NCP1596AMNTWG [ONSEMI]

1.5 A, 1.5 MHz Current Mode PWM Buck Down Converter; 1.5 A , 1.5 MHz的电流模式PWM降压降转换器
NCP1596AMNTWG
型号: NCP1596AMNTWG
厂家: ONSEMI    ONSEMI
描述:

1.5 A, 1.5 MHz Current Mode PWM Buck Down Converter
1.5 A , 1.5 MHz的电流模式PWM降压降转换器

转换器
文件: 总12页 (文件大小:207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP1596A  
1.5 A, 1.5 MHz Current  
Mode PWM Buck Down  
Converter  
The NCP1596A is a current mode PWM buck converter with  
integrated power switch. It can provide up to 1.5 A output current with  
high conversion efficiency. High frequency PWM control scheme can  
provide a low output ripple noise. Thus, it allows the usage of small  
size passive components to reduce the board space. In a low load  
condition, the controller will automatically change to PFM mode  
which provides a higher efficiency at low load. Additionally, the  
device includes softstart, thermal shutdown with hysteresis,  
cyclebycyclecurrent limit, and short circuit protection. This device  
is available in a compact 3x3 DFN package.  
http://onsemi.com  
1
6 PIN DFN 3x3  
MN SUFFIX  
CASE 506AH  
Features  
High Efficiency up to 90%, 1 A @ 3.3 V, 75% @ 1.2 V  
Fully Internal Compensation  
MARKING DIAGRAM  
1
1596A  
ALYW  
G
Low Output Voltage Ripple, 20 mV Typical  
1.5% Reference Voltage  
High PWM Switching Frequency, 1.5 MHz  
Automatic PWM / PFM Switchover at Light Load  
Builtin 1 ms Digital Soft Start  
1596A = Specific Device Code  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
Cyclebycycle Current Limit  
Thermal Shutdown with Hysteresis  
Internal UVLO Protection  
Ext. Adjustable Output Voltage  
Low Profile and Minimum External Components  
Designed for use with Ceramic Capacitor  
Compact 3x3 DFN Package  
PIN CONNECTIONS  
FB  
GND  
LX  
EN  
VCC  
VCCP  
These are PbFree Devices  
(Top View)  
Typical Applications  
Hard Disk Drives  
USB Power Device  
Wireless and DSL Modems  
ORDERING INFORMATION  
Device  
NCP1596AMNTWG  
Package  
Shipping  
3000 /  
Tape & Reel  
DFN6  
(PbFree)  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
© Semiconductor Components Industries, LLC, 2009  
1
Publication Order Number:  
June, 2009 Rev. 0  
NCP1596A/D  
NCP1596A  
L1  
V
IN  
= 4.0 V to 5.5 V  
V = 0.8 V to 0.9 x V  
OUT IN  
LX  
VCCP  
NCP1596A  
R1  
D1  
VCC  
C1  
C2  
EN  
FB  
GND  
R2  
Figure 1. Typical Operating Circuit  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
Power Supply (Pins 4, 5)  
V
IN  
6.0  
V
0.3 (DC)  
1.0 (100 ns)  
Input / Output Pins  
Pins 1, 3, 6  
V
IO  
6.0  
V
0.3 (DC)  
1.0 (100 ns)  
Thermal Characteristics  
3x3 DFN Plastic Package  
Maximum Power Dissipation @ T = 25°C  
P
q
1450  
68.5  
mW  
A
D
JA  
Thermal Resistance JunctiontoAmbient 0 lfpm  
Operating Junction Temperature Range (Note 4)  
Operating Ambient Temperature Range  
Storage Temperature Range  
R
°C/W  
T
40 to +150  
40 to +85  
55 to +150  
230  
°C  
°C  
°C  
°C  
J
T
A
T
stg  
Lead Temperature Soldering (10 sec)  
Moisture Sensitivity Level (Note 3)  
MSL  
1
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
NOTE: ESD data available upon request.  
1. This device series contains ESD protection and exceeds the following tests:  
Human Body Model (HBM) 2.0 kV per JEDEC standard: JESD22A114.  
Machine Model (MM) 200 V per JEDEC standard: JESD22A115.  
2. Latchup Current Maximum Rating: 150 mA per JEDEC standard: JESD78.  
3. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: JSTD020A.  
4. The maximum package power dissipation limit must not be exceeded.  
T
J(max) * TA  
PD  
+
RqJA  
http://onsemi.com  
2
 
