NB6HQ14MMNG [ONSEMI]

2.5V 5GHz / 6.5Gbps Differential Input to 1.8V / 2.5V 1:4 CML Clock / Data Fanout Buffer; 2.5V的5GHz / 6.5Gbps的差分输入至1.8V / 2.5V 1 : 4 CML时钟/数据扇出缓冲器
NB6HQ14MMNG
型号: NB6HQ14MMNG
厂家: ONSEMI    ONSEMI
描述:

2.5V 5GHz / 6.5Gbps Differential Input to 1.8V / 2.5V 1:4 CML Clock / Data Fanout Buffer
2.5V的5GHz / 6.5Gbps的差分输入至1.8V / 2.5V 1 : 4 CML时钟/数据扇出缓冲器

时钟
文件: 总11页 (文件大小:1258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NB6HQ14M  
2.5V 5GHz / 6.5Gbps  
Differential Input to 1.8V /  
2.5V 1:4 CML Clock / Data  
Fanout Buffer w/ Selectable  
Input Equalizer  
http://onsemi.com  
MARKING  
DIAGRAM*  
MultiLevel Inputs w/ Internal Termination  
16  
Description  
1
The NB6HQ14M is a high performance differential 1:4 CML fanout  
buffer with a selectable Equalizer receiver. When placed in series with  
a Clock /Data path operating up to 5 GHz or 6.5 Gb/s, respectively, the  
NB6HQ14M inputs will compensate the degraded signal transmitted  
across a FR4 PCB backplane or cable interconnect and output four  
identical CML copies of the input signal. Therefore, the serial data rate  
is increased by reducing InterSymbol Interference (ISI) caused by  
losses in copper interconnect or long cables. The EQualizer ENable  
pin (EQEN) allows the IN/IN inputs to either flow through or bypass  
the Equalizer section. Control of the Equalizer function is realized by  
setting EQEN; When EQEN is set Low, the IN/IN inputs bypass the  
Equalizer. When EQEN is set High, the IN/IN inputs flow through the  
Equalizer. The default state at startup is LOW. As such, NB6HQ14M  
is ideal for SONET, GigE, Fiber Channel, Backplane and other  
Clock/Data distribution applications.  
1
NB6H  
Q14M  
ALYWG  
G
QFN16  
MN SUFFIX  
CASE 485G  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
(Note: Microdot may be in either location)  
*For additional marking information, refer to  
Application Note AND8002/D.  
The differential inputs incorporate internal 50 W termination  
resistors that are accessed through the VT pin. This feature allows the  
NB6HQ14M to accept various logic level standards, such as LVPECL,  
CML or LVDS. The outputs have the flexibility of being powered by  
either a 2.5 V or 1.8 V supply. The 1:4 fanout design was optimized  
for low output skew applications.  
SIMPLIFIED BLOCK DIAGRAM  
The NB6HQ14M is a member of the ECLinPS MAXfamily of  
high performance clock products.  
EQ  
Features  
Input Data Rate > 6.5 Gb/s  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 10 of this data sheet.  
Input Clock Frequency > 5 GHz  
170 ps Typical Propagation Delay  
35 ps Typical Rise and Fall Times  
< 15 ps Output Skew  
< 0.8 ps RMS Clock Jitter  
< 10 ps pp of Data Dependent Jitter  
Differential CML Outputs, 400 mV PeaktoPeak, Typical  
Selectable Input Equalization  
Operating Range: V = 2.375 V to 2.625 V, V  
= 1.71 V to  
CC  
CCO  
2.625 V  
Internal Input Termination Resistors, 50 W  
40°C to +85°C Ambient Operating Temperature  
These are PbFree Devices  
©
Semiconductor Components Industries, LLC, 2009  
1
Publication Order Number:  
June, 2009 Rev. 0  
NB6HQ14M/D  
NB6HQ14M  
CML Outputs  
MultiLevel Inputs  
LVPECL, LVDS, CML  
V
CC0  
Q0  
Q0  
Q1  
Q1  
IN  
50 W  
VT  
0
50 W  
IN  
2:1  
MUX  
Q2  
Q2  
VREFAC  
EQ  
1
V
CC  
GND  
Q3  
Q3  
EQEN  
(Equalizer Enable)  
56 kW  
Figure 1. Detailed Block Diagram of NB6HQ14M  
http://onsemi.com  
2
NB6HQ14M  
GND Q0  
16 15  
Q0  
14  
V
Exposed Pad (EP)  
CC  
Table 1. EQUALIZER ENABLE FUNCTION  
13  
EQEN  
Function  
0
1
IN / IN Inputs Bypass the Equalizer section  
Inputs flow through the Equalizer  
IN  
1
2
3
4
12  
11  
10  
9
Q1  
Q1  
Q2  
Q2  
VT  
NB6HQ14M  
VREFAC  
IN  
5
6
7
8
EQEN Q3 Q3  
V
CCO  
Figure 2. QFN16 Pinout (Top View)  
Table 2. PIN DESCRIPTION  
Pin  
Name  
I/O  
Description  
1
IN  
LVPECL, CML,  
LVDS Input  
Noninverted Differential Input. Note 1.  
2
3
4
VT  
VREFAC  
IN  
Internal 100 W Centertapped Termination Pin for IN / IN  
Output Voltage Reference for CapacitorCoupled Inputs, only  
Inverted Differential Input. Note 1.  
LVPECL, CML,  
LVDS Input  
5
6
EQEN  
Q3  
LVCMOS Input  
CML Output  
CML Output  
Equalizer Enable Input; pin will default LOW when left open (has internal pulldown resistor)  
Inverted Differential Output. Typically Terminated with 50 W Resistor to V  
.
CC  
7
Q3  
Noninverted Differential Output. Typically Terminated with 50 W Resistor to V  
.
CC  
8
VCCO  
Q2  
1.8 V or 2.5 V Positive Supply Voltage for the Qn / Qn CML Outputs  
9
CML Output  
CML Output  
CML Output  
CML Output  
Inverted Differential Output. Typically Terminated with 50 W Resistor to V  
.
CC  
10  
11  
12  
13  
14  
15  
16  
Q2  
Noninverted Differential Output. Typically Terminated with 50 W Resistor to V  
.
.
CC  
Q1  
Inverted Differential Output. Typically Terminated with 50 W Resistor to V  
.
CC  
Q1  
Noninverted Differential Output. Typically Terminated with 50 W Resistor to V  
CC  
VCC  
Q0  
2.5 V Positive Supply Voltage for the core  
CML Output  
CML Output  
Inverted Differential Output. Typically Terminated with 50 W Resistor to V  
.
CC  
Q0  
Noninverted Differential Output. Typically Terminated with 50 W Resistor to V  
.
CC  
GND  
EP  
Negative Supply Voltage  
The Exposed Pad (EP) on the QFN16 package bottom is thermally connected to the die for  
improved heat transfer out of package. The exposed pad must be attached to a heatsinking  
conduit. The pad is electrically connected to the die, and must be electrically and thermally con-  
nected to GND on the PC board.  
1. In the differential configuration when the input termination pin (VT) is connected to a common termination voltage or left open, and if no signal  
is applied on IN / IN input, then, the device will be susceptible to selfoscillation.  
2. All VCC, VCCO and GND pins must be externally connected to a power supply for proper operation.  
http://onsemi.com  
3
 
