NCP1450ASN33T1G [ONSEMI]

PWM Step−up DC−DC Controller; PWM降压型DC- DC控制器
NCP1450ASN33T1G
型号: NCP1450ASN33T1G
厂家: ONSEMI    ONSEMI
描述:

PWM Step−up DC−DC Controller
PWM降压型DC- DC控制器

控制器
文件: 总22页 (文件大小:221K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP1450A  
PWM Step−up DC−DC  
Controller  
The NCP1450A series are PWM step−up DC−DC switching  
controller that are specially designed for powering portable equipment  
from one or two cells battery packs. The NCP1450A series have a  
driver pin, EXT pin, for connecting to an external transistor. Large  
output currents can be obtained by connecting a low ON−resistance  
external power transistor to the EXT pin. The device will  
automatically skip switching cycles under light load condition to  
maintain high efficiency at light loads. With only six external  
components, this series allows a simple means to implement highly  
efficient converter for large output current applications.  
Each device consists of an on−chip Pulse Width Modulation (PWM)  
oscillator, PWM controller, phase−compensated error amplifier,  
soft−start, voltage reference, and driver for driving external power  
transistor. Additionally, a chip enable feature is provided to power  
down the converter for extended battery life.  
http://onsemi.com  
5
1
TSOP−5  
SN SUFFIX  
CASE 483  
MARKING DIAGRAM AND  
PIN CONNECTIONS  
The NCP1450A device series are available in the TSOP−5 package  
with five standard regulated output voltages. Additional voltages that  
range from 1.8 V to 5.0 V in 100 mV steps can be manufactured.  
1
2
3
5
CE  
OUT  
NC  
EXT  
Features  
High Efficiency 86% at I = 200 mA, V = 2.0 V, V  
= 3.0 V  
= 5.0 V  
O
IN  
OUT  
GND  
4
88% at I = 400 mA, V = 3.0 V, V  
O
IN  
OUT  
Low Startup Voltage of 0.9 V typical at I = 1.0 mA  
O
(Top View)  
xxx =Specific Device Marking  
Operation Down to 0.6 V  
Five Standard Voltages: 1.9 V, 2.7 V, 3.0 V, 3.3 V, 5.0 V with High  
Accuracy 2.5%  
A
Y
W
G
= Assembly Location  
= Year  
= Work Week  
Low Conversion Ripple  
= Pb−Free Package  
High Output Current up to 1000 mA  
(Note: Microdot may be in either location)  
(3.0 V version at V = 2.0 V, L = 10 H, C  
= 220 F)  
IN  
OUT  
Fixed Frequency Pulse Width Modulation (PWM) at 180 kHz  
Chip Enable Pin with On−chip 150 nA Pullup Current Source  
Low Profile and Micro Miniature TSOP−5 Package  
Pb−Free Packages are Available  
ORDERING INFORMATION  
See detailed ordering and shipping information in the ordering  
information section on page 3 of this data sheet.  
Typical Applications  
Personal Digital Assistant (PDA)  
Electronic Games  
Portable Audio (MP3)  
Digital Still Cameras  
Handheld Instruments  
© Semiconductor Components Industries, LLC, 2005  
1
Publication Order Number:  
December, 2005 − Rev. 7  
NCP1450A/D  
NCP1450A  
V
IN  
V
OUT  
CE  
1
EXT  
5
OUT  
2
NC  
3
GND  
4
Figure 1. Typical Step−up Converter Application  
OUT  
2
Error  
Amplifier  
EXT  
5
PWM  
Controller  
+
Driver  
NC  
3
Phase  
Compensation  
180 kHz  
Oscillator  
Voltage  
Reference  
Soft−Start  
GND  
4
1 CE  
Figure 2. Representative Block Diagram  
PIN FUNCTION DESCRIPTION  
Pin #  
Symbol  
Pin Description  
1
CE  
Chip Enable Pin  
(1) The chip is enabled if a voltage equal to or greater than 0.9 V is applied.  
(2) The chip is disabled if a voltage less than 0.3 V is applied.  
(3) The chip is enabled if this pin is left floating.  
2
3
4
5
OUT  
NC  
Output voltage monitor pin and also the power supply pin for the device.  
No internal connection to this pin.  
Ground pin.  
GND  
EXT  
External transistor drive pin.  
http://onsemi.com  
2
 
NCP1450A  
ORDERING INFORMATION (Note 1)  
Output  
Voltage  
Switching  
Frequency  
Device  
Marking  
Package  
Shipping  
NCP1450ASN19T1  
TSOP−5  
1.9 V  
DAY  
TSOP−5  
(Pb−Free)  
NCP1450ASN19T1G  
NCP1450ASN27T1G  
NCP1450ASN27T1  
NCP1450ASN30T1  
NCP1450ASN30T1G  
NCP1450ASN33T1  
NCP1450ASN33T1G  
NCP1450ASN50T1  
NCP1450ASN50T1G  
TSOP−5  
2.7 V  
3.0 V  
3.3 V  
5.0 V  
DAZ  
DBA  
DBC  
DBD  
TSOP−5  
(Pb−Free)  
TSOP−5  
3000 Units  
on 7 Inch Reel  
180 KHz  
TSOP−5  
(Pb−Free)  
TSOP−5  
TSOP−5  
(Pb−Free)  
TSOP−5  
TSOP−5  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
1. The ordering information lists five standard output voltage device options. Additional devices with output voltage ranging from  
1.8 V to 5.0 V in 100 mV increments can be manufactured. Contact your ON Semiconductor representative for availability.  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
Power Supply Voltage (Pin 2)  
V
OUT  
6.0  
V
Input/Output Pins  
EXT (Pin 5)  
EXT Sink/Source Current  
V
I
−0.3 to 6.0  
−150 to 150  
V
mA  
EXT  
EXT  
CE (Pin 1)  
Input Voltage Range  
Input Current Range  
V
I
−0.3 to 6.0  
−150 to 150  
V
mA  
CE  
CE  
Power Dissipation and Thermal Characteristics  
Maximum Power Dissipation @ T = 25°C  
P
500  
250  
mW  
°C/W  
A
D
Thermal Resistance Junction−to−Air  
Operating Ambient Temperature Range  
Operating Junction Temperature Range  
Storage Temperature Range  
R
JA  
T
A
−40 to +85  
−40 to +150  
−55 to +150  
°C  
°C  
°C  
T
J
T
stg  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
2. This device series contains ESD protection and exceeds the following tests:  
Human Body Model (HBM) $2.0 kV per JEDEC standard: JESD22−A114.  
Machine Model (MM) $200 V per JEDEC standard: JESD22−A115.  
3. Latchup Current Maximum Rating: $150 mA per JEDEC standard: JESD78.  
4. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J−STD−020A.  
http://onsemi.com  
3
 
