NB6L11DT [ONSEMI]

2.5V / 3.3V MULTILEVEL INPUT TO DIFFERENTIAL LVPECL/LVNECL 1:2 CLOCK OR DATA FANOUT BUFFER / TRANSLATOR; 2.5V / 3.3V多级输入至差分LVPECL / LVNECL 1 : 2时钟或数据扇出缓冲器/翻译
NB6L11DT
型号: NB6L11DT
厂家: ONSEMI    ONSEMI
描述:

2.5V / 3.3V MULTILEVEL INPUT TO DIFFERENTIAL LVPECL/LVNECL 1:2 CLOCK OR DATA FANOUT BUFFER / TRANSLATOR
2.5V / 3.3V多级输入至差分LVPECL / LVNECL 1 : 2时钟或数据扇出缓冲器/翻译

输入元件 时钟
文件: 总12页 (文件大小:115K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢅꢆ ꢇ ꢈꢉ ꢊ ꢆ ꢊꢈ ꢋ ꢌꢍ ꢎꢏ ꢍꢐ ꢑ ꢐꢍ ꢒꢓꢔꢌ ꢎ ꢎꢕ  
ꢖ ꢏꢗꢗ ꢐꢘꢐꢓ ꢎꢏ ꢙꢍ ꢃꢈꢚ ꢛꢜ ꢃ ꢉ ꢃꢈꢀ ꢛꢜ ꢃ  
ꢝ ꢅꢞꢜ ꢍꢕ ꢟꢠ ꢕꢘ ꢖꢙꢎ ꢙ  
ꢙ ꢓꢕ ꢌꢎ ꢁ ꢌꢗꢗ ꢐꢘ ꢉꢢꢘ ꢙꢓꢣ ꢍ ꢙꢎ ꢕꢘ  
http://onsemi.com  
The NB6L11 is an enhanced differential 1:2 clock or data fanout  
buffer/translator. The device has the same pinout and is functionally  
equivalent to the LVEL11, EP11, LVEP11 devices. Moreover, the  
device is optimized for the systems that require LOW skew, LOW  
jitter and LOW power consumption.  
MARKING DIAGRAMS*  
8
Differential input can be configured to accept single−ended signal  
by applying an external reference voltage to unused complimentary  
input pin. Input accept LVNECL, LVPECL, LVTTL, LVCMOS,  
CML, or LVDS. The outputs are 800 mV ECL signals.  
8
6L11  
ALYW  
1
SO−8  
D SUFFIX  
CASE 751  
1
Maximum Input Clock Frequency w 6 GHz Typical  
Maximum Input Data Rate w 6 Gb/s Typical  
Low 14 mA Typical Power Supply Current  
150 ps Typical Propagation Delay  
8
1
8
6L11  
ALYW  
1
TSSOP−8  
DT SUFFIX  
CASE 948R  
5 ps Typical Within Device Skew  
75 ps Typical Rise/Fall Times  
PECL Mode Operating Range: V  
= 2.375 V to 3.465 V  
CC  
A = Assembly Location  
L = Wafer Lot  
with V = 0 V  
EE  
Y = Year  
W = Work Week  
NECL Mode Operating Range: V = 0 V  
CC  
with V = −2.375 V to −3.465 V  
EE  
Open Input Default State  
Q Outputs Will Default LOW with Inputs Open or at V  
*For additional marking information, refer to  
Application Note AND8002/D.  
EE  
LVDS, LVPECL, LVNECL, LCMOS, LVTTL and CML Input  
Compatible  
ORDERING INFORMATION  
Device  
NB6L11D  
Package  
Shipping  
SO−8  
98 Units/Rail  
NB6L11DR2  
SO−8  
2500/  
Tape & Reel  
NB6L11DT**  
TSSOP−8 100 Units/Rail  
NB6L11DTR2**  
TSSOP−8  
2500/  
Tape & Reel  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
**Future Product − Contact factory for availability.  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
April, 2004 − Rev. 2  
NB6L11/D  
NB6L11  
Q0  
Q0  
1
2
8
7
V
CC  
R
R
2
D
D
R
R
1
1
6
5
Q1  
Q1  
3
4
2
V
EE  
Figure 1. Pinout (Top View) and Logic Diagram  
Table 1. PIN DESCRIPTION  
Pin  
Name  
I/O  
Default State  
Description  
Non−inverted differential clock/data output 0. Typically  
1
Q0  
ECL Output  
terminated with 50 W Resistor to V = V − 2 V.  
