICATION INFORMATION  
Output Voltage Selection  
The output voltage is programmed through an external  
resistor divider connect from V to FB then to GND.  
For internal compensation and noise immunity, the  
resistor from FB to GND should be in 10 k to 20 k ranges.  
The relationship between the output voltage and feedback  
resistor is given by:  
ripple current, input voltage, output voltage, output current  
and operation frequency, the inductor value is given by:  
OUT  
VOUT  
VOUT  
ǒ1 * Ǔ  
VIN  
(eq. 2)  
DIL  
+
 
L   FSW  
DIL : peak to peak inductor ripple current  
L: inductor value  
FSW: switching frequency  
  ǒ1 ) R1Ǔ  
(eq. 1)  
VOUT + VFB  
After selected a suitable value of the inductor, it should be  
check out the inductor saturation current. The saturation  
current of the inductor should be higher than the maximum  
load plus the ripple current.  
R2  
V
V
: Output voltage  
: Feedback Voltage  
OUT  
FB  
R1: Feedback resistor from V  
to FB.  
OUT  
DIL  
R2: Feedback resistor from FB to GND.  
(eq. 3)  
DIL(MAX) + DIOUT(MAX)  
)
2
Input Capacitor selection  
D
D
: Maximum inductor current  
: Maximum output current  
IL(MAX)  
In the PWM buck converter, the input current is pulsating  
current with switching noise. Therefore, a bypass input  
capacitor must choose for reduce the peak current drawn  
from the power supply. For NCP1595, low ESR ceramic  
capacitor of 10 mF should be used for most of cases. Also,  
the input capacitor should be placed as close as possible to  
IOUT(MAX)  
Output Capacitor selection  
Output capacitor value is based on the target output ripple  
voltage. For NCP1595, the output capacitor is required a  
ceramic capacitors with low ESR value. Assume buck  
converter duty cycle is 50%. The output ripple voltage in  
PWM mode is given by:  
the V  
pin for effective bypass the supply noise.  
CCA  
Inductor selection  
The inductor parameters are including three items, which  
are DC resistance, inductor value and saturation current.  
Inductor DC resistance will effect the convector overall  
efficiency, low DC resistor value can provide a higher  
efficiency. Thus, inductor value are depend on the inductor  
1
ǒ
) ESRǓ(eq. 4)  
DVOUT [ DIL  
 
4   FSW   COUT  
In general, value of ceramic capacitor using 20 mF should  
be a good choice.  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NCP1595MNR2G  
DFN−6  
(Pb−Free)  
3000 / Tape & Reel  
3000 / Tape & Reel  
NCP1595AMNR2G  
DFN−6  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
11  
NCP1595, NCP1595A  
PACKAGE DIMENSIONS  
DFN6 3*3 MM, 0.95 PITCH  
CASE 506AH−01  
ISSUE O  
NOTES:  
A
D
1. DIMENSIONS AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMESNION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.25 AND 0.30  
MM FROM TERMINAL.  
B
E
PIN 1  
REFERENCE  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
MILLIMETERS  
DIM MIN  
0.80  
A1 0.00  
NOM MAX  
2X  
A
0.90  
0.03  
1.00  
0.05  
0.15  
C
A3  
b
0.20 REF  
0.40  
2X  
0.35  
0.45  
2.60  
1.70  
D
3.00 BSC  
2.50  
3.00 BSC  
1.60  
0.95 BSC  
−−−  
0.40  
0.15  
C
TOP VIEW  
D2 2.40  
E
E2 1.50  
e
K
L
0.10  
C
C
0.21  
0.30  
−−−  
0.50  
A
6X  
SEATING  
PLANE  
0.08  
(A3)  
C
SOLDERING FOOTPRINT*  
SIDE VIEW  
D2  
A1  
0.450  
0.0177  
0.950  
0.0374  
6X L  
4X  
e
1
6
3
4
E2  
6X K  
1.700  
0.0685  
3.31  
0.130  
6X b  
(NOTE 3)  
0.10 C A B  
0.05  
C
2.60  
BOTTOM VIEW  
0.63  
0.1023  
SCALE 10:1  
0.025  
mm  
inches  
ǒ
Ǔ
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer  
purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5773−3850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP1595/D  

相关型号:

NCP1595MNR2G

Current Mode PWM Converter for Low Voltage Outputs
ONSEMI

NCP1595MNT2G

Synchronous GBuck Regulator
ONSEMI

NCP1595_12

1 MHz, 1.5 A Synchronous Buck Regulator
ONSEMI

NCP1595_14

Synchronous GBuck Regulator
ONSEMI

NCP1596

1.5 MHz Current Mode PWM Buck Down Converter
ONSEMI

NCP1596A

1.5 A, 1.5 MHz Current Mode PWM Buck Down Converter
ONSEMI

NCP1596AMNTWG

1.5 A, 1.5 MHz Current Mode PWM Buck Down Converter
ONSEMI

NCP1596MNTWG

1.5 MHz Current Mode PWM Buck Down Converter
ONSEMI

NCP1597A

1 MHz, 2.0 A Synchronous Buck Regulator
ONSEMI

NCP1597AMNTWG

1 MHz, 2.0 A Synchronous Buck Regulator
ONSEMI

NCP1597B

1 MHz, 2 A Synchronous Buck Regulator
ONSEMI

NCP1597BMNTWG

1 MHz, 2 A Synchronous Buck Regulator
ONSEMI