NCP1450A  
ELECTRICAL CHARACTERISTICS (For all values T = 25°C, unless otherwise noted.)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OSCILLATOR  
Frequency (V  
= V  
  0.96, Note 5)  
f
144  
180  
0.11  
80  
216  
kHz  
%/°C  
%
OUT  
SET  
OSC  
Frequency Temperature Coefficient (T = −40°C to 85°C)  
f  
A
Maximum PWM Duty Cycle (V  
= V  
  0.96)  
D
MAX  
70  
90  
0.9  
OUT  
SET  
Minimum Startup Voltage (I = 0 mA)  
V
0.8  
V
O
start  
Minimum Startup Voltage Temperature Coefficient (T = −40°C to 85°C)  
V  
−1.6  
0.6  
mV/°C  
V
A
start  
Minimum Operation Hold Voltage (I = 0 mA)  
V
0.7  
250  
O
hold  
Soft−Start Time (V  
= V  
Note 6)  
t
SS  
100  
ms  
OUT  
SET,  
CE (PIN 1)  
CE Input Voltage (V  
= V  
  0.96)  
V
OUT  
SET  
High State, Device Enabled  
Low State, Device Disabled  
V
V
0.9  
0.3  
CE(high)  
CE(low)  
CE Input Current (Note 6)  
A
High State, Device Enabled (V  
Low State, Device Disabled (V  
= V = 5.0 V)  
I
I
−0.5  
0
0
0.15  
0.5  
0.5  
OUT  
OUT  
CE  
CE(high)  
= 5.0 V, V = 0 V)  
CE  
CE(low)  
EXT (PIN 5)  
EXT “H” Output Current (V  
Device Suffix:  
19T1  
= V  
−0.4 V)  
I
EXTH  
mA  
mA  
EXT  
OUT  
−25.0  
−35.0  
−37.7  
−40.0  
−53.7  
−20.0  
−30.0  
−30.0  
−30.0  
−35.0  
27T1  
30T1  
33T1  
50T1  
EXT “L” Output Current(V  
= 0.4 V)  
I
EXTL  
EXT  
Device Suffix:  
19T1  
27T1  
30T1  
33T1  
20.0  
30.0  
30.0  
30.0  
35.0  
38.3  
48.0  
50.8  
52.0  
58.2  
50T1  
TOTAL DEVICE  
Output Voltage  
Device Suffix:  
19T1  
V
OUT  
V
1.853  
2.633  
2.925  
3.218  
4.875  
1.9  
2.7  
3.0  
3.3  
5.0  
1.948  
2.768  
3.075  
3.383  
5.125  
27T1  
30T1  
33T1  
50T1  
Output Voltage Temperature Coefficient (T = −40 to +85°C)  
V
150  
ppm/°C  
A  
A
OUT  
Operating Current (V  
= V = V   0.96, Note 5)  
SET  
I
OUT  
CE  
DD  
Device Suffix:  
19T1  
27T1  
30T1  
33T1  
55  
93  
98  
103  
136  
90  
140  
150  
160  
220  
50T1  
Standby Current (V  
= V = V  
+0.5 V)  
I
I
15  
20  
A  
A  
OUT  
CE  
SET  
STB  
Off−State Current (V  
= 5.0 V, V = 0 V, T = −40 to +85°C, Note 7)  
0.6  
1.5  
OUT  
CE  
A
OFF  
5. V  
means setting of output voltage.  
SET  
6. This parameter is guaranteed by design.  
7. CE pin is integrated with an internal 150 nA pullup current source.  
http://onsemi.com  
4
 