TT  
CC  
2
3
4
Q0  
Q1  
Q1  
ECL Output  
ECL Output  
ECL Output  
Inverted differential clock/data output 0. Typically termi-  
nated with 50 W resistor to V = V − 2 V.  
TT  
CC  
Non−inverted differential clock/data output 1. Typically  
terminated with 50 W resistor to V = V − 2 V.  
TT  
CC  
Inverted differential clock/data output 1. Typically termi-  
nated with 50 W resistor to V = V − 2 V.  
TT  
CC  
5
6
V
EE  
Negative power supply voltage  
D
LVDS, CML, LVPECL,  
LVNECL, LVCMOS,  
LVTTL Input  
HIGH  
Inverted differential clock/data input. Internal 37.5 kW to  
and 75 kW to V  
V
CC  
.
EE  
7
8
D
LVDS, CML, LVPECL,  
LVNECL, LVCMOS,  
LVTTL Input  
LOW  
Non−inverted differential clock/data input. Internal  
75 kW to V and 37.5 kW to V  
.
CC  
EE  
V
CC  
Positive power supply voltage  
Table 2. ATTRIBUTES  
Characteristics  
Value  
Internal Input Default State Resistor  
Internal Input Default State Resistor  
ESD Protection  
(R )  
37.5 kW  
75 kW  
1
(R )  
2
Human Body Model  
Machine Model  
Charged Device Model  
> 2 kV  
> 100 V  
> 1 kV  
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)  
Level 1  
Flammability Rating  
Transistor Count  
Oxygen Index: 28 to 34  
UL 94 V−0 @ 0.125 in  
167  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
1. For additional information, see Application Note AND8003/D.  
http://onsemi.com  
2
NB6L11  
Table 3. MAXIMUM RATINGS  
Symbol  
Parameter  
Condition 1  
Condition 2  
Rating  
3.6  
Unit  
V
V
CC  
V
EE  
V
I
Positive Power Supply  
Negative Power Supply  
V
V
= 0 V  
= 0 V  
EE  
−3.6  
V
CC  
Positive Input Voltage  
Negative Input Voltage  
V
V
= 0 V  
= 0 V  
V v V  
3.6  
V
V
EE  
I
CC  
V w V  
−3.6  
CC  
I
EE  
V
INPP  
Differential Input Voltage  
|D − D|  
V
CC  
V
CC  
− V w 2.8 V  
2.8  
|V − V  
CC  
V
EE  
− V t 2.8 V  
|
EE  
EE  
I
Output Current  
Continuous  
Surge  
25  
50  
mA  
mA  
out  
T
Operating Temperature Range  
Storage Temperature Range  
−40 to +85  
°C  
°C  
A
T
−65 to +150  
stg  
JA  
q
Thermal Resistance (Junction−to−Ambient)  
0 lfpm  
SOIC−8  
SOIC−8  
190  
130  
°C/W  
°C/W  
500 lfpm  
q
q
Thermal Resistance (Junction−to−Case)  
Thermal Resistance (Junction−to−Ambient)  
Standard Board  
SOIC−8  
41 to 44  
°C/W  
JC  
JA  
0 lfpm  
TSSOP−8  
TSSOP−8  
185  
140  
°C/W  
°C/W  
500 lfpm  
q
Thermal Resistance (Junction−to−Case)  
Wave Solder  
Standard Board  
TSSOP−8  
41 to 44  
265  
°C/W  
°C  
JC  
T
sol  
< 2 to 3 sec @ 248°C  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not im-  
plied, damage may occur and reliability may be affected.  