NB6HQ14M  
Table 3. ATTRIBUTES  
Characteristics  
Value  
ESD Protection  
Human Body Model  
> 2 kV  
> 200V  
Machine Model  
R
PD  
EQEN Input Pulldown Resistor  
56 kW  
Moisture Sensitivity (Note 3)  
Flammability Rating  
Transistor Count  
16QFN  
Level 1  
Oxygen Index: 28 to 34  
UL 94 V0 @ 0.125 in  
277  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
3. For additional information, see Application Note AND8003/D.  
Table 4. MAXIMUM RATINGS  
Symbol  
Parameter  
Positive Power Supply Core  
Condition 1  
GND = 0 V  
GND = 0 V  
GND = 0 V  
Condition 2  
Rating  
3.0  
Unit  
V
V
CC  
CCO  
IO  
V
V
Positive Power Supply Outputs  
3.0  
V
Positive Input/Output Voltage  
0.5 to V  
+
V
CC  
0.5  
V
INPP  
Differential Input Voltage |IN IN|  
1.89  
V
I
I
I
Input Current Through R (50 W Resistor)  
$40  
$40  
mA  
mA  
mA  
°C  
IN  
T
Output Current Through R (50 W Resistor)  
OUT  
T
VREFAC Sink/Source Current  
$1.5  
VFREFAC  
T
Operating Temperature Range  
16 QFN  
40 to +85  
A
T
stg  
Storage Temperature Range  
65 to +150  
°C  
θ
JA  
Thermal Resistance (JunctiontoAmbient) (Note 4)  
0 lfpm  
500 lfpm  
16 QFN  
16 QFN  
42  
35  
°C/W  
°C/W  
θ
Thermal Resistance (JunctiontoCase) (Note 4)  
16 QFN  
4
°C/W  
°C  
JC  
T
Wave Solder  
PbFree  
265  
sol  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
4. JEDEC standard multilayer board 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.  
http://onsemi.com  
4
 