NCP1450A  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
3.2  
3.1  
3.0  
2.9  
V
V
= 2.5 V  
= 2.0 V  
IN  
V
= 0.9 V  
V
= 1.2 V  
V
= 1.5 V  
V
= 0.9 V  
V
IN  
= 1.2 V  
V
IN  
IN  
IN  
IN  
IN  
= 1.5 V  
IN  
NCP1450ASN19T1  
L = 10 H  
Q = NTGS3446T1  
NCP1450ASN30T1  
L = 10 H  
Q = NTGS3446T1  
= 220 F  
OUT  
T = 25°C  
A
2.8  
2.7  
C
= 220 F  
C
OUT  
T = 25°C  
A
0
200  
400  
600  
800  
1000  
1000  
1000  
0
200  
400  
600  
800  
1000  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 3. NCP1450ASN19T1 Output Voltage  
vs. Output Current  
Figure 4. NCP1450ASN30T1 Output Voltage  
vs. Output Current  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
100  
80  
60  
40  
20  
0
V
IN  
= 1.5 V  
V
V
= 4.5 V  
= 4.0 V  
IN  
V
= 1.2 V  
V
IN  
= 2.0 V  
V
= 1.2 V  
IN  
IN  
IN  
V
= 0.9 V  
V
IN  
= 2.5 V  
V
= 3.0 V  
V
= 1.5 V  
IN  
IN  
IN  
NCP1450ASN50T1  
L = 10 H  
Q = NTGS3446T1  
NCP1450ASN19T1  
L = 10 H  
Q = NTGS3446T1  
= 220 F  
OUT  
T = 25°C  
A
V
IN  
= 0.9 V  
C
= 220 F  
C
OUT  
T = 25°C  
A
0
200  
400  
600  
800  
0.01  
0.1  
1
10  
100  
1000  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 5. NCP1450ASN50T1 Output Voltage  
vs. Output Current  
Figure 6. NCP1450ASN19T1 Efficiency vs.  
Output Current  
100  
80  
60  
40  
20  
0
100  
V
V
V
V
= 4.0 V  
= 3.0 V  
= 2.5 V  
= 2.0 V  
V
IN  
= 4.5 V  
IN  
IN  
IN  
IN  
V
IN  
= 2.5 V  
V
= 2.0 V  
IN  
80  
60  
40  
20  
0
V
= 1.5 V  
IN  
V
IN  
= 1.2 V  
V
= 1.5 V  
V
IN  
= 0.9 V  
IN  
NCP1450ASN30T1  
L = 10 H  
Q = NTGS3446T1  
NCP1450ASN50T1  
L = 10 H  
Q = NTGS3446T1  
= 220 F  
OUT  
T = 25°C  
A
V
= 1.2 V  
IN  
C
= 220 F  
C
OUT  
V
IN  
= 0.9 V  
1
T = 25°C  
A
0.01  
0.1  
10  
100  
0.01  
0.1  
1
10  
100  
1000  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 7. NCP1450ASN30T1 Efficiency vs.  
Output Current  
Figure 8. NCP1450ASN50T1 Efficiency vs.  
Output Current  
http://onsemi.com  
5
NCP1450A  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
NCP1450ASN19T1  
L = 22 H  
NCP1450ASN30T1  
L = 22 H  
I = 0 mA  
O
I
O
= 0 mA  
V
IN  
= 1.2 V  
V
IN  
= 1.2 V  
−50  
−25  
0
25  
50  
75  
100  
100  
100  
−50  
−25  
0
25  
50  
75  
100  
100  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. NCP1450ASN19T1 Output Voltage  
vs. Temperature  
Figure 10. NCP1450ASN30T1 Output Voltage  
vs. Temperature  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
100  
80  
60  
40  
20  
0
NCP1450ASN50T1  
L = 22 H  
NCP1450ASN19T1  
V
OUT  
= 1.9 V x 0.96  
I
O
= 0 mA  
Open−Loop Test  
V
IN  
= 1.2 V  
−50  
−25  
0
25  
50  
75  
−50  
−25  
0
25  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. NCP1450ASN50T1 Output Voltage  
vs. Temperature  
Figure 12. NCP1450ASN19T1 Operating  
Current vs. Temperature  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
NCP1450ASN30T1  
NCP1450ASN50T1  
60  
V
OUT  
= 3.0 V x 0.96  
V
OUT  
= 5.0 V x 0.96  
Open−Loop Test  
Open−Loop Test  
−25  
40  
−50  
−25  
0
25  
50  
75  
−50  
0
25  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. NCP1450ASN30T1 Operating  
Current vs. Temperature  
Figure 14. NCP1450ASN50T1 Operating  
Current vs. Temperature  
http://onsemi.com  
6
NCP1450A  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
NCP1450ASN19T1  
= 1.9 V + 0.5 V  
NCP1450ASN30T1  
V = 3.0 V + 0.5 V  
OUT  
V
OUT  
Open−Loop Test  
Open−Loop Test  
0
0
−50  
−25  
0
25  
50  
75  
100  
100  
100  
−50  
−25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. NCP1450ASN19T1 Standby Current  
vs. Temperature  
Figure 16. NCP1450ASN30T1 Standby Current  
vs. Temperature  
25  
20  
15  
10  
5
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
NCP1450ASN19T1  
V
V
= 5.0 V  
= 0 V  
Open−Loop Test  
OUT  
CE  
NCP1450ASN50T1  
V
= 5.0 V + 0.5 V  
OUT  
Open−Loop Test  
0
−50  
−25  
0
25  
50  
75  
−50  
−25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. NCP1450ASN50T1 Standby Current  
vs. Temperature  
Figure 18. NCP1450ASN19T1 Off−State Current  
vs. Temperature  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
NCP1450ASN30T1  
NCP1450ASN50T1  
= 5.0 V  
OUT  
= 0 V  
CE  
Open−Loop Test  
V
V
= 5.0 V  
= 0 V  
Open−Loop Test  
V
V
OUT  
CE  
−50  
−25  
0
25  
50  
75  
−50  
−25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 19. NCP1450ASN30T1 Off−State Current  
vs. Temperature  
Figure 20. NCP1450ASN50T1 Off−State Current  
vs. Temperature  
http://onsemi.com  
7
NCP1450A  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
NCP1450ASN19T1  
= 1.9 V x 0.96  
NCP1450ASN30T1  
V = 3.0 V x 0.96  
OUT  
V
OUT  
Open−Loop Test  
Open−Loop Test  
0
0
−50  
−25  
0
25  
50  
75  
100  
100  
100  
−50  
−25  
0
25  
50  
75  
100  
100  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 21. NCP1450ASN19T1 Oscillator  
Frequency vs. Temperature  
Figure 22. NCP1450ASN30T1 Oscillator  
Frequency vs. Temperature  
300  
250  
200  
150  
100  
50  
100  
90  
80  
70  
60  
50  
NCP1450ASN50T1  
= 5.0 V x 0.96  
Open−Loop Test  
NCP1450ASN19T1  
V
V
= 1.9 V x 0.96  
OUT  
OUT  
Open−Loop Test  
0
−50  
40  
−50  
−25  
0
25  
50  
75  
−25  
0
25  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 23. NCP1450ASN50T1 Oscillator  
Frequency vs. Temperature  
Figure 24. NCP1450ASN19T1 Maximum Duty  
Cycle vs. Temperature  
100  
90  
100  
90  
80  
80  
70  
70  
60  
50  
60  
50  
NCP1450ASN30T1  
= 3.0 V x 0.96  
Open−Loop Test  
NCP1450ASN50T1  
V
OUT  
V
= 5.0 V x 0.96  
OUT  
Open−Loop Test  
40  
−50  
40  
−50  
−25  
0
25  
50  
75  
−25  
0
25  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 25. NCP1450ASN30T1 Maximum Duty  
Cycle vs. Temperature  
Figure 26. NCP1450ASN50T1 Maximum Duty  
Cycle vs. Temperature  
http://onsemi.com  
8
NCP1450A  
0
−10  
−20  
−30  
−40  
−50  
−20  
−30  
−40  
−50  
−60  
−70  
NCP1450ASN19T1  
NCP1450ASN30T1  
V
V
= 1.9 V x 0.96  
V
V
= 3.0 V x 0.96  
OUT  
OUT  
= V  
− 0.4 V  
= V  
− 0.4 V  
EXT  
OUT  
EXT  
OUT  
Open−Loop Test  
Open−Loop Test  
−50  
−25  
0
25  
50  
75  
100  
100  
100  
−50  
−25  
0
25  
50  
75  
100  
100  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 27. NCP1450ASN19T1 EXT “H” Output  
Current vs. Temperature  
Figure 28. NCP1450ASN30T1 EXT “H” Output  
Current vs. Temperature  
−40  
−50  
−60  
−70  
−80  
−90  
50  
40  
30  
20  
10  
0
NCP1450ASN50T1  
NCP1450ASN19T1  
V
V
= 5.0 V x 0.96  
V
V
= 1.9 V x 0.96  
= 0.4 V  
OUT  
OUT  
= V  
− 0.4 V  
EXT  
OUT  
EXT  
Open−Loop Test  
Open−Loop Test  
−50  
−25  
0
25  
50  
75  
−50  
−25  
0
25  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 29. NCP1450ASN50T1 EXT “H” Output  
Current vs. Temperature  
Figure 30. NCP1450ASN19T1 EXT “L” Output  
Current vs. Temperature  
80  
70  
60  
50  
40  
30  
90  
80  
70  
60  
NCP1450ASN30T1  
NCP1450ASN50T1  
V
V
= 3.0 V x 0.96  
= 0.4 V  
V
V
= 5.0 V x 0.96  
= 0.4 V  
OUT  
OUT  
50  
40  
EXT  
EXT  
Open−Loop Test  
Open−Loop Test  
−50  
−25  
0
25  
50  
75  
−50  
−25  
0
25  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 31. NCP1450ASN30T1 EXT “L” Output  
Current vs. Temperature  
Figure 32. NCP1450ASN50T1 EXT “L” Output  
Current vs. Temperature  
http://onsemi.com  
9
NCP1450A  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
NCP1450ASN19T1  
NCP1450ASN30T1  
V
V
= 1.9 V x 0.96  
OUT  
V
V
= 3.0 V x 0.96  
OUT  
= V  
− 0.4 V  
EXT  
OUT  
= V  
− 0.4 V  
EXT  
OUT  
Open−Loop Test  
Open−Loop Test  
0
0
−50  
−25  
0
25  
50  
75  
100  
100  
100  
−50  
−25  
0
25  
50  
75  
100  