NCP1596A  
ELECTRICAL CHARACTERISTICS  
(V = 5.0 V, V  
= 1.2 V, T = 25°C for typical value, 40°C T 85°C for min/max values unless otherwise noted)  
IN  
OUT  
A
A
Characteristic  
Symbol  
Min  
4.0  
3.2  
Typ  
Max  
5.5  
3.8  
Unit  
V
Operating Voltage  
V
IN  
Under Voltage Lockout Threshold  
Under Voltage Lockout hysteresis  
PFET Leakage Current (Pins 5, 4)  
V
3.5  
180  
V
UVLO  
UVLO_HYS  
V
mV  
mA  
I
LEAKP  
T
= 25°C  
= 40°C to 85°C  
1.0  
10  
15  
A
T
A
FEEDBACK VOLTAGE  
FB Input Threshold (T = 40°C to 85°C)  
V
0.788  
0.800  
10  
0.812  
100  
V
A
FB  
FB Input Current  
I
FB  
nA  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold (Note 5)  
Hysteresis (Note 5)  
T
160  
30  
°C  
°C  
SHDN  
T
SDHYS  
PWM SMPS MODE  
Switching Frequency (T = 40°C to 85°C)  
F
1.27  
1.5  
0.2  
0
1.725  
0.3  
MHz  
Ohm  
%
A
OSC  
Internal PFET ONResitance (I = 100 mA, V = 5.0 V, T = 25°C) (Note 5)  
R
DS(on)_P  
LX  
IN  
A
Minimum Duty Cycle  
Maximum Duty Cycle  
D
MIN  
D
100  
1.0  
2.5  
%
MAX  
SoftStart Time (V = 5.0 V, V = 1.2 V, I  
= 0 mA, T = 25°C)  
T
0.8  
2.0  
1.2  
ms  
A
IN  
o
LOAD  
A
SS  
Main PFET Switch Current Limit (Note 5)  
ENABLE  
I
LIM  
Enable Threshold High  
Enable Threshold Low  
Enable bias current (EN = 0 V)  
EFFICIENCY  
V
1.8  
0.4  
V
V
EN_H  
V
EN_L  
I
500  
nA  
EN  
Output Load Current 10 mA @ 1.2 V (Note 5)  
h
h
50  
70  
%
%
Output Load Current 100 mA to 1.2 A @ 1.2 V (Note 5)  
TOTAL DEVICE  
Quiescent Current Into V  
(V = 5 V, V = 1.0 V, T = 25°C)  
I
10  
500  
1.0  
mA  
mA  
mA  
CCP  
IN  
FB  
A
CCP  
Quiescent Current Into V (V = 5 V, V = 1.0 V, T = 25°C)  
I
CC  
CC  
IN  
FB  
A
Shutdown Quiescent Current into V and V  
I
CC_SD  
3.0  
CC  
CCP  
(EN = 0, V = 5 V, V = 1.0 V, T = 25°C)  
IN  
FB  
A
5. Values are design guaranteed.  
http://onsemi.com  
3
 
