NCP148AFCT180T2G [ONSEMI]

Ultra-Low Noise High PSRR LDO Regulator Analog Circuits;
NCP148AFCT180T2G
型号: NCP148AFCT180T2G
厂家: ONSEMI    ONSEMI
描述:

Ultra-Low Noise High PSRR LDO Regulator Analog Circuits

文件: 总12页 (文件大小:578K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP148  
450 mA, Ultra-Low Noise  
and High PSRR LDO  
Regulator for RF and  
Analog Circuits  
www.onsemi.com  
The NCP148 is a linear regulator capable of supplying 450 mA  
output current. Designed to meet the requirements of RF and analog  
circuits, the NCP148 device provides low noise, high PSRR, low  
quiescent current, and very good load/line transients. The NCP148  
offers soft−start function with optimized slew rate control to use in  
camera module. The device is designed to work with a 1 mF input and a  
1 mF output ceramic capacitor. It is available in ultra−small 0.35P,  
0.65 mm x 0.65 mm Chip Scale Package (CSP).  
MARKING  
DIAGRAMS  
X
WLCSP4  
CASE 567JZ  
A1  
X or XX = Specific Device Code  
Features  
M
= Date Code  
Operating Input Voltage Range: 1.9 V to 5.5 V  
Available in Fixed Voltage Option: 1.8 V to 5.14 V  
Optimized Start−up Slew Rate for Camera Sensor  
PIN CONNECTIONS  
2% Accuracy Over Load/Temperature  
Low Quiescent Current Typ. 55 mA  
Standby Current: Typ. 0.1 mA  
Very Low Dropout: 150 mV at 450 mA  
Ultra High PSRR: Typ. 98 dB at 20 mA, f = 1 kHz  
IN  
OUT  
A2  
A1  
B1  
B2  
Ultra Low Noise: 10 mV  
RMS  
Stable with a 1 mF Small Case Size Ceramic Capacitors  
EN  
GND  
Available in WLCSP4 0.65 mm x 0.65 mm x 0.33 mm CASE 567JZ  
(Top View)  
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS  
Compliant  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 11 of  
this data sheet.  
Typical Applications  
Camera Modules  
Battery−powered Equipment  
Smartphones, Tablets  
Cameras, DVRs, STB and Camcorders  
V
V
OUT  
IN  
IN  
OUT  
NCP148  
GND  
C
1 mF  
Ceramic  
EN  
IN  
C
OUT  
1 mF  
Ceramic  
ON  
OFF  
Figure 1. Typical Application Schematics  
© Semiconductor Components Industries, LLC, 2017  
1
Publication Order Number:  
June, 2017 − Rev. 0  
NCP148/D  
NCP148  
IN  
ENABLE  
LOGIC  
THERMAL  
EN  
SHUTDOWN  
BANDGAP  
MOSFET  
REFERENCE  
INTEGRATED  
SOFT−START  
DRIVER WITH  
CURRENT LIMIT  
OUT  
* ACTIVE DISCHARGE  
Version A only  
EN  
GND  
Figure 2. Simplified Schematic Block Diagram  
Description  
PIN FUNCTION DESCRIPTION  
Pin No.  
A1  
Pin Name  
IN  
Input voltage supply pin  
Regulated output voltage. The output should be bypassed with small 1 mF ceramic capacitor.  
A2  
OUT  
EN  
B1  
Chip enable: Applying V < 0.4 V disables the regulator, Pulling V > 1.2 V enables the LDO.  
EN EN  
B2  
GND  
EPAD  
Common ground connection  
Expose pad should be tied to ground plane for better power dissipation  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage (Note 1)  
V
IN  
−0.3 V to 6  
Output Voltage  
V
OUT  
−0.3 to V + 0.3, max. 6 V  
V
IN  
Chip Enable Input  
V
CE  
−0.3 to V + 0.3, max. 6 V  
V
IN  
Output Short Circuit Duration  
Maximum Junction Temperature  
Storage Temperature  
t
unlimited  
150  
s
SC  
T
°C  
°C  
V
J
T
STG  
−55 to 150  
2000  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Machine Model (Note 2)  
ESD  
HBM  
ESD  
200  
V
MM  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per EIA/JESD22−A114  
ESD Machine Model tested per EIA/JESD22−A115  
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, CSP4 (Note 3)  
R
108  
°C/W  
q
JA  
Thermal Resistance, Junction−to−Air  
3. Measured according to JEDEC board specification. Detailed description of the board can be found in JESD51−7  
www.onsemi.com  
2
 