100  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 33. NCP1450ASN19T1 EXT “H”  
ON−Resistance vs. Temperature  
Figure 34. NCP1450ASN30T1 EXT “H”  
ON−Resistance vs. Temperature  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
NCP1450ASN50T1  
NCP1450ASN19T1  
V
V
= 5.0 V x 0.96  
V
V
= 1.9 V x 0.96  
= 0.4 V  
OUT  
OUT  
= V  
− 0.4 V  
EXT  
OUT  
EXT  
Open−Loop Test  
Open−Loop Test  
0
−50  
0
−50  
−25  
0
25  
50  
75  
−25  
0
25  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 35. NCP1450ASN50T1 EXT “H”  
ON−Resistance vs. Temperature  
Figure 36. NCP1450ASN19T1 EXT “L”  
ON−Resistance vs. Temperature  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
NCP1450ASN30T1  
NCP1450ASN50T1  
V
V
= 3.0 V x 0.96  
= 0.4 V  
V
V
= 5.0 V x 0.96  
= 0.4 V  
OUT  
OUT  
EXT  
EXT  
Open−Loop Test  
Open−Loop Test  
0
−50  
0
−50  
−25  
0
25  
50  
75  
−25  
0
25  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 37. NCP1450ASN30T1 EXT “L”  
ON−Resistance vs. Temperature  
Figure 38. NCP1450ASN50T1 EXT “L”  
ON−Resistance vs. Temperature  
http://onsemi.com  
10  
NCP1450A  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
V
V
start  
V
V
start  
NCP1450ASN30T1  
L = 22 H  
NCP1450ASN19T1  
L = 22 H  
C
I
= 0.1 F  
= 0 mA  
OUT  
C
= 0.1 F  
O
OUT  
I
O
= 0 mA  
hold  
hold  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 39. NCP1450ASN19T1 Startup/Hold  
Voltage vs. Temperature  
Figure 40. NCP1450ASN30T1 Startup/Hold  
Voltage vs. Temperature  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
200  
180  
160  
140  
120  
100  
80  
NCP1450ASN19T1  
L = 10 H  
Q = NTGS3446T1  
V
V
start  
hold  
C
= 220 F  
OUT  
V
= 1.5 V  
IN  
T = 25°C  
A
V
IN  
= 1.2 V  
V
IN  
= 0.9 V  
60  
NCP1450ASN50T1  
L = 22 H  
40  
C
= 0.1 F  
OUT  
20  
I
O
= 0 mA  
0
−50  
−25  
0
25  
50  
75  
100  
0
200  
400  
600  
800  
1000  
TEMPERATURE (°C)  
I , OUTPUT CURRENT (mA)  
O
Figure 41. NCP1450ASN50T1 Startup/Hold  
Voltage vs. Temperature  
Figure 42. NCP1450ASN19T1 Ripple Voltage  
vs. Output Current  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
NCP1450ASN30T1  
L = 10 H  
Q = NTGS3446T1  
NCP1450ASN50T1  
L = 10 H  
Q = NTGS3446T1  
V
= 2.0 V  
IN  
V
IN  
= 1.5 V  
V
IN  
= 1.2 V  
C
= 220 F  
OUT  
V
IN  
= 2.5 V  
C
= 220 F  
OUT  
V
IN  
= 0.9 V  
T = 25°C  
A
T = 25°C  
A
V
IN  
= 1.2 V  
V
IN  
= 3.0 V  
V
IN  
= 0.9 V  
V
IN  
= 1.5 V  
V
IN  
= 2.5 V  
60  
60  
V
IN  
= 4.5 V  
40  
40  
V
IN  
= 2.0 V  
V
IN  
= 4.0 V  
20  
20  
0
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 43. NCP1450ASN30T1 Ripple Voltage  
vs. Output Current  
Figure 44. NCP1450ASN50T1 Ripple Voltage  
vs. Output Current  
http://onsemi.com  
11  
NCP1450A  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
2.0  
1.6  
NCP1450ASN19T1  
L = 10 H  
Q = MMJT9410  
V
start  
V
V
start  
C
= 220 F  
OUT  
NCP1450ASN19T1  
L = 10 H  
Q = NTGS3446T1  
T = 25°C  
A
1.2  
0.8  
0.4  
0.0  
C
= 220 F  
OUT  
T = 25°C  
A
hold  
V
hold  
0
0
0
20  
40  
60  
80  
100  
100  
100  
0
0
0
20  
40  
60  
80  
100  
100  
100  
I , OUTPUT CURRENT (mA)  
I , OUTPUT CURRENT (mA)  
O
O
Figure 45. NCP1450ASN19T1 Startup/Hold  
Voltage vs. Output Current (Using MOSFET)  
Figure 46. NCP1450ASN19T1 Startup/Hold  
Voltage vs. Output Current (Using BJT)  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
V
start  
V
V
start  
NCP1450ASN30T1  
L = 10 H  
Q = NTGS3446T1  
C
= 220 F  
OUT  
hold  
T = 25°C  
A
NCP1450ASN30T1  
L = 10 H  
Q = MMJT9410  
= 220 F  
T = 25°C  
V
hold  
C
OUT  
A
20  
40  
60  
80  
20  
40  
60  
80  
I , OUTPUT CURRENT (mA)  
I , OUTPUT CURRENT (mA)  
O
O
Figure 47. NCP1450ASN30T1 Startup/Hold  
Voltage vs. Output Current (Using MOSFET)  
Figure 48. NCP1450ASN30T1 Startup/Hold  
Voltage vs. Output Current (Using BJT)  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
V
V
V
V
start  
start  
hold  
hold  
NCP1450ASN50T1  
L = 10 H  
Q = NTGS3446T1  
NCP1450ASN50T1  
L = 10 H  
Q = MMJT9410  
= 220 F  
OUT  
T = 25°C  
A
C
= 220 F  
C
OUT  
T = 25°C  
A
20  
40  
60  
80  
20  
40  
60  
80  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 49. NCP1450ASN50T1 Startup/Hold  
Voltage vs. Output Current (Using MOSFET)  
Figure 50. NCP1450ASN50T1 Startup/Hold  
Voltage vs. Output Current (Using BJT)  
http://onsemi.com  
12  
NCP1450A  
2 s/div  
2 s/div  
V
OUT  
= 1.9 V, V = 1.2 V, I = 20 mA, L = 10 H,  
V
OUT  
= 1.9 V, V = 1.2 V, I = 500 mA, L = 10 H,  
IN  
O
IN  
O
C
= 220 F  
C
= 220 F  
OUT  
OUT  
1. V , 1.0 V/div  
1. V , 1.0 V/div  
L
L
2. I , 500 mA/div  
2. I , 500 mA/div  
L
L
3. V , 50 mV/div, AC coupled  
OUT  
3. V , 50 mV/div, AC coupled  
OUT  
Figure 51. NCP1450ASN19T1 Operating  
Waveforms (Medium Load)  
Figure 52. NCP1450ASN19T1 Operating  
Waveforms (Heavy Load)  
2 s/div  
2 s/div  
V
OUT  
= 3.0 V, V = 1.8 V, I = 20 mA, L = 10 H,  
V
OUT  
= 3.0 V, V = 1.8 V, I = 500 mA, L = 10 H,  
IN  
O
IN  
O
C
= 220 F  
C
= 220 F  
OUT  
OUT  
1. V , 2.0 V/div  
1. V , 2.0 V/div  
L
L
2. I , 500 mA/div  
2. I , 500 mA/div  
L
L
3. V , 50 mV/div, AC coupled  
OUT  
3. V , 50 mV/div, AC coupled  
OUT  
Figure 53. NCP1450ASN30T1 Operating  
Waveforms (Medium Load)  
Figure 54. NCP1450ASN30T1 Operating  
Waveforms (Heavy Load)  
2 s/div  
2 s/div  
V
OUT  
= 5.0 V, V = 3.0 V, I = 20 mA, L = 10 H,  
V
OUT  
= 5.0 V, V = 3.0 V, I = 500 mA, L = 10 H,  
IN  
O
IN  
O
C
= 220 F  
C
= 220 F  
OUT  
OUT  
1. V , 2.0 V/div  
1. V , 2.0 V/div  
L
L
2. I , 500 mA/div  
2. I , 500 mA/div  
L
L
3. V , 50 mV/div, AC coupled  
OUT  
3. V , 50 mV/div, AC coupled  
OUT  
Figure 55. NCP1450ASN50T1 Operating  
Waveforms (Medium Load)  
Figure 56. NCP1450ASN50T1 Operating  
Waveforms (Heavy Load)  
http://onsemi.com  
13  
NCP1450A  
V
IN  
= 1.5 V, L = 4.7 H, C  
= 220 F  
V
IN  
= 1.5 V, L = 4.7 H, C  
= 220 F  
OUT  
OUT  
1. V , 1.9 V (AC coupled), 200 mV/div  
OUT  
1. V , 1.9 V (AC coupled), 200 mV/div  
OUT  
2. I , 1.0 mA to 100 mA  
2. I , 100 mA to 1.0 mA  
O
O
Figure 57. NCP1450ASN19T1 Load Transient  
Response  
Figure 58. NCP1450ASN19T1 Load Transient  
Response  
V
IN  
= 2.0 V, L = 4.7 H, C  
= 220 F  
V
IN  
= 2.0 V, L = 4.7 H, C  
= 220 F  
OUT  
OUT  
1. V , 3.0 V (AC coupled), 200 mV/div  
OUT  
1. V , 3.0 V (AC coupled), 200 mV/div  
OUT  
2. I , 1.0 mA to 100 mA  
2. I , 100 mA to 1.0 mA  
O
O
Figure 59. NCP1450ASN30T1 Load Transient  
Response  
Figure 60. NCP1450ASN30T1 Load Transient  
Response  
V
IN  
= 3.0 V, L = 4.7 H, C  
= 220 F  
V
IN  
= 3.0 V, L = 4.7 H, C  
= 220 F  
OUT  
OUT  
1. V , 5.0 V (AC coupled), 200 mV/div  
OUT  
1. V , 5.0 V (AC coupled), 200 mV/div  
OUT  
2. I , 1.0 mA to 100 mA  
2. I , 100 mA to 1.0 mA  
O
O
Figure 61. NCP1450ASN50T1 Load Transient  
Response  
Figure 62. NCP1450ASN50T1 Load Transient  
Response  
http://onsemi.com  
14  
NCP1450A  
2.1  
2.0  
1.9  
3.2  
3.1  
3.0  
V
IN  
= 1.5 V  
V
IN  
= 2.0 V  
V
IN  
= 2.5 V  
NCP1450ASN19T1  
L = 10 H  
Q = MMJT9410  
NCP1450ASN30T1  
L = 10 H  
Q = MMJT9410  
V
= 1.5 V  
IN  
2.9  
1.8  
1.7  
1.6  
V
IN  
= 0.9 V  
V
IN  
= 1.2 V  
V
IN  
= 1.2 V  
V
IN  
= 0.9 V  
R = 560 ꢃ  
b
R = 560 ꢃ  
b
C = 0.003 F  
C = 0.003 F  
b
b
2.8  
2.7  
C
= 220 F  
C
= 220 F  
OUT  
OUT  
T = 25°C  
A
T = 25°C  
A
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 63. NCP1450ASN19T1 Output Voltage  
vs. Output Current (Ext. BJT)  
Figure 64. NCP1450ASN30T1 Output Voltage  
vs. Output Current (Ext. BJT)  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
100  
80  
V
V
= 4.5 V  
= 4.0 V  
IN  
V
= 1.5 V  
IN  
IN  
V
IN  
= 1.2 V  
V
IN  
= 3.0 V  