http://onsemi.com  
3
NB6L11  
Table 4. DC CHARACTERISTICS, PECL V = 2.5 V, V = 0 V (Note 4)  
CC  
EE  
−40°C  
Typ  
14  
25°C  
Typ  
14  
85°C  
Typ  
14  
Min  
5
Max  
Min  
5
Max  
Min  
5
Max  
Symbol  
Characteristic  
Unit  
mA  
mV  
mV  
I
EE  
Negative Power Supply Current (Note 5)  
Output HIGH Voltage (Note 6)  
20  
20  
20  
V
V
1350  
630  
1450 1550  
750 870  
1400  
680  
1500 1600  
1450  
730  
1550 1650  
OH  
Output LOW Voltage (Note 6)  
800  
920  
850  
970  
OL  
DIFFERENTIAL INPUT DRIVEN SINGLE−ENDED (Figures 10, 12)  
V
th  
V
IH  
V
IL  
Input Threshold Reference Voltage Range  
(Note 2)  
1125  
V
−75  
1125  
V
−75  
1125  
V
CC  
−75  
mV  
mV  
mV  
CC  
CC  
Single−Ended Input HIGH Voltage  
V
th  
V
CC  
V
th  
V
CC  
V
th  
V
CC  
+75  
+75  
+75  
Single−Ended Input LOW Voltage  
V
EE  
V
−75  
V
EE  
V
−75  
V
EE  
V
th  
−75  
th  
th  
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 11, 13)  
V
IHD  
V
ILD  
Differential Input HIGH Voltage  
Differential Input LOW Voltage  
1200  
V
V
1200  
V
V
1200  
V
V
mV  
mV  
CC  
CC  
CC  
V
EE  
V
EE  
V
EE  
CC  
CC  
CC  
−75  
−75  
−75  
V
V
Input Common Mode Range  
(Differential Cross−Point Voltage) (Note 3)  
1163  
75  
V
−38  
1163  
75  
V
−38  
1163  
75  
V
CC  
−38  
mV  
CMR  
CC  
CC  
Differential Input Voltage (V  
Input HIGH Current  
− V  
)
2500  
2500  
2500  
mV  
ID  
IHD  
ILD  
I
IH  
D
D
50  
10  
150  
150  
50  
10  
150  
150  
50  
10  
150  
150  
mA  
I
IL  
Input LOW Current  
D
D
−150  
−150  
−5  
−30  
−150  
−150  
−5  
−30  
−150  
−150  
−5  
−30  
mA  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification  
limit values are applied individually under normal operating conditions and not valid simultaneously.  
2. V is applied to the complementary input when operating in single−ended mode.  
th  
3. V  
minimum varies 1:1 with V , V  
maximum varies 1:1 with V  
.