NCP148  
ELECTRICAL CHARACTERISTICS −40°C T 125°C; V = V  
+ 1 V; I  
= 1 mA, C = C  
= 1 mF, unless otherwise  
J
IN  
OUT(NOM)  
OUT  
IN  
OUT  
noted. V = 1.2 V. Typical values are at T = +25°C (Note 4).  
EN  
J
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
Operating Input Voltage  
Output Voltage Accuracy  
V
1.9  
5.5  
V
IN  
V
= V  
+ 1 V  
450 mA  
IN  
OUT(NOM)  
OUT  
V
OUT  
−2  
+2  
%
0 mA I  
Line Regulation  
V
+ 1 V V 5.5 V  
Line  
Reg  
0.02  
0.001  
300  
190  
180  
175  
700  
690  
55  
%/V  
OUT(NOM)  
IN  
Load Regulation  
I
= 1 mA to 450 mA  
Load  
%/mA  
OUT  
Reg  
Dropout Voltage (Note 5)  
I
= 450 mA  
V
V
V
V
= 1.8 V  
= 2.5 V  
= 2.7 V  
= 2.8 V  
450  
315  
300  
290  
OUT  
OUT(NOM)  
OUT(NOM)  
OUT(NOM)  
OUT(NOM)  
V
DO  
mV  
Output Current Limit  
Short Circuit Current  
Quiescent Current  
V
V
= 90% V  
I
CL  
450  
1.2  
OUT  
OUT(NOM)  
mA  
V
= 0 V  
I
OUT  
SC  
I
= 0 mA  
I
Q
65  
1
mA  
mA  
OUT  
Shutdown Current  
0.4 V, V = 4.8 V  
I
0.01  
EN  
IN  
DIS  
EN Pin Threshold Voltage  
EN Input Voltage “H”  
EN Input Voltage “L”  
V
ENH  
V
V
ENL  
0.4  
0.5  
EN Pull Down Current  
V
= 4.8 V  
I
0.2  
mA  
EN  
EN  
Power Supply Rejection Ratio  
I
= 20 mA  
f = 100 Hz  
91  
98  
82  
48  
OUT  
f = 1 kHz  
f = 10 kHz  
f = 100 kHz  
PSRR  
dB  
Output Voltage Noise  
f = 10 Hz to 100 kHz  
I
= 1 mA  
= 250 mA  
14  
10  
OUT  
V
N
mV  
RMS  
I
OUT  
Thermal Shutdown Threshold  
Temperature rising  
Temperature falling  
T
160  
140  
280  
°C  
°C  
W
SDH  
T
SDL  
Active output discharge resistance  
Line transient (Note 6)  
V
< 0.4 V, Version A only  
R
DIS  
EN  
V
IN  
= (V  
+ 1 V) to (V  
+
OUT(NOM)  
OUT(NOM)  
−1  
1.6 V) in 30 ms, I  
= 1 mA  
OUT  
Tran  
mV  
mV  
LINE  
V
IN  
= (V  
+ 1.6 V) to (V  
+
OUT(NOM)  
OUT(NOM)  
+1  
1 V) in 30 ms, I  
= 1 mA  
OUT  
Load transient (Note 6)  
−40  
I
= 1 mA to 450 mA in 10 ms  
= 450 mA to 1mA in 10 ms  
OUT  
Tran  
LOAD  
I
+40  
OUT  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
4. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at T = 25°C.  
A
Low duty cycle pulse techniques are used during the testing to maintain the junction temperature as close to ambient as possible.  
5. Dropout voltage is characterized when V  
6. Guaranteed by design.  
falls 100 mV below V  
.
OUT  
OUT(NOM)  
www.onsemi.com  
3
 