V
= 1.5 V  
V
= 2.5 V  
IN  
IN  
60  
40  
20  
0
NCP1450ASN19T1  
L = 10 H  
Q = MMJT9410  
NCP1450ASN50T1  
L = 10 H  
V
IN  
= 2.0 V  
Q = MMJT9410  
R = 560 ꢃ  
V
= 1.2 V  
b
IN  
R = 560 ꢃ  
b
C = 0.003 F  
b
V
= 0.9 V  
IN  
C = 0.003 F  
b
OUT  
C = 220 F  
OUT  
T = 25°C  
A
V
IN  
= 0.9 V  
1
C
= 220 F  
T = 25°C  
A
0
200  
400  
600  
800  
1000  
0.01  
0.1  
10  
100  
1000  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 65. NCP1450ASN50T1 Output Voltage  
vs. Output Current (Ext. BJT)  
Figure 66. NCP1450ASN19T1 Efficiency vs.  
Output Current (Ext. BJT)  
100  
80  
100  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
= 2.5 V  
= 2.0 V  
= 1.5 V  
= 1.2 V  
= 0.9 V  
V
V
V
= 4.0 V  
= 3.0 V  
= 2.5 V  
= 2.0 V  
= 0.9 V  
V
= 4.5 V  
IN  
IN  
IN  
IN  
80  
60  
40  
20  
0
V
IN  
V
IN  
60  
40  
20  
0
V
IN  
V
IN  
= 1.5 V  
= 1.2 V  
NCP1450ASN30T1  
L = 10 H  
NCP1450ASN50T1  
L = 10 H  
Q = MMJT9410  
Q = MMJT9410  
R = 560 ꢃ  
R = 560 ꢃ  
b
b
C = 0.003 F  
C = 0.003 F  
b
b
OUT  
C
= 220 F  
C
= 220 F  
OUT  
T = 25°C  
T = 25°C  
A
A
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
I , OUTPUT CURRENT (mA)  
O
I , OUTPUT CURRENT (mA)  
O
Figure 67. NCP1450ASN30T1 Efficiency vs.  
Output Current (Ext. BJT)  
Figure 68. NCP1450ASN50T1 Efficiency vs.  
Output Current (Ext. BJT)  
http://onsemi.com  
15  
NCP1450A  
10  
1
100  
A. V  
B. V  
C. V  
D. V  
E. V  
F. V  
= 1.9 V, R = 1 kꢃ  
b
OUT  
OUT  
OUT  
OUT  
OUT  
NCP1450ASNXXT1  
L = 10 H  
Q = NTGS3446T1  
F
= 3.0 V, R = 1 kꢃ  
b
= 5.0 V, R = 1 kꢃ  
b
C
E
= 1.9 V, R = 560 ꢃ  
b
10  
= 3.0 V, R = 560 ꢃ  
C
= 220 F  
b
OUT  
= 5.0 V, R = 560 ꢃ  
OUT  
b
T = 25°C  
A
B
D
NCP1450ASNXXT1  
L = 10 H  
Q = MMJT9410  
1
0.1  
V
3
= 5.0 V  
OUT  
C
T
= 220 F  
= 25°C  
OUT  
0.1  
0.01  
A
A
V
= 3.0 V  
4
OUT  
V
OUT  
= 1.9 V  
2
0.01  
1
5
0
1
2
3
4
5
V
IN  
, INPUT VOLTAGE (V)  
V , INPUT VOLTAGE (V)  
IN  
Figure 69. NCP1450ASNXXT1 No Load Input  
Current vs. Input Voltage (Using MOSFET)  
Figure 70. NCP1450ASNXXT1 No Load Input  
Current vs. Input Voltage (Using BJT)  
Components Supplier  
Parts  
Supplier  
Part Number  
CD54−100MC  
MBRM110L  
Description  
Phone  
Inductor: L1, L2  
Schottky Diode: D1, D2  
MOSFET: Q1  
Sumida Electric Co. Ltd.  
ON Semiconductor  
ON Semiconductor  
ON Semiconductor  
KEMET Electronics Corp.  
Inductor 10 H/1.44 A  
(852) 2880−6688  
(852) 2689−0088  
(852) 2689−0088  
(852) 2689−0088  
(852) 2305−1168  
Schottky Power Rectifier  
Power MOSFET N−Channel  
Bipolar Power Transistor  
NTGS3446T1  
MMJT9410  
BJT: Q2  
Output Capacitor: C1, C3  
T494D227K006AS  
Low ESR Tantalum Capacitor  
220 F/6.0 V  
Input Capacitor: C2, C4  
KEMET Electronics Corp.  
T491C106K016AS  
Low Profile Tantalum Capacitor  
(852) 2305−1168  
10 F/16 V  
http://onsemi.com  
16  
NCP1450A  
DETAILED OPERATING DESCRIPTION  
Soft Start  
Operation  
The NCP1450A series are monolithic power switching  
controllers optimized for battery powered portable products  
where large output current is required.  
There is a soft start circuit in NCP1450A. When power is  
applied to the device, the soft start circuit first pumps up the  
output voltage to approximately 1.5 V at a fixed duty cycle.  
This is the voltage level at which the controller can operate  
normally. In addition to that, the startup capability with  
heavy loads is also improved.  
The NCP1450A series are low noise fixed frequency  
voltage−mode PWM DC−DC controllers, and consist of  
startup circuit, feedback resistor divider, reference voltage,  
oscillator, loop compensation network, PWM control  
circuit, and low ON resistance driver. Due to the on−chip  
feedback resistor and loop compensation network, the  
system designer can get the regulated output voltage from  
1.8 V to 5.0 V with 0.1 V stepwise with a small number of  
external components. The quiescent current is typically  
Oscillator  
The oscillator frequency is internally set to 180 kHz at an  
accuracy of "20% and with low temperature coefficient of  
0.11%/°C.  
Regulated Converter Voltage (VOUT  
)
93 A (V  
= 2.7 V, f  
= 180 kHz), and can be further  
OUT  
OSC  
The V  
is set by an integrated feedback resistor  
OUT  
reduced to about 1.5 A when the chip is disabled (V  
t
CE  
network. This is trimmed to a selected voltage from 1.8 V to  
5.0 V range in 100 mV steps with an accuracy of "2.5%.  
0.3 V).  
The NCP1450A operation can be best understood by  
referring to the block diagram in Figure 2. The error  
amplifier monitors the output voltage via the feedback  
resistor divider by comparing the feedback voltage with the  
reference voltage. When the feedback voltage is lower than  
the reference voltage, the error amplifier output will  
decrease. The error amplifier output is then compared with  
the oscillator ramp voltage at the PWM controller. When the  
ramp voltage is higher than the error amplifier output, the  
high−side driver is turned on and the low−side driver is  
turned off which will then switch on the external transistor;  
and vice versa. As the error amplifier output decreases, the  
high−side driver turn−on time increases and duty cycle  
increases. When the feedback voltage is higher than the  
reference voltage, the error amplifier output increases and  
the duty cycle decreases. When the external power switch is  
on, the current ramps up in the inductor, storing energy in the  
magnetic field. When the external power switch is off, the  
energy stored in the magnetic field is transferred to the  
output filter capacitor and the load. The output filter  
capacitor stores the charge while the inductor current is  
higher than the output current, then sustains the output  
voltage until the next switching cycle.  
Compensation  
The device is designed to operate in continuous  
conduction mode. An internal compensation circuit was  
designed to guarantee stability over the full input/output  
voltage and full output load range.  
Enable/Disable Operation  
The NCP1450A series offer IC shutdown mode by chip  
enable pin (CE pin) to reduce current consumption. When  
voltage at pin CE is equal or greater than 0.9 V, the chip will  
be enabled, which means the controller is in normal  
operation. When voltage at pin CE is less than 0.3 V, the chip  
is disabled, which means IC is shutdown.  
Important: DO NOT apply a voltage between 0.3 V to 0.9 V  
to pin CE as this is the CE pin’s hysteresis voltage range.  
Clearly defined output states can only be obtained by  
applying voltage out of this range.  
As the load current is decreased, the switch transistor turns  
on for a shorter duty cycle. Under the light load condition,  
the controller will skip switching cycles to reduce power  
consumption, so that high efficiency is maintained at light  
loads.  
http://onsemi.com  
17  
NCP1450A  
APPLICATION CIRCUIT INFORMATION  
Step−up Converter Design Equations  
Calculate the maximum inductance value which can  
generate the desired current output and the preferred delta  
inductor current to average inductor current ratio:  
The NCP1450A PWM step−up DC−DC controller is  
designed to operate in continuous conduction mode and can  
be defined by the following equations. External components  
values can be calculated from these equations, however, the  
optimized value should obtained through experimental  
results.  
2
(3.3V ) 0.3V * 2.4V)(1 * 0.364)  
180000Hz   1A   0.2  
L v  
+ 13.5H  
Determine the average inductor current and peak inductor  
current:  
Calculation  
Equation  
) V * V  
IN  