CMR  
EE  
CMR  
CC  
4. Input and output parameters vary 1:1 with V . V can vary +0.125 V to −1.3 V.  
CC  
EE  
5. All input and output pins left open.  
6. All loading with 50 W to V − 2.0 V.  
CC  
http://onsemi.com  
4
NB6L11  
Table 5. DC CHARACTERISTICS, PECL V = 3.3 V, V = 0 V (Note 9)  
CC  
EE  
−40°C  
Typ  
14  
25°C  
Typ  
14  
85°C  
Typ  
14  
Min  
5
Max  
Min  
5
Max  
Min  
5
Max  
Symbol  
Characteristic  
Unit  
mA  
mV  
mV  
I
EE  
Negative Power Supply Current (Note 10)  
Output HIGH Voltage (Note 11)  
20  
20  
20  
V
V
2150  
1430  
2250 2350  
1550 1670  
2200  
1480  
2300 2400  
1600 1720  
2250  
1530  
2350 2450  
1650 1770  
OH  
Output LOW Voltage (Note 11)  
OL  
DIFFERENTIAL INPUT DRIVEN SINGLE−ENDED (Figures 10, 12)  
V
th  
V
IH  
V
IL  
Input Threshold Reference Voltage Range  
(Note 7)  
1125  
V
−75  
1125  
V
−75  
1125  
V
CC  
−75  
mV  
mV  
mV  
CC  
CC  
Single−Ended Input HIGH Voltage  
V
th  
V
CC  
V
th  
V
CC  
V
th  
V
CC  
+75  
+75  
+75  
Single−Ended Input LOW Voltage  
V
EE  
V
−75  
V
EE  
V
−75  
V
EE  
V
th  
−75  
th  
th  
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 11, 13)  
V
IHD  
V
ILD  
Differential Input HIGH Voltage  
Differential Input LOW Voltage  
1200  
V
V
1200  
V
V
1200  
V
V
mV  
mV  
CC  
CC  
CC  
V
EE  
V
EE  
V
EE  
CC  
CC  
CC  
−75  
−75  
−75  
V
V
Input Common Mode Range  
(Differential Cross−Point Voltage) (Note 8)  
1163  
75  
V
−38  
1163  
75  
V
−38  
1163  
75  
V
CC  
−38  
mV  
CMR  
CC  
CC  
Differential Input Voltage (V  
Input HIGH Current  
− V  
)
2500  
2500  
2500  
mV  
ID  
IHD  
ILD  
I
IH  
D
D
50  
10  
150  
150  
50  
10  
150  
150  
50  
10  
150  
150  
mA  
I
IL  
Input LOW Current  
D
D
−150  
−150  
−5  
−30  
−150  
−150  
−5  
−30  
−150  
−150  
−5  
−30  
mA  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification  
limit values are applied individually under normal operating conditions and not valid simultaneously.  
7. V is applied to the complementary input when operating in single−ended mode.  
th  
8. V  
minimum varies 1:1 with V , V  
maximum varies 1:1 with V  
.
CMR  
EE  
CMR  
CC  
9. Input and output parameters vary 1:1 with V . V can vary +0.3 V to −2.2 V.  
CC  
EE  
10.All input and output pins left open.  
11. All loading with 50 W to V − 2.0 V.  
CC  
http://onsemi.com  
5
NB6L11  
Table 6. DC CHARACTERISTICS, NECL V = 0 V; V = −3.465 V to −2.375 V (Note 14)  
CC  
EE  
−40°C  
25°C  
Typ  
14  
85°C  
Typ  
14  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Symbol  
Characteristic  
Unit  
I
EE  
Negative Power Supply Current  
(Note 15)  
5
14  
20  
5
20  
5
20  
mA  
V
V
Output HIGH Voltage (Note 16)  
Output LOW Voltage (Note 16)  
1150 −1050 −950 −1100 −1000 −900 −1050 −950  
−850  
mV  
OH  
−1870 −1750 −1630 −1820 −1700 −1580 −1770 −1650 −1530 mV  
OL  
DIFFERENTIAL INPUT DRIVEN SINGLE−ENDED (Figures 10, 12)  
V
th  
V
IH  
V
IL  
Input Threshold Reference Voltage  
Range (Note 12)  
V
V
−75  
V
V
−75  
V
V
CC  
−75  
mV  
mV  
mV  
EE  
CC  
EE  
CC  
EE  
+1125  
+1125  
+1125  
Single−Ended Input HIGH Voltage  
V
+75  
V
CC  
V
+75  
V
CC  
V
+75  
V
CC  
th  
th  
th  
Single−Ended Input LOW Voltage  
V
EE  
V
−75  
V
EE  
V
−75  
V
EE  
V
th  
−75  
th  
th  
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 11, 13)  
V
V
V
Differential Input HIGH Voltage  
V
V
V
V
V
V
V
V
V
mV  
mV  
mV  
IHD  
EE  
CC  
EE  
CC  
EE  
CC  
+1200  
+1200  
+1200  
Differential Input LOW Voltage  
V
EE  
V
EE  
V
EE  
ILD  
CC  
CC  
CC  
−75  
−75  
−75  
Input Common Mode Range  
(Differential Cross−Point Voltage)  
(Note 13)  
V
EE  
V
CC  
V
EE  
V
CC  
V
EE  
V
CC  
−38  
CMR  
+1163  
75  
−38  
+1163  
75  
−38  
+1163  
75  
V
ID  
Differential Input Voltage (V  
2500  
2500  
2500  
mV  
mA  
mA  
IHD  
V
ILD  
)
I
IH  
Input HIGH Current  
Input LOW Current  
D
D
50  
10  
150  
150  
50  
10  
150  
150  
50  
10  
150  
150  
I
IL  
D
D
−150  
−150  
−5  
−30  
−150  
−150  
−5  
−30  
−150  
−150  
−5  
−30  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification  
limit values are applied individually under normal operating conditions and not valid simultaneously.  