NB6HQ14M  
Table 5. DC CHARACTERISTICS, MULTILEVEL INPUTS V = 2.375 V to 2.625 V; V  
= 1.71 V to 2.625 V; GND = 0 V;  
CC  
CCO  
T = 40°C to 85°C (Note 5)  
A
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
POWER SUPPLY / CURRENT  
V
V
Power Supply Voltage  
V
= 2.5 V  
= 2.5 V  
= 1.8 V  
2.375  
2.375  
1.71  
2.5  
2.5  
1.8  
2.625  
2.625  
1.89  
V
CC  
CCO  
CC  
V
CCO  
CCO  
V
I
I
Power Supply Current for VCC (Inputs and Outputs Open)  
Power Supply Current for VCCO (Inputs and Outputs Open)  
75  
65  
110  
90  
mA  
CC  
CCO  
CML OUTPUTS (Note 6)  
V
Output HIGH Voltage  
Output LOW Voltage  
V
– 30  
2470  
1770  
V
– 10  
2490  
1790  
V
CCO  
2500  
1800  
mV  
mV  
OH  
OL  
CCO  
CCO  
V
CCO  
V
CCO  
= 2.5 V  
= 1.8 V  
V
V
CCO  
– 550  
V
CCO  
– 450  
V
– 300  
CCO  
V
CCO  
V
CCO  
= 2.5 V  
= 1.8 V  
1950  
1250  
2050  
1350  
2200  
1500  
DIFFERENTIAL INPUT DRIVEN SINGLEENDED (see Figure 5 & 7) (Note 7)  
V
V
V
V
Singleended Input HIGH Voltage  
Vth + 100  
GND  
V
mV  
mV  
mV  
mV  
IH  
IL  
CC  
Singleended Input LOW Voltage  
Vth 100  
Input Threshold Reference Voltage Range (Note 8)  
1100  
V
100  
th  
CC  
Singleended Input Voltage Amplitude (V V )  
200  
2800  
ISE  
IH  
IL  
VREFAC  
V
Output Reference Voltage @100 mA for capacitorcoupled inputs, only  
V
CC  
– 1325  
V – 1125  
CC  
V
CC  
– 925  
mV  
REFAC  
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (see Figure 6 & 8) (Note 9)  
V
V
V
V
Differential Input HIGH Voltage  
Differential Input LOW Voltage  
1200  
V
mV  
mV  
mV  
mV  
IHD  
ILD  
ID  
CC  
0
V
100  
IHD  
Differential Input Voltage (V  
V )  
ILD  
100  
1200  
V 50  
CC  
IHD  
Input Common Mode Range (Differential Configuration) (Note 10)  
(Figure 9)  
1050  
CMR  
I
I
Input HIGH Current IN / IN, (VT Open)  
Input LOW Current IN / IN, (VT Open)  
150  
150  
150  
150  
uA  
uA  
IH  
IL  
CONTROL INPUTS (EQEN)  
V
V
Input HIGH Voltage for Control Pins  
Input LOW Voltage for Control Pins  
Input HIGH Current  
V
CC  
x 0.65  
V
CC  
V
V
IH  
IL  
GND  
150  
150  
V
x 0.35  
CC  
I
IH  
I
IL  
150  
mA  
mA  
Input LOW Current  
150  
TERMINATION RESISTORS  
R
R
Internal Input Termination Resistor  
Internal Output Termination Resistor  
45  
45  
50  
50  
55  
55  
W
W
TIN  
TOUT  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
5. Input parameters vary 1:1 with V . Output parameters vary 1:1 with V  
.
CC  
CCO  
6. CML outputs loaded with 50 W to V  
for proper operation.  
CCO  
7. Vth, V , V and V  
parameters must be complied with simultaneously.  
IH IL,,  
ISE  
8. Vth is applied to the complementary input when operating in singleended mode.  
9. V , V and V parameters must be complied with simultaneously.  
V
IHD ILD, ID  
CMR  
signal.  
CMR  
10.V  
min varies 1:1 with GND, V  
max varies 1:1 with V . The V  
range is referenced to the crosspoint side of the differential input  
CMR  
CC  
CMR  
http://onsemi.com  
5
 