NCP148  
TYPICAL CHARACTERISTICS  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
2.830  
2.825  
2.820  
2.815  
I
I
= 10 mA  
OUT  
I
= 10 mA  
= 450 mA  
OUT  
OUT  
2.810  
2.805  
I
= 450 mA  
OUT  
V
V
C
C
= 3.8 V  
V
V
C
C
= 2.8 V  
IN  
IN  
2.800  
2.795  
2.790  
= 2.8 V  
= 1 mF  
= 1.8 V  
= 1 mF  
OUT  
OUT  
IN  
IN  
= 1 mF  
= 1 mF  
OUT  
OUT  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 3. Output Voltage vs. Temperature −  
OUT = 1.8 V  
Figure 4. Output Voltage vs. Temperature −  
OUT = 2.8 V  
V
V
0.010  
0.009  
0.008  
0.007  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
0.010  
0.009  
0.008  
0.007  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
V
V
C
C
= 4.3 V  
IN  
= 3.3 V  
= 1 mF  
OUT  
IN  
= 1 mF  
OUT  
V
V
C
C
= 2.8 V  
IN  
= 1.8 V  
= 1 mF  
OUT  
IN  
= 1 mF  
OUT  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 5. Line Regulation vs. Temperature −  
OUT = 1.8 V  
Figure 6. Line Regulation vs. Temperature −  
VOUT = 2.8 V  
V
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
V
V
C
C
= 2.8 V  
V
V
C
C
= 3.8 V  
IN  
IN  
= 1.8 V  
= 1 mF  
= 2.8 V  
= 1 mF  
OUT  
OUT  
IN  
IN  
= 1 mF  
= 1 mF  
OUT  
OUT  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 7. Load Regulation vs. Temperature −  
OUT = 1.8 V  
Figure 8. Load Regulation vs. Temperature −  
VOUT = 2.8 V  
V
www.onsemi.com  
4
NCP148  
TYPICAL CHARACTERISTICS  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.6  
1.4  
T = 125°C  
T = 125°C  
J
J
1.2  
T = 25°C  
J
T = 25°C  
J
1.0  
0.8  
T = −40°C  
J
T = −40°C  
J
0.6  
V
V
C
C
= 2.8 V  
V
V
C
C
= 3.7 V  
IN  
IN  
0.4  
0.2  
0.0  
= 1.8 V  
= 1 mF  
= 2.7 V  
= 1 mF  
OUT  
OUT  
IN  
IN  
= 1 mF  
= 1 mF  
OUT  
OUT  
0
50 100 150 200 250 300 350 400 450  
0
50 100 150 200 250 300 350 400 450  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 9. Ground Current vs. Load Current −  
Figure 10. Ground Current vs. Load Current −  
V
OUT = 1.8 V  
VOUT = 2.7 V  
400  
350  
300  
250  
200  
150  
240  
210  
180  
150  
120  
90  
V
C
C
= 1.8 V  
= 1 mF  
= 1 mF  
V
C
C
= 3.3 V  
= 1 mF  
= 1 mF  
OUT  
OUT  
T = 125°C  
T = 125°C  
J
J
IN  
IN  
OUT  
OUT  
T = 25°C  
J
T = 25°C  
J
T = −40°C  
J
T = −40°C  
J
100  
50  
0
60  
30  
0
0
50 100 150 200 250 300 350 400 450  
, OUTPUT CURRENT (mA)  
0
50 100 150 200 250 300 350 400 450  
, OUTPUT CURRENT (mA)  
I
I
OUT  
OUT  
Figure 11. Dropout Voltage vs. Load Current −  
OUT = 1.8 V  
Figure 12. Dropout Voltage vs. Load Current −  
VOUT = 2.8 V  
V
240  
400  
360  
320  
V
C
C
= 1.8 V  
= 1 mF  
= 1 mF  
OUT  
I
= 450 mA  
V
OUT  
= 2.8V  
I
= 450 mA  
OUT  
OUT  
210  
180  
150  
120  
IN  
C
C
= 1 mF  
IN  
OUT  
= 1 mF  
OUT  
280  
240  
200  
160  
120  
80  
90  
60  
I
= 0 mA  
OUT  
I
= 0 mA  
OUT  
30  
0
40  
0
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 13. Dropout Voltage vs. Temperature −  
OUT = 1.8 V  
Figure 14. Dropout Voltage vs. Temperature −  
VOUT = 2.8 V  
V
www.onsemi.com  
5
NCP148  
TYPICAL CHARACTERISTICS  
750  
740  
730  
720  
710  
700  
690  
680  
670  
660  
700  
690  
650  
640  
680  
670  
630  
V
V
C
C
= 3.8 V  
V
V
C
C
= 3.8 V  
= 0 V  
(SHORT)  
IN  
IN  
= 90% V  
620  
610  
600  
OUT  
OUT(nom)  
OUT  
= 1 mF  
= 1 mF  