NCP1596A  
PIN FUNCTION DESCRIPTIONS  
Pin #  
Symbol  
Pin Description  
1
FB  
Feedback pin. Part is internally compensated. Only necessary to place a voltage divider or connect the out-  
put directly to this pin.  
2
3
4
5
6
GND  
LX  
Ground  
Pin connected internally to power switch. Connect externally to inductor.  
Power connection to the power switch.  
VCCP  
VCC  
EN  
IC power connection.  
Device Enable pin. This pin has an internal current source pull up. No connect is enable the device. With this  
pin pulled down below 0.8 V, the device is disabled and enters the shutdown mode.  
EN  
VCCP  
disable  
500 nA  
Isense  
UVLO  
VCC  
Vin  
Thermal  
Shutdown  
Oscillator  
C1  
V
out  
= 0.8 V to 0.9 V * V  
in  
Short  
circuit  
protect  
Isense  
Soft Start  
0.8 V  
L1  
Q
Q
S
R
LX  
FB  
driver  
R1  
R2  
Ton(min)  
D1  
C2  
GND  
Figure 2. Detail Block Diagram  
EXTERNAL COMPONENT REFERENCE DATA  
V
OUT  
Inductor Model  
Inductor (L1)  
Diode (D1)  
C
(C1)  
C (C2)  
OUT  
R1  
R2  
IN  
3.3 V  
2.5 V  
1.5 V  
1.2 V  
CDC5D23 3R3 (1 A)  
3.3 mH  
MBRA210LT3G  
22 mF  
22 mF  
31 k  
21 k  
8 k  
10 k  
CDRH6D38 3R3 (1.5 A)  
22 mF x 2  
22 mF x 2  
CDC5D23 3R3 (1 A)  
CDRH6D38 3R3 (1.5 A)  
3.3 mH  
3.3 mH  
3.3 mH  
MBRA210LT3G  
MBRA210LT3G  
MBRA210LT3G  
22 mF  
22 mF x 2  
22 mF  
22 mF x 2  
10 k  
10 k  
10 k  
CDC5D23 3R3 (1 A)  
CDRH6D38 3R3 (1.5 A)  
22 mF  
22 mF x 2  
22 mF  
22 mF x 2  
CDC5D23 3R3 (1 A)  
CDRH6D38 3R3 (1.5 A)  
22 mF  
22 mF x 2  
22 mF  
22 mF x 2  
5 k  
http://onsemi.com  
4
NCP1596A  
3.8 V  
3.5 V  
VIN  
TIME 1 ms/div  
TIME 1 ms/div  
VOUT  
1 ms  
5V  
EN  
1.8 V  
EN  
0.4 V  
Figure 3. Timing Diagram  
Power up the  
device  
VCC > 3 V  
Enable the  
internal Vref  
NO  
Disable the  
Oscillator,  
VCC > UVLO  
YES  
OTA and driver  
YES  
Enable  
Oscillator,  
OTA and  
driver  
Temperature  
NO  
<
130 deg  
Ramp up  
Soft start  
(1 ms)  
YES  
Current Limit  
> 2.5 A  
VCC  
<
UVLO  
YES  
Temperature  
>
160 deg  
Normal  
YES  
Operation  
Figure 4. State Diagram  
http://onsemi.com  
5
NCP1596A  
TYPICAL OPERATING CHARACTERISTICS  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
806  
804  
802  
800  
798  
796  
794  
40  
0
25  
85  
40  
0
25  
85  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 5. Switch ON Resistance vs.  
Temperature  
Figure 6. Feedback Input Threshold vs.  
Temperature  
1.56  
1.54  
1.52  
1.50  
1.48  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
1.46  
1.44  
40  
0
25  
85  
40  
0
25  
85  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 7. Switching Frequency vs.  
Temperature  
Figure 8. Main PFET Current Limit vs.  
Temperature  
550  
530  
510  
490  
470  
450  
500  
450  
400  
350  
300  
250  
40  
0
25  
85  
40  
0
25  
85  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 9. Quiescent Current Into VCC vs.  
Temperature  
Figure 10. Shutdown Quiescent Current vs.  
Temperature  
http://onsemi.com  
6
NCP1596A  
100  
90  
80  
70  
60  
50  
40  
30  
1.5  
1.0  
V
= 4.0 V  
IN  
V
IN  
= 5.0 V  
0.5  
V
V
= 5.0 V  
= 4.0 V  
IN  
0.0  
IN  
0.5  
1.0  
1.5  
V
= 3.3 V  
V
= 3.3 V  
OUT  
OUT  
L = 3.3 mH  
C
C
L = 3.3 mH  
C
C
= 22 mF  
= 22 mF  
= 22 mF  
IN  
OUT  
IN  
OUT  
= 22 mF  
100  
OUTPUT CURRENT  
1
10  
100  
1000  
10000  
10  
1000  
10000  
OUTPUT CURRENT  
Figure 11. Output Voltage Change vs. Output  
Current  
Figure 12. Efficiency vs. Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
1.5  
1.0  
V
= 4.0 V  
V
IN  
= 5.0 V  
0.5  
IN  
V
V
= 5.0 V  
= 4.0 V  
IN  
0.0  
IN  
0.5  
1.0  
1.5  
V
= 1.8 V  
V
= 1.8 V  
OUT  
OUT  
L = 3.3 mH  
C
C
L = 3.3 mH  
C
C
= 22 mF  
= 22 mF  
= 22 mF  
IN  
OUT  
IN  
OUT  
= 22 mF  
100  
OUTPUT CURRENT  
1
10  
100  
1000  
10000  
10  
1000  
10000  
OUTPUT CURRENT  
Figure 13. Output Voltage Change vs.  
Output Current  
Figure 14. Efficiency vs. Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
1.5  
1.0  
V
V
= 4.0 V  
= 5.0 V  
IN  