1
I
+
+ 1.57A  
L
1 * 0.364  
D
V
V
OUT  
D
v
) V * V  
OUT  
D
S
0.2  
I
+ 1.57A (1 )  
) + 1.73A  
PK  
2
I
L
I
O
Therefore, a 12 H inductor with saturation current larger  
than 1.73 A can be selected as the initial trial.  
Calculate the delta charge stored in the output capacitor  
during the charging up period in each switching cycle:  
(1 * D)  
L
2
(V  
) V * V )(1 * D)  
IN  
OUT  
D
f   I   DIR  
O
I
DIR  
2
PK  
I (1 )  
)
L
(1.57A * 1A)(1 * 0.364)  
Q
+
+ 2.01C  
18000Hz  
Q
( I * I )(1 * D)  
L
O
f
Determine the output capacitance value for the desired  
output ripple voltage:  
V
PP  
Q
[
) ( I * I ) ESR  
L O  
C
OUT  
Assume the ESR of the output capacitor is 0.15 ,  
NOTES:  
2.01C  
D
− On−time duty cycle  
− Average inductor current  
− Peak inductor current  
C
u
+ 138.6F  
OUT  
I
L
100mV * (1.57A * 1A)   0.15ꢃ  
I
PK  
Therefore, a Tantalum capacitor with value of 150 F to  
220 F and ESR of 0.15 can be used as the output  
capacitor. However, according to experimental result,  
220ꢄ ꢀ F output capacitor gives better overall operational  
stability and smaller ripple voltage.  
DIR − Delta inductor current to average inductor current ratio  
I
O
− Desired dc output current  
− Nominal operating dc input voltage  
− Desired dc output voltage  
− Diode forward voltage  
− Saturation voltage of the external transistor switch  
V
V
V
V
IN  
OUT  
D
S
− Charge stores in the C  
− Equivalent series resistance of the output capacitor  
during charging up  
Q
OUT  
External Component Selection  
ESR  
Inductor Selection  
Design Example  
The NCP1450A is designed to work well with a 6.8 to  
12 H inductors in most applications 10 H is a sufficiently  
low value to allow the use of a small surface mount coil, but  
large enough to maintain low ripple. Lower inductance  
values supply higher output current, but also increase the  
ripple and reduce efficiency.  
Higher inductor values reduce ripple and improve  
efficiency, but also limit output current.  
The inductor should have small DCR, usually less than  
It is supposed that a step−up DC−DC controller with 3.3 V  
output delivering a maximum 1000 mA output current with  
100 mV output ripple voltage powering from a 2.4 V input  
is to be designed.  
Design parameters:  
V
= 2.4 V  
= 3.3 V  
= 1.0 A  
= 100 mV  
IN  
V
OUT  
I
V
O
pp  
1, to minimize loss. It is necessary to choose an inductor  
with a saturation current greater than the peak current which  
the inductor will encounter in the application.  
f = 180 kHZ  
DIR = 0.2 (typical for small output ripple voltage)  
Assume the diode forward voltage and the transistor  
saturation voltage are both 0.3 V. Determine the maximum  
steady state duty cycle at V = 2.4 V:  
IN  
3.3V ) 0.3V * 2.4V  
D +  
+ 0.364  
3.3V ) 0.3V * 0.3V  
http://onsemi.com  
18  
NCP1450A  
Diode  
more efficient switch than a BJT transistor. However, the  
The diode is the largest source of loss in DC−DC  
converters. The most importance parameters which affect  
MOSFET requires a higher voltage to turn on as compared  
with BJT transistors. An enhancement N−channel MOSFET  
can be selected by the following guidelines:  
their efficiency are the forward voltage drop, V , and the  
D
reverse recovery time, trr. The forward voltage drop creates  
a loss just by having a voltage across the device while a  
current flowing through it. The reverse recovery time  
generates a loss when the diode is reverse biased, and the  
current appears to actually flow backwards through the  
diode due to the minority carriers being swept from the P−N  
1. Low ON−resistance, R  
2. Low gate threshold voltage, V  
, typically < 0.1 .  
DS(on)  
, must be <  
GS(th)  
V , typically < 1.5 V, it is especially important  
OUT  
for the low V  
device, like V  
= 1.9 V.  
OUT  
OUT  
3. Rated continuous drain current, I , should be  
D
larger than the peak inductor current, i.e. I > I  
.
D
PK  
junction.  
A
Schottky diode with the following  
4. Gate capacitance should be 1200 pF or less.  
characteristics is recommended:  
For bipolar NPN transistor, medium power transistor with  
Small forward voltage, V t 0.3 V  
continuous collector current typically 1 A to 5 A and V  
F
CE(sat)  
< 0.2 V should be employed. The driving capability is  
Small reverse leakage current  
determined by the DC current gain, H , of the transistor and  
FE  
Fast reverse recovery time/switching speed  
the base resistor, Rb; and the controller’s EXT pin must be  
able to supply the necessary driving current.  
Rated current larger than peak inductor current,  
I
u I  
PK  
rated  
Reverse voltage larger than output voltage,  
u V  
Rb can be calculated by the following equation:  
V
reverse  
OUT  
V
0.7  
0.4  
OUT *  
Rb +  
*
|
|
Ib  
I
Input Capacitor  
EXTH  
The input capacitor can stabilize the input voltage and  
minimize peak current ripple from the source. The value of  
the capacitor depends on the impedance of the input source  
used. Small Equivalent Series Resistance (ESR) Tantalum  
or ceramic capacitor with a value of 10 F should be  
suitable.  
I
H
PK  
FE  
Ib +  
Since the pulse current flows through the transistor, the  
exact Rb value should be finely tuned by the experiment.  
Generally, a small Rb value can increase the output current  
capability, but the efficiency will decrease due to more  
energy is used to drive the transistor.  
Moreover, a speed−up capacitor, Cb, should be connected  
in parallel with Rb to reduce switching loss and improve  
efficiency. Cb can be calculated by the equation below:  
Output Capacitor  
The output capacitor is used for sustaining the output  
voltage when the external MOSFET or bipolar transistor is  
switched on and smoothing the ripple voltage. Low ESR  
capacitor should be used to reduce output ripple voltage. In  
general, a 100 F to 220 F low ESR (0.10 to 0.30 )  
Tantalum capacitor should be appropriate.  
1
Cb v  
2  Rb   f  
OSC  
  0.7  
It is due to the variation in the characteristics of the  
transistor used. The calculated value should be used as the  
initial test value and the optimized value should be obtained  
by the experiment.  
External Switch Transistor  
An enhancement N−channel MOSFET or a bipolar NPN  
transistor can be used as the external switch transistor.  
For enhancement N−channel MOSFET, since  
enhancement MOSFET is a voltage driven device, it is a  
External Component Reference Data  
Inductor  
Inductor  
Value  
External  
Transistor  
Output  
Capacitor  
Model  
CD54  
CD54  
CD54  
CD54  
CD54  
CD54  
Device  
V
Diode  
OUT  
NCP1450ASN19T1  
NCP1450ASN30T1  
NCP1450ASN50T1  
NCP1450ASN19T1  
NCP1450ASN30T1  
NCP1450ASN50T1  
1.9 V  
3.0 V  
5.0 V  
1.9 V  
3.0 V  
5.0 V  
12 H  
10 H  
10 H  
12 H  
10 H  
10 H  
NTGS3446T1  
NTGS3446T1  
NTGS3446T1  
MMJT9410  
MBRM110L  
MBRM110L  
MBRM110L  
MBRM110L  
MBRM110L  
MBRM110L  
220 F  
220 F  
220 F  
220 F  
220 F  
220 F  
MMJT9410  
MMJT9410  
http://onsemi.com  
19  
NCP1450A  
An evaluation board of NCP1450A has been made in the  
ON Semiconductor representative for availability. The  
evaluation board schematic diagrams are shown in  
Figures 73 and 74.  
small size of 89 mm x 51 mm. The artwork and the silk  
screen of the surface−mount evaluation board PCB are  
shown in Figures 71 and 72. Please contact your  
51 mm  
89 mm  
Figure 71. NCP1450A PWM Step−up DC−DC Controller Evaluation Board Silkscreen  
51 mm  
89 mm  
Figure 72. NCP1450A PWM Step−up DC−DC Controller Evaluation Board Artwork (Component Side)  
http://onsemi.com  
20  
 