IN  
IN  
OUT  
660  
650  
= 1 mF  
= 1 mF  
OUT  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 15. Current Limit vs. Temperature  
Figure 16. Short Circuit Current vs.  
Temperature  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
OFF −> ON  
ON −> OFF  
V
V
C
C
= 3.8 V  
V
V
C
C
= 3.8 V  
IN  
IN  
= 2.8 V  
= 2.8 V  
= 1 mF  
OUT  
OUT  
= 1 mF  
IN  
IN  
= 1 mF  
= 1 mF  
OUT  
OUT  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 17. Enable Threshold Voltage vs.  
Temperature  
Figure 18. Enable Current vs. Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
300  
290  
280  
270  
260  
250  
240  
230  
220  
210  
200  
V
V
C
C
= 2.8 V  
IN  
= 1.8 V  
= 1 mF  
OUT  
IN  
= 1 mF  
OUT  
V
V
C
C
= 3.8 V  
IN  
= 2.8 V  
= 1 mF  
OUT  
IN  
= 1 mF  
OUT  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 19. Disable Current vs. Temperature  
Figure 20. Discharge Resistivity vs.  
Temperature  
www.onsemi.com  
6
NCP148  
TYPICAL CHARACTERISTICS  
10K  
1K  
I
= 450 mA  
OUT  
I
= 250 mA  
OUT  
RMS Output Noise (mV)  
10 Hz − 100 kHz 100 Hz − 100 kHz  
14.62 14.10  
I
= 10 mA  
OUT  
I
OUT  
I
= 1 mA  
OUT  
1 mA  
10 mA  
250 mA  
450 mA  
100  
11.12  
10.37  
10.22  
10.48  
9.82  
9.62  
V
V
C
C
= 2.8 V  
IN  
10  
1
= 1.8 V  
= 1 mF MLCC (1206)  
= 1 mF MLCC (1206)  
OUT  
IN  
OUT  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
Figure 21. Output Voltage Noise Spectral Density − VOUT = 1.8 V  
10K  
1K  
I
= 450 mA  
OUT  
I
= 250 mA  
OUT  
RMS Output Noise (mV)  
I
= 10 mA  
OUT  
I
10 Hz − 100 kHz  
16.90  
100 Hz − 100 kHz  
15.79  
I
= 1 mA  
OUT  
OUT  
1 mA  
10 mA  
250 mA  
450 mA  
100  
12.64  
11.96  
11.50  
11.13  
10.64  
10.40  
V
V
C
C
= 3.8 V  
IN  
10  
1
= 2.8 V  
OUT  
= 1 mF MLCC (1206)  
IN  
= 1 mF MLCC (1206)  
OUT  
10  
100  
1K  
10K  
100K  
1M  
FREQUENCY (kHz)  
Figure 22. Output Voltage Noise Spectral Density − VOUT = 2.8 V  
120  
100  
80  
120  
V
V
C
= 2.3 V+100mVpp  
= 1.8 V  
I
= 10 mA  
I
= 10 mA  
IN  
OUT  
OUT  
V
V
C
= 3.8 V+100mVpp  
= 2.8 V  
IN  
I
= 20 mA  
I
= 20 mA  
OUT  
OUT  
OUT  
OUT  
100  
80  
= 1 mF MLCC 1206  
OUT  
= 1 mF MLCC 1206  
OUT  
60  
60  
I
= 100 mA  
OUT  
I
= 100 mA  
OUT  
40  
40  
I
= 250 mA  
OUT  
I
= 250 mA  
OUT  
20  
0
20  
0
I
= 450 mA  
0.1  
I
= 450 mA  
0.1  
OUT  
OUT  
0.01  
1
10  
100  
1000  
10000  
0.01  
1
10  
100  
1000 10000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 23. PSRR for Various Output Currents,  
OUT = 1.8 V  
Figure 24. PSRR for Various Output Currents,  
VOUT = 2.8 V  
V
www.onsemi.com  
7
NCP148  
TYPICAL CHARACTERISTICS  
100  
10  
V
IN  
Unstable  
Operation  
V
OUT  
1
Stable  
Operation  
0.1  
0
50 100 150 200 250 300 350 400 450 500  
, OUTPUT CURRENT (mA)  
4 ms/div  
I
OUT  
Figure 25. Stability vs. ESR  
Figure 26. Turn−on/off − slow rising VIN  
V
EN  
V
EN  
I
INPUT  
V
V
C
C
= 3.7 V  
IN  
= 2.7 V  
OUT  
V
OUT  
= 1 mF (MLCC)  
IN  
V
V
C
C
= 3.7 V  
IN  
= 1 mF (MLCC)  
OUT  
= 2.7 V  
OUT  
V
OUT  
= 1 mF (MLCC)  
I
IN  
INPUT  
= 1 mF (MLCC)  
OUT  
100 ms/div  
100 ms/div  
Figure 27. Enable Turn−on Response −  
Figure 28. Enable Turn−on Response −  
C
OUT = 1 mF, IOUT = 10 mA  
COUT = 1 mF, IOUT = 450 mA  
4.8 V  
3.8 V  
V
IN  
3.8 V  
V
IN  