0.5  
V
V
= 5.0 V  
IN  
IN  
0.0  
= 4.0 V  
IN  
0.5  
1.0  
1.5  
V
= 1.2 V  
V
= 1.2 V  
OUT  
OUT  
L = 3.3 mH  
C
C
L = 3.3 mH  
C
C
= 22 mF  
= 22 mF  
= 22 mF  
IN  
OUT  
IN  
OUT  
= 22 mF  
100  
OUTPUT CURRENT  
1
10  
100  
1000  
10000  
10  
1000  
10000  
OUTPUT CURRENT  
Figure 16. Output Voltage Change vs.  
Output Current  
Figure 15. Efficiency vs. Output Current  
http://onsemi.com  
7
NCP1596A  
(V = 5 V, I  
= 10 mA, L = 3.3 mH, C  
= 20 mF)  
(V = 5 V, I  
= 500 mA, L = 3.3 mH, C  
= 20 mF)  
IN  
LOAD  
OUT  
IN  
LOAD  
OUT  
Upper Trace: Output Ripple Voltage, 20 mV/div  
Upper Trace: Output Ripple Voltage, 20 mV/div  
Middle Trace: L Pin Switching Waveform, 5 V/div  
Middle Trace: L Pin Switching Waveform, 5 V/div  
X
X
Lower Trace: Inductor Current Waveform, 500 mA/div  
Time Base: 500 ns/div  
Lower Trace: Inductor Current Waveform, 500 mA/div  
Time Base: 200 ns/div  
Figure 17. DCM Switching Waveform for  
Figure 18. CCM Switching Waveform for  
VOUT = 3.3 V  
V
OUT = 3.3 V  
(V = 5 V, I  
= 10 mA, L = 3.3 mH, C  
= 20 mF)  
(V = 5 V, I  
= 500 mA, L = 3.3 mH, C  
= 20 mF)  
IN  
LOAD  
OUT  
IN  
LOAD  
OUT  
Upper Trace: Output Ripple Voltage, 20 mV/div  
Upper Trace: Output Ripple Voltage, 20 mV/div  
Middle Trace: L Pin Switching Waveform, 5 V/div  
Middle Trace: L Pin Switching Waveform, 5 V/div  
X
X
Lower Trace: Inductor Current Waveform, 500 mA/div  
Time Base: 2 ms/div  
Lower Trace: Inductor Current Waveform, 500 mA/div  
Time Base: 200 ns/div  
Figure 19. DCM Switching Waveform for  
Figure 20. CCM Switching Waveform for  
VOUT = 1.2 V  
V
OUT = 1.2 V  
(V = 5 V, I  
= 10 mA, L = 3.3 mH, C  
= 20 mFx2)  
(V = 5 V, I  
= 10 mA, L = 3.3 mH, C  
= 20 mFx2)  
IN  
LOAD  
OUT  
IN  
LOAD  
OUT  
Upper Trace: Input Voltage, 1 V/div  
Lower Trace: Output Voltage, 1 V/div  
Time Base: 500 ms/div  
Upper Trace: Input Voltage, 1 V/div  
Lower Trace: Output Voltage, 500 mV/div  
Time Base: 500 ms/div  
Figure 21. SoftStart Waveforms for VOUT = 3.3 V  
Figure 22. SoftStart Waveforms for VOUT = 1.2 V  
http://onsemi.com  
8
NCP1596A  
(V = 5 V, L = 3.3 mH, C  
= 10 mFx2)  
(V = 5 V, L = 3.3 mH, C  
= 10 mFx2)  
IN  
OUT  
IN  
OUT  
Upper Trace: Output Dynamic Voltage, 100 mV/div  
Lower Trace: Output Current, 200 mA/div  
Time Base: 20 ns/div  
Upper Trace: Output Dynamic Voltage, 100 mV/div  
Lower Trace: Output Current, 200 mA/div  
Time Base: 20 ns/div  
Figure 23. Load Regulation for VOUT = 3.3 V  
Figure 24. Load Regulation for VOUT = 3.3 V  
(V = 5 V, L = 3.3 H, C  
= 10 mFx2)  
(V = 5 V, L = 3.3 H, C  
= 10 mF x 2)  
IN  
OUT  
IN  
OUT  
Upper Trace: Output Dynamic Voltage, 50 mV/div  
Lower Trace: Output Current, 200 mA/div  
Time Base: 10 ns/div  
Upper Trace: Output Dynamic Voltage, 50 mV/div  
Lower Trace: Output Current, 200 mA/div  
Time Base: 10 ns/div  
Figure 25. Load Regulation for VOUT = 1.2 V  
Figure 26. Load Regulation for VOUT = 1.2 V  
http://onsemi.com  
9
NCP1596A  
DETAILED OPERATING DESCRIPTION  
Introduction  
inside NCP1596A to overcome the potential instability.  
Slope compensation consists of a ramp signal generated by  
the synchronization block and adding this to the inductor  
current signal. The summed signal is then applied to the  
PWM comparator.  
The NCP1596A is a currentmode buck converter with  
switching frequency at 1.5 MHz. High operation frequency  
can reduce the capacitor value and PCB area. Also, more  
features are built in this converter.  
1. Internal 1 ms softstart to avoid inrush current at  
startup.  
2. Internal cycle by cycle current limit provides an  
output short circuit protection.  
3. Internal compensation. No external compensation  
components are necessary.  
4. Thermal shutdown protects the devices from over  
heat.  
Thermal Shutdown  
Internal Thermal Shutdown circuitry is provided to  
protect the integrated circuit in the event when maximum  
junction temperature is exceeded. When activated, typically  
at 180°C, the shutdown signal will disable the Pchannel  