NCP1450A  
L1  
10 H  
D1  
MBRM110L  
JP1  
TP1  
TP3  
V
IN  
V
OUT  
NTGS3446T1  
CE  
1
EXT  
5
ON  
CE  
OFF  
Q1  
C2  
10 F  
C1  
220 F  
OUT  
2
IC1  
C3  
0.1 F  
NC  
GND  
4
TP2  
GND  
TP4  
GND  
3
Figure 73. NCP1450A Evaluation Board Schematic Diagram 1 (Step−up  
DC−DC Converter Using External MOSFET Switch)  
L2  
10 H  
D2  
MBRM110L  
JP2  
TP5  
TP7  
V
IN  
V
OUT  
Rb  
560  
CE  
1
EXT  
5
ON  
CE  
OFF  
Q2  
MMJT9410  
C5  
10 F  
C4  
220 F  
OUT  
2
IC2  
Cb  
3000 pF  
C6  
0.1 F  
NC  
3
GND  
4
TP6  
TP8  
GND  
GND  
Figure 74. NCP1450A Evaluation Board Schematic Diagram 2 (Step−up  
DC−DC Converter Using External Bipolar Transistor Switch)  
PCB Layout Hints  
Grounding  
Output Capacitor  
One point grounding should be used for the output power  
return ground, the input power return ground, and the device  
switch ground to reduce noise. In Figure 73, e.g.: C2 GND,  
C1 GND, and IC1 GND are connected at one point in the  
evaluation board. The input ground and output ground traces  
must be thick enough for current to flow through and for  
reducing ground bounce.  
The output capacitor should be placed close to the output  
terminals to obtain better smoothing effect on the output  
ripple.  
Switching Noise Decoupling Capacitor  
A 0.1 F ceramic capacitor should be placed close to the  
OUT pin and GND pin of the NCP1450A to filter the  
switching spikes in the output voltage monitored by the  
OUT pin.  
Power Signal Traces  
Low resistance conducting paths should be used for the  
power carrying traces to reduce power loss so as to improve  
efficiency (short and thick traces for connecting the inductor  
L can also reduce stray inductance), e.g.: short and thick  
traces listed below are used in the evaluation board:  
1. Trace from TP1 to L1  
2. Trace from L1 to anode pin of D1  
3. Trace from cathode pin of D1 to TP3  
http://onsemi.com  
21  
 