2.8 V  
V
OUT  
V
OUT  
V
C
= 2.8 V, I  
= 1 mF (MLCC), C  
= 10 mA  
OUT  
OUT  
V
C
= 1.8 V, I  
= 1 mF (MLCC), C  
= 10 mA  
OUT  
OUT  
= 1 mF (MLCC)  
IN  
OUT  
= 1 mF (MLCC)  
IN  
OUT  
20 ms/div  
20 ms/div  
Figure 29. Line Transient Response −  
VOUT = 1.8 V  
Figure 30. Line Transient Response −  
VOUT = 2.8 V  
www.onsemi.com  
8
NCP148  
TYPICAL CHARACTERISTICS  
I
OUT  
t
= 1 ms  
FALL  
t
= 1 ms  
RISE  
I
OUT  
V
OUT  
V
OUT  
V
V
= 2.8 V  
V
= 2.8 V  
= 1.8 V  
IN  
IN  
= 1.8 V  
V
OUT  
OUT  
C
C
= 1 mF (MLCC)  
C
C
= 1 mF (MLCC)  
IN  
IN  
= 1 mF (MLCC)  
= 1 mF (MLCC)  
OUT  
OUT  
2 ms/div  
20 ms/div  
Figure 31. Load Transient Response −  
1 mA to 450 mA − VOUT = 1.8 V  
Figure 32. Load Transient Response −  
450 mA to 1 mA − VOUT = 1.8 V  
I
OUT  
t
= 1 ms  
FALL  
t
= 1 ms  
RISE  
I
OUT  
V
OUT  
V
OUT  
V
IN  
= 3.7 V  
V
IN  
= 3.7 V  
V
OUT  
= 2.7 V  
V
OUT  
= 2.7 V  
C
C
= 1 mF (MLCC)  
C
C
= 1 mF (MLCC)  
IN  
IN  
= 1 mF (MLCC)  
= 1 mF (MLCC)  
OUT  
OUT  
5 ms/div  
20 ms/div  
Figure 33. Load Transient Response −  
1 mA to 450 mA − VOUT = 2.7 V  
Figure 34. Load Transient Response −  
450 mA to 1 mA − VOUT = 2.7 V  
V
IN  
= 5.5 V, V  
= 3.3 V  
V
EN  
OUT  
Short Circuit Event  
C
C
= 1 mF (MLCC)  
IN  
= 1 mF (MLCC)  
OUT  
I
OUT  
V
OUT  
V
OUT  
V
V
C
= 3.8 V  
IN  
C
= 4.7 mF  
Thermal  
Shutdown  
OUT  
Overheating  
10 ms/div  
TSD cycling  
= 2.8 V  
OUT  
= 1 mF (MLCC)  
IN  
C
= 1 mF  
OUT  
400 ms/div  
Figure 35. Short Circuit and Thermal  
Shutdown  
Figure 36. Enable Turn−Off (Active Discharge)  
www.onsemi.com  
9
NCP148  
APPLICATIONS INFORMATION  
General  
transient response or high frequency PSRR. It is not  
The NCP148 is an ultra−low noise 450 mA low dropout  
recommended to use tantalum capacitors on the output due  
to their large ESR. The equivalent series resistance of  
tantalum capacitors is also strongly dependent on the  
temperature, increasing at low temperature.  
regulator designed to meet the requirements of RF  
applications and high performance analog circuits. The  
NCP148 device provides very high PSRR and excellent  
dynamic response. In connection with low quiescent current  
this device is well suitable for battery powered application  
such as cell phones, tablets and other. The NCP148 is fully  
protected in case of current overload, output short circuit and  
overheating.  
Enable Operation  
The NCP148 uses the EN pin to enable/disable its device  
and to deactivate/activate the active discharge function.  
If the EN pin voltage is <0.4 V the device is guaranteed to  
be disabled. The pass transistor is turned−off so that there is  
virtually no current flow between the IN and OUT. The  
active discharge transistor is active so that the output voltage  
Input Capacitor Selection (CIN)  
Input capacitor connected as close as possible is necessary  
for ensure device stability. The X7R or X5R capacitor  
should be used for reliable performance over temperature  
range. The value of the input capacitor should be 1 mF or  
greater to ensure the best dynamic performance. This  
capacitor will provide a low impedance path for unwanted  
AC signals or noise modulated onto constant input voltage.  
There is no requirement for the ESR of the input capacitor  