switch. The thermal shutdown circuit is designed with 30°C  
of hysteresis. This means that the switching will not start  
until the die temperature drops by this amount. This feature  
is provided to prevent catastrophic failures from accidental  
device overheating. It is not intended as a substitute for  
proper heat sinking. NCP1596A is contained in the  
thermally enhanced QFN package.  
5. 100% duty cycle allowed. Speed up transient load  
response.  
The upper feature can provide more cost effective  
solutions to applications. A simple function block diagram  
and timing diagram are shown in Figure 1 and Figure 2.  
Under Voltage Lockout (UVLO)  
SoftStart and Current Limit  
UVLO function is used to ensure the logic level correctly  
when input voltage is very low. In NCP1596A, the UVLO  
level is set to 3.5 V. If the input voltage is less than 3.5 V, the  
converter will shutdown itself automatically.  
A soft start circuit is internally implemented to reduce the  
inrush current during startup. This helps to reduce the  
output voltage overshoot.  
The current limit is set to allow peak switch current in  
excess of 2 A. The intended output current of the system is  
1.5 A. The ripple current is calculated to be approximately  
350 mA with a 3.3 mH inductor. Therefore, the peak current  
at 1.5 A output will be approximately 1.7 Amps. A 2.5 Amp  
set point will allow for transient currents during load step.  
The current limit circuit is implemented as a cyclebycycle  
current limit. Each oncycle is treated as a separate situation.  
Current limiting is implemented by monitoring the  
Pchannel switch current buildup during conduction with a  
current limit comparator. The output of the current limit  
comparator resets the PWM latch, immediately terminating  
the current cycle. When output loading is short circuit,  
device will auto restart with softstart.  
Low Power Shutdown Mode (EN)  
NCP1596A can be disabled whenever the EN pin is tied  
to ground. During the shutdown mode, the internal  
reference, oscillator and driver control circuits will be turn  
off, the device only consume 1 mA typically and output  
voltage will be discharge to zero by the external resistor  
divider. EN pin has an internal pullup current source, which  
typical value is 500 nA.  
Power Saving PulseFrequencyModulation (PFM)  
Control Scheme  
While the converter loading decreases, the converter  
enters the Discontinuesconductionmode (DCM)  
operation. In DCM operation, the ontime (T ) of the  
on  
Error Amplifier and Slope Compensation  
integrated switch for each switching cycle will decrease  
when the output current decreases. In order to maintain a  
high converter efficiency at light load condition. A  
A fully internal compensated error amplifier is provided  
inside NCP1596A. No external circuitry is needed to  
stabilize the device. The error amplifier provides an error  
signal to the PWM comparator by comparing the feedback  
voltage (800 mV) with internal voltage reference of 1.2 V.  
Current mode converter can exhibit instability at duty  
cycles over 50%. A slope compensation circuit is provided  
minimum T is set to 70 ns. It can make sure a minimum  
on  
fixed power send to output. To avoid a higher switch loss  
occurs when without loading apply. This control scheme can  
reduce the switching loss at light load and improve the  
conversion efficiency.  
http://onsemi.com  
10  
NCP1596A  
APPLICATION INFORMATION  
Output Voltage Selection  
The output voltage is programmed through an external  
resistor divider connect from V to FB then to GND.  
For internal compensation and noise immunity, the  
resistor from FB to GND should be in 10 k to 20 k ranges.  
The relationship between the output voltage and feedback  
resistor is given by:  
ripple current, input voltage, output voltage, output current  
and operation frequency, the inductor value is given by:  
OUT  
VOUT  
VOUT  
ǒ1 * Ǔ  
VIN  
(eq. 2)  
DIL  
+
 