NB6HQ14M  
Table 6. AC CHARACTERISTICS V = 2.375 V to 2.625 V; V  
= 1.71 V to 2.625 V; GND = 0 V; T = 40°C to 85°C (Note 11)  
CC  
CCO  
A
Symbol  
Characteristic  
Min  
5
Typ  
Max  
Unit  
GHz  
Gbps  
mV  
f
Maximum Input Clock Frequency;  
V
OUT  
w 200 mV  
7
MAX  
f
Maximum Operating Data Rate (PRBS23)  
6.5  
200  
10  
DATAMAX  
V
Output Voltage Amplitude, EQEN = 0 or 1 (Note 15)  
(See Figures 3 and 10)  
f
in  
5 GHz  
400  
OUTPP  
t
t
,
Propagation Delay, EQEN = 0 or 1  
IN to Q  
150  
45  
220  
275  
ps  
ps  
PLH  
PHL  
t
Duty Cycle Skew (Note 12)  
Output – Output Within Device Skew  
Device to Device Skew  
15  
15  
50  
SKEW  
3
10  
t
Output Clock Duty Cycle (Reference Duty Cycle = 50%)  
Phase Noise, fin = 1 GHz  
f
in  
= 1 GHz  
50  
55  
%
DC  
F
10 kHz  
100 kHz  
1 MHz  
10 MHz  
20 MHz  
40 MHz  
132  
135  
145  
146  
147  
148  
dBc  
N
t
t
Integrated Phase Jitter f = 1 GHz, 12 kHz 20 MHz  
50  
fs  
ŐF  
in  
N
Offset (RMS)  
RMS Random Clock Jitter (Note 13)  
f
in  
v 5 GHz  
0.2  
0.8  
ps rms  
JITTER  
PeaktoPeak Data Dependent Jitter (Note 14)  
f v 3.0 Gb/s  
in  
EQEN = 0 (v 3” FR4)  
15  
10  
ps pkpk  
ps pkpk  
EQEN = 1 (12” FR4)  
V
Input Voltage Swing/Sensitivity  
100  
15  
1200  
mV  
INPP  
(Differential Configuration) (Note 15)  
t
r
t
f
Output Rise/Fall Times @ 1.0 GHz  
(20% 80%)  
Qx, Qx  
30  
60  
ps  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
11. Measured by forcing V  
min from a 50% duty cycle clock source. All loading with an external R = 50 W to V  
. Input edge rates 40  
CCO  
INPP  
L
ps (20% 80%).  
12.Skew is measured between outputs under identical transitions and conditions @ 0.5 GHz. Duty cycle skew is measured between differential  
outputs using the deviations of the sum of Tpwand Tpw+ @ 0.5 GHz.  
13.Additive RMS jitter with 50% duty cycle clock signal.  
14.Additive peaktopeak data dependent jitter with input NRZ data at PRBS23. For applications requiring equalization, the vertical eye height  
is also a critical figure of merit. See Figure 4 for equalized eye height versus data rate.  
15.Input and output voltage swings are singleended measurements operating in a differential mode.  
400  
350  
300  
250  
200  
150  
100  
50  
600  
500  
Q AMP (mV)  
400  
300  
200  
100  
0
0
0
1
2
3
4
5
6
7
8
0
1
2
3
4
4
6
5
8
7
f , CLOCK INPUT FREQUENCY (GHz)  
in  
DATE RATE (Gbps)  
Figure 3. CLOCK Output Voltage Amplitude (VOUTPP) vs.  
Input Frequency (fin) at Ambient Temperature (Typical)  
Figure 4. NB6HQ14M Eye Height vs. Data  
Rate  
http://onsemi.com  
6
 