but it is recommended to use ceramiccapacitors for their low  
ESR and ESL. A good input capacitor will limit the  
influence of input trace inductance and source resistance  
during sudden load current changes.  
V
OUT  
is pulled to GND through a 280 Ω resistor. In the  
disable state the device consumes as low as typ. 10 nA from  
the V .  
IN  
If the EN pin voltage >1.2 V the device is guaranteed to  
be enabled. The NCP148 regulates the output voltage and  
the active discharge transistor is turned−off.  
The EN pin has internal pull−down current source with  
typ. value of 200 nA which assures that the device is  
turned−off when the EN pin is not connected. In the case  
where the EN function isn’t required the EN should be tied  
directly to IN. After device is enabled by EN pin soft start  
feature ensure that maximal Vout slew rate will be slower  
than 30 mV/ms. The soft start function also protects powered  
device before possible damage by large inrush current.  
Output Decoupling (COUT  
)
The NCP148 requires an output capacitor connected as  
close as possible to the output pin of the regulator. The  
recommended capacitor value is 1 mF and X7R or X5R  
dielectric due to its low capacitance variations over the  
specified temperature range. The NCP148 is designed to  
remain stable with minimum effective capacitance of 0.7 mF  
to account for changes with temperature, DC bias and  
package size. Especially for small package size capacitors  
such as 0201 the effective capacitance drops rapidly with the  
applied DC bias. Please refer Figure 37.  
Output Current Limit  
Output Current is internally limited within the IC to a  
typical 700 mA. The NCP148 will source this amount of  
current measured with a voltage drops on the 90% of the  
nominal V  
. If the Output Voltage is directly shorted to  
= 0 V), the short circuit protection will limit  
OUT  
ground (V  
OUT  
the output current to 690 mA (typ). The current limit and  
short circuit protection will work properly over whole  
temperature range and also input voltage range. There is no  
limitation for the short circuit duration.  
Thermal Shutdown  
When the die temperature exceeds the Thermal Shutdown  
threshold (T * 160°C typical), Thermal Shutdown event  
SD  
is detected and the device is disabled. The IC will remain in  
this state until the die temperature decreases below the  
Thermal Shutdown Reset threshold (T  
− 140°C typical).  
SDU  
Once the IC temperature falls below the 140°C the LDO is  
enabled again. The thermal shutdown feature provides the  
protection from a catastrophic device failure due to  
accidental overheating. This protection is not intended to be  
used as a substitute for proper heat sinking.  
Figure 37. Capacity vs DC Bias Voltage  
Power Dissipation  
There is no requirement for the minimum value of  
As power dissipated in the NCP148 increases, it might  
become necessary to provide some thermal relief. The  
maximum power dissipation supported by the device is  
dependent upon board design and layout. Mounting pad  
Equivalent Series Resistance (ESR) for the C  
but the  
OUT  
maximum value of ESR should be less than 2 Ω. Larger  
output capacitors and lower ESR could improve the load  
www.onsemi.com  
10  
 