L   FSW  
DIL : peak to peak inductor ripple current  
L: inductor value  
FSW: switching frequency  
  ǒ1 ) R1Ǔ  
(eq. 1)  
V
OUT + VFB  
After selected a suitable value of the inductor, it should be  
check out the inductor saturation current. The saturation  
current of the inductor should be higher than the maximum  
load plus the ripple current.  
R2  
V
V
: Output voltage  
: Feedback Voltage  
OUT  
FB  
R1: Feedback resistor from V  
R2: Feedback resistor from FB to GND.  
to FB.  
OUT  
DIL  
(eq. 3)  
DIL(MAX) + DIOUT(MAX)  
)
2
Input Capacitor Selection  
D
D
: Maximum inductor current  
: Maximum output current  
IL(MAX)  
In the PWM buck converter, the input current is pulsating  
current with switching noise. Therefore, a bypass input  
capacitor must choose for reduce the peak current drawn  
from the power supply. For NCP1596A, low ESR ceramic  
capacitor of 10 mF should be used for most of cases. Also,  
the input capacitor should be placed as close as possible to  
IOUT(MAX)  
Output Capacitor Selection  
Output capacitor value is based on the target output ripple  
voltage. For NCP1596A, the output capacitor is required a  
ceramic capacitors with low ESR value. Assume buck  
converter duty cycle is 50%. The output ripple voltage in  
PWM mode is given by:  
the V  
pin for effective bypass the supply noise.  
CCA  
Inductor Selection  
The inductor parameters are including three items, which  
are DC resistance, inductor value and saturation current.  
Inductor DC resistance will effect the convector overall  
efficiency, low DC resistor value can provide a higher  
efficiency. Thus, inductor value are depend on the inductor  
1
ǒ
) ESRǓ(eq. 4)  
DVOUT [ DIL  
 