NB6HQ14M  
V
CC  
IN  
50 W  
50 W  
V
T
IN  
Figure 5. Input Structure  
IN  
V
IH  
IN  
IN  
V
th  
IL  
V
IN  
V
th  
Figure 6. Differential Input Driven  
Figure 7. Differential Inputs  
Driven Differentially  
SingleEnded  
V
CC  
thmax  
V
V
IHmax  
V
ILmax  
V
IHD  
= |V  
V  
ID  
IHD(IN) ILD(IN)|  
V
IH  
V
th  
V
IL  
IN  
IN  
V
V
th  
IN  
V
ILD  
V
thmin  
V
V
IHmin  
ILmin  
GND  
Figure 8. Vth Diagram  
Figure 9. Differential Inputs Driven Differentially  
V
CC  
V
V
V
IHD(MAX)  
INx  
V
CMRmax  
ILD(MAX)  
V
V
= V (IN) V (IN)  
IH IL  
INPP  
INx  
Q
IHD  
V
CMR  
V
= V  
V  
IHD ILD  
ID  
V
ILD  
= V (Q) V (Q)  
OUTPP  
OH  
OL  
Q
V
V
IHD(MIN)  
t
PHL  
V
CMRmin  
t
PLH  
ILD(MIN)  
GND  
Figure 10. VCMR Diagram  
Figure 11. AC Reference Measurement  
http://onsemi.com  
7
NB6HQ14M  
V
CC  
NB6HQ14M  
EQualizer  
EQEN = 1  
VT  
FR4 12 Inch Backplane  
IN  
IN  
Driver  
Q
Q
DJ1  
DJ2  
DJ3  
Figure 12. Typical NB6HQ14M Equalizer Application and Interconnect with PRBS23 pattern at 6.5 Gbps, EQEN = 1  
http://onsemi.com  
8
NB6HQ14M  
V
CC  
V
CC  
V
CC  
V
CC  
NB6HQ14M  
IN  
NB6HQ14M  
IN  
Z
= 50 W  
Z
Z
= 50 W  
O
O
50 W  
50 W  
50 W  
50 W  
LVPECL  
Driver  
LVDS  
Driver  
V = V 2 V  
O
V = Open  
T
= 50 W  
O
T
CC  
= 50 W  
Z
IN  
IN  
GND/V  
GND  
EE  
GND  
GND  
Figure 13. LVPECL Interface  
Figure 14. LVDS Interface  
V
CC  
V
CC  
V
CC  
V
CC  
NB6HQ14M  
IN  
NB6HQ14M  
IN  
Z
= 50 W  
O
Z
= 50 W  
O
50 W  
50 W  
CML  
Driver  
50 W  
50 W  
Differential  
Driver  
V = V  
T
CC  
VT = V  
*
REFAC  
Z
= 50 W  
O
Z
= 50 W  
O
IN  
IN  
GND  
GND  
GND  
GND  
Figure 15. Standard 50 W Load CML Interface  
Figure 16. CapacitorCoupled  
Differential Interface  
(VT Connected to VREFAC  
)
*V  
REFAC  
bypassed to ground with a 0.01 mF capacitor  
V
CC  
V
CC  
NB6HQ14M  
IN  
Z
= 50 W  
O
50 W  
50 W  
Differential  
Driver  
VT = V  
*
REFAC  
IN  
GND  
GND  
Figure 17. CapacitorCoupled  
SingleEnded Interface  
(VT Connected to VREFAC  
)
http://onsemi.com  
9
NB6HQ14M  
NB6HQ14M  
Receiver  
V (Receiver)  
CC  
V
CCO  
V
CCO  
=
V
CC  
(Receiver)  
50 W  
50 W  
50 W  
50 W  
16 mA  
GND  
Figure 18. Typical CML Output Structure  
and Termination  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NB6HQ14MMNG  
QFN16  
123 Units / Rail  
100 / Tape & Reel  
3000 / Tape & Reel  
(PbFree)  
NB6HQ14MMNHTBG  
NB6HQ14MMNTXG  
QFN16  
(PbFree)  
QFN16  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
10  
NB6HQ14M  
PACKAGE DIMENSIONS  
16 PIN QFN  
CASE 485G01  
ISSUE D  
NOTES:  
L
L
D
A
B
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.25 AND 0.30 MM FROM TERMINAL.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
L1  
DETAIL A  
PIN 1  
LOCATION  
ALTERNATE TERMINAL  
CONSTRUCTIONS  
5.  
L
CONDITION CAN NOT VIOLATE 0.2 MM  
max  
MINIMUM SPACING BETWEEN LEAD TIP  
AND FLAG  
E
MILLIMETERS  
A3  
EXPOSED Cu  
MOLD CMPD  
DIM MIN  
0.80  
A1 0.00  
MAX  
1.00  
0.05  
A
0.15  
C
TOP VIEW  
A3  
b
D
D2 1.65  
E
0.20 REF  
0.18  
0.30  
0.15  
C
A1  
3.00 BSC  
1.85  
3.00 BSC  
1.85  
0.50 BSC  
0.18 TYP  
DETAIL B  
DETAIL B  
ALTERNATE  
(A3)  
0.10  
0.08  
C
C
E2 1.65  
CONSTRUCTIONS  
e
K
L
A
0.30  
0.50  
0.15  
L1 0.00  
SEATING  
PLANE  
16 X  
SIDE VIEW  
A1  
C
SOLDERING FOOTPRINT*  
D2  
3.25  
0.128  
0.30  
DETAIL A  
e
L
16X  
0.575  
0.022  
5
8
EXPOSED PAD  
NOTE 5  
EXPOSED PAD  
0.012  
4
1
9
E2  
K
16X  
e
12  
1.50  
0.059  
3.25  
0.128  
16  
13  
16X b  
0.10  
0.05  
C
C
A
B
BOTTOM VIEW  
0.30  
0.012  
NOTE 3  
0.50  
0.02  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ECLinPS MAX is a trademark of Semiconductor Components Industries, LLC (SCILLC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent  
rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur.  
Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury  
or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an  
Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NB6HQ14M/D  