NCP148  
configuration on the PCB, the board material, and the  
ambient temperature affect the rate of junction temperature  
rise for the part.  
The power dissipated by the NCP148 for given  
application conditions can be calculated from the following  
equations:  
The maximum power dissipation the NCP148 can handle  
is given by:  
ǒ
Ǔ
(eq. 2)  
PD [ VIN @ IGND ) IOUT VIN * VOUT  
o
ƪ
ƫ
125 C * TA  
PD(MAX)  
+
(eq. 1)  
qJA  
160  
150  
140  
130  
120  
110  
100  
90  
1.6  
P
P
, T = 25°C, 2 oz Cu  
D(MAX)  
A
1.4  
, T = 25°C, 1 oz Cu  
1.2  
1.0  
0.8  
0.6  
0.4  
D(MAX)  
A
q
, 1 oz Cu  
JA  
JA  
q
, 2 oz Cu  
500  
0.2  
0
80  
0
100  
200  
300  
400  
600  
700  
2
PCB COPPER AREA (mm )  
Figure 38. qJA and PD (MAX) vs. Copper Area (CSP4)  
Reverse Current  
PCB Layout Recommendations  
The PMOS pass transistor has an inherent body diode  
which will be forward biased in the case that V > V .  
To obtain good transient performance and good regulation  
characteristics place C and C capacitors close to the  
OUT  
IN  
IN  
OUT  
Due to this fact in cases, where the extended reverse current  
condition can be anticipated the device may require  
additional external protection.  
device pins and make the PCB traces wide. In order to  
minimize the solution size, use 0402 or 0201 capacitors with  
appropriate capacity. Larger copper area connected to the  
pins will also improve the device thermal resistance. The  
actual power dissipation can be calculated from the equation  
above (Equation 2). Expose pad can be tied to the GND pin  
for improvement power dissipation and lower device  
temperature.  
Power Supply Rejection Ratio  
The NCP148 features very high Power Supply Rejection  
ratio. If desired the PSRR at higher frequencies in the range  
100 kHz – 10 MHz can be tuned by the selection of C  
capacitor and proper PCB layout.  
OUT  
ORDERING INFORMATION  
Device  
Nominal Output Voltage  
Description  
Marking  
Rotation  
270°  
0°  
Package  
Shipping  
NCP148AFCT180T2G  
NCP148AFCT250T2G  
NCP148AFCT255T2G  
NCP148AFCT260T2G  
NCP148AFCT270T2G  
NCP148AFCT280T2G  
1.8 V  
2.5 V  
2.55 V  
2.6 V  
2.7 V  
2.8 V  
T
V
4
5000 /  
Tape &  
Reel  
180°  
90°  
450 mA, Active  
Discharge  
567JZ  
V
Y
6
0°  
0°  
www.onsemi.com  
11  
 