NCP1450A  
PACKAGE DIMENSIONS  
TSOP−5  
SN SUFFIX  
CASE 483−02  
ISSUE E  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
D
2. CONTROLLING DIMENSION: MILLIMETER.  
3. MAXIMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS  
OF BASE MATERIAL.  
4. A AND B DIMENSIONS DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5
4
3
B
C
S
1
2
L
MILLIMETERS  
INCHES  
MIN MAX  
0.1142 0.1220  
G
DIM  
A
B
C
D
G
H
J
K
L
MIN  
2.90  
1.30  
0.90  
0.25  
0.85  
0.013  
0.10  
0.20  
1.25  
0
MAX  
3.10  
A
1.70 0.0512 0.0669  
1.10 0.0354 0.0433  
0.50 0.0098 0.0197  
1.05 0.0335 0.0413  
0.100 0.0005 0.0040  
0.26 0.0040 0.0102  
0.60 0.0079 0.0236  
1.55 0.0493 0.0610  
J
0.05 (0.002)  
H
M
K
M
S
10  
0
10  
_
_
_
_
2.50  
3.00 0.0985 0.1181  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NCP1450A/D  

相关型号:

NCP1450ASN50T1

PWM Step-up DC-DC Controller
ONSEMI

NCP1450ASN50T1G

PWM Step−up DC−DC Controller
ONSEMI

NCP1450A_05

PWM Step−up DC−DC Controller
ONSEMI

NCP145AMX100TCG

Very Low Dropout Bias Rail CMOS Voltage Regulator
ONSEMI

NCP145AMX105TCG

Very Low Dropout Bias Rail CMOS Voltage Regulator
ONSEMI

NCP145AMX120TCG

Very Low Dropout Bias Rail CMOS Voltage Regulator
ONSEMI

NCP145CMX120TCG

LDO 稳压器,500 mA,超低漏,高 PSRR,带偏置轨
ONSEMI

NCP146

300 mA CMOS Low Dropout Regulator
ONSEMI

NCP146CD180R2G

300 mA CMOS Low Dropout Regulator
ONSEMI

NCP148

Ultra-Low Noise High PSRR LDO Regulator Analog Circuits
ONSEMI

NCP148AFCT180T2G

Ultra-Low Noise High PSRR LDO Regulator Analog Circuits
ONSEMI

NCP148AFCT250T2G

Ultra-Low Noise High PSRR LDO Regulator Analog Circuits
ONSEMI