相关型号:

NB6HQ14MMNHTBG

2.5V 5GHz / 6.5Gbps Differential Input to 1.8V / 2.5V 1:4 CML Clock / Data Fanout Buffer
ONSEMI

NB6HQ14MMNTXG

2.5V 5GHz / 6.5Gbps Differential Input to 1.8V / 2.5V 1:4 CML Clock / Data Fanout Buffer
ONSEMI

NB6L11

2.5V / 3.3V MULTILEVEL INPUT TO DIFFERENTIAL LVPECL/LVNECL 1:2 CLOCK OR DATA FANOUT BUFFER / TRANSLATOR
ONSEMI

NB6L11D

2.5V / 3.3V MULTILEVEL INPUT TO DIFFERENTIAL LVPECL/LVNECL 1:2 CLOCK OR DATA FANOUT BUFFER / TRANSLATOR
ONSEMI

NB6L11DG

2.5 V/3.3 V Multilevel Input to Differential LVPECL/LVNECL 1:2 Clock or Data Fanout Buffer/Translator
ONSEMI

NB6L11DR2

2.5V / 3.3V MULTILEVEL INPUT TO DIFFERENTIAL LVPECL/LVNECL 1:2 CLOCK OR DATA FANOUT BUFFER / TRANSLATOR
ONSEMI

NB6L11DR2G

2.5 V/3.3 V Multilevel Input to Differential LVPECL/LVNECL 1:2 Clock or Data Fanout Buffer/Translator
ONSEMI

NB6L11DT

2.5V / 3.3V MULTILEVEL INPUT TO DIFFERENTIAL LVPECL/LVNECL 1:2 CLOCK OR DATA FANOUT BUFFER / TRANSLATOR
ONSEMI

NB6L11DTG

2.5 V/3.3 V Multilevel Input to Differential LVPECL/LVNECL 1:2 Clock or Data Fanout Buffer/Translator
ONSEMI

NB6L11DTR2

2.5V / 3.3V MULTILEVEL INPUT TO DIFFERENTIAL LVPECL/LVNECL 1:2 CLOCK OR DATA FANOUT BUFFER / TRANSLATOR
ONSEMI

NB6L11DTR2G

2.5 V/3.3 V Multilevel Input to Differential LVPECL/LVNECL 1:2 Clock or Data Fanout Buffer/Translator
ONSEMI

NB6L11M

2.5V / 3.3V 1:2 Differential CML Fanout Buffer
ONSEMI