NCP148  
PACKAGE DIMENSIONS  
WLCSP4, 0.64x0.64  
CASE 567JZ  
ISSUE A  
NOTES:  
A
E
B
D
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. COPLANARITY APPLIES TO SPHERICAL  
CROWNS OF SOLDER BALLS.  
PIN A1  
REFERENCE  
MILLIMETERS  
DIM  
A
A1  
A2  
b
MIN  
−−−  
0.04  
NOM  
−−−  
0.06  
0.23 REF  
0.210  
0.640  
MAX  
0.33  
0.08  
TOP VIEW  
0.195  
0.610  
0.610  
0.225  
0.670  
0.670  
A2  
D
E
0.640  
0.05  
C
e
0.35 BSC  
A
0.05  
C
RECOMMENDED  
A1  
SEATING  
PLANE  
SOLDERING FOOTPRINT*  
NOTE 3  
C
SIDE VIEW  
PACKAGE  
A1  
OUTLINE  
e
4X  
b
4X0.20  
e
0.35  
PITCH  
0.03  
C A B  
B
0.35  
PITCH  
A
DIMENSIONS: MILLIMETERS  
1
2
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
BOTTOM VIEW  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP148/D  

相关型号:

NCP148AFCT250T2G

Ultra-Low Noise High PSRR LDO Regulator Analog Circuits
ONSEMI

NCP148AFCT255T2G

Ultra-Low Noise High PSRR LDO Regulator Analog Circuits
ONSEMI

NCP148AFCT260T2G

Ultra-Low Noise High PSRR LDO Regulator Analog Circuits
ONSEMI

NCP148AFCT270T2G

Ultra-Low Noise High PSRR LDO Regulator Analog Circuits
ONSEMI

NCP148AFCT280T2G

Ultra-Low Noise High PSRR LDO Regulator Analog Circuits
ONSEMI

NCP148AFCT285T2G

LDO Regulator, 450 mA, Ultra-High PSRR, Ultra-Low Noise
ONSEMI

NCP148AFCT320T2G

LDO Regulator, 450 mA, Ultra-High PSRR, Ultra-Low Noise
ONSEMI

NCP1500

Dual Mode PWM/Linear BUCK Converter
ONSEMI

NCP1500/D

Dual Mode PWM/Linear BUCK Converter
ONSEMI

NCP1500DMR2

Dual Mode PWM/Linear BUCK Converter
ONSEMI

NCP1500DMR2G

Dual Mode PWM/Linear BUCK Converter
ONSEMI

NCP1500_06

High Efficiency DC-DC Converters
ONSEMI