4   FSW   COUT  
In general, value of ceramic capacitor using 20 mF should  
be a good choice.  
http://onsemi.com  
11  
NCP1596A  
PACKAGE DIMENSIONS  
DFN6 3*3 MM, 0.95 PITCH  
CASE 506AH01  
ISSUE O  
NOTES:  
A
D
1. DIMENSIONS AND TOLERANCING PER ASME  
Y14.5M, 1994.  
B
E
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMESNION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.25 AND 0.30  
MM FROM TERMINAL.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN 1  
REFERENCE  
MILLIMETERS  
DIM MIN  
0.80  
A1 0.00  
NOM MAX  
2X  
A
0.90  
0.03  
1.00  
0.05  
0.15  
C
A3  
b
D
D2 2.40  
E
E2 1.50  
e
0.20 REF  
0.40  
3.00 BSC  
2.50  
3.00 BSC  
1.60  
0.95 BSC  
−−−  
2X  
0.35  
0.45  
2.60  
1.70  
0.15  
C
TOP VIEW  
0.10  
C
C
K
L
0.21  
0.30  
−−−  
0.50  
A
6X  
0.40  
SEATING  
PLANE  
0.08  
(A3)  
C
SOLDERING FOOTPRINT*  
SIDE VIEW  
D2  
A1  
0.450  
0.0177  
0.950  
6X L  
4X  
e
0.0374  
1
6
3
4
E2  
1.700  
0.0685  
6X K  
3.31  
0.130  
6X b  
(NOTE 3)  
0.10 C A B  
0.05  
C
2.60  
BOTTOM VIEW  
0.63  
0.025  
0.1023  
SCALE 10:1  
mm  
inches  
ǒ
Ǔ
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer  
purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP1596A/D  

相关型号:

NCP1596MNTWG

1.5 MHz Current Mode PWM Buck Down Converter
ONSEMI

NCP1597A

1 MHz, 2.0 A Synchronous Buck Regulator
ONSEMI

NCP1597AMNTWG

1 MHz, 2.0 A Synchronous Buck Regulator
ONSEMI

NCP1597B

1 MHz, 2 A Synchronous Buck Regulator
ONSEMI

NCP1597BMNTWG

1 MHz, 2 A Synchronous Buck Regulator
ONSEMI

NCP1597BMNTXG

1 MHz, 2 A Synchronous Buck Regulator
ONSEMI

NCP1599

1 MHz, 3 A Synchronous Buck Regulator
ONSEMI

NCP1599MNR2G

1 MHz, 3 A Synchronous Buck Regulator
ONSEMI

NCP1599MNTWG

1 MHz, 3 A Synchronous Buck Regulator
ONSEMI

NCP15WB333

for Surface Mounting Application
MURATA

NCP15WB33303RC

NTC Thermistors
MURATA

NCP15WB333E03RC

NTC Thermistors for Temp. Sensor and Compensation Chip Type
MURATA