12.V is applied to the complementary input when operating in single−ended mode.  
th  
13.V  
minimum varies 1:1 with V , V  
maximum varies 1:1 with V  
CMR CC  
CMR  
EE  
14.Input and output parameters vary 1:1 with V  
15.Input and output pins left open.  
.
CC  
16.All loading with 50 W to V − 2.0 V.  
CC  
http://onsemi.com  
6
NB6L11  
Table 7. AC CHARACTERISTICS V = 0 V; V = −3.465 V to −2.375 V or V = 2.375 V to 3.465 V; V = 0 V (Note 17)  
CC  
EE  
CC  
EE  
−40°C  
25°C  
85°C  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Symbol  
Characteristic  
Unit  
V
Output Voltage Amplitude  
(See Figures 2 & 3)  
f
in  
f
in  
v 3 GHz 480  
v 6 GHz 270  
700  
300  
480  
270  
700  
300  
480  
270  
700  
300  
mV  
OUTPP  
t
t
,
Propagation Delay to  
Output Differential @ 1 GHz  
ps  
ps  
PLH  
PHL  
D to Q, Q 110  
(Note 18)  
150  
190  
110  
150  
200  
120  
160  
220  
t
Duty Cycle Skew  
Within Device Skew  
Device−to−Device Skew  
2
5
15  
10  
15  
60  
2
5
15  
10  
15  
60  
2
5
15  
10  
15  
60  
SKEW  
t
RMS Random Clock Jitter  
(Note 19)  
Peak−to−Peak Data Dependent Jitter  
(Note 20)  
ps  
JITTER  
f
v 6 GHz  
0.2  
2
1
0.2  
2
1
0.2  
2
1
in  
f
in  
v 6 Gb/s  
12  
12  
12  
V
Input Voltage Swing / Sensitivity  
(Differential Configuration) (Note 21)  
75  
700 2500  
75  
30  
700 2500  
75  
30  
700 2500 mV  
INPP  
t
r
t
f
Output Rise/Fall Times @ 1 GHz  
(20% − 80%)  
Q, Q  
30  
75  
120  
75  
120  
75  
120  
ps  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification  
limit values are applied individually under normal operating conditions and not valid simultaneously.  
17.Measured using a 800 mV source, 50% duty cycle clock source. All loading with 50 W to V − 2.0 V. Input edge rates 40 ps (20% − 80%).  
CC  
18.See Figure 9 t  
= |t  
− t  
PHL  
| for a nominal 50% differential clock input waveform. Skew is measured between outputs under identical  
skew  
PLH  
transitions and conditions @ 1 GHz.  
19.Additive RMS jitter with 50% duty cycle clock signal at 6 GHz.  
20.Additive Peak−to−Peak data dependent jitter with NRZ PRBS 2 −1 data rate at 6 Gb/s.  
23  
21.V  
cannot exceed V − V (applicable only when V − V < 2500 mV). Input voltage swing is a single−ended measurement  
INPP(max)  
CC EE CC EE  
operating in differential mode  
0.8  
0.7  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.6  
0.5  
−40°C  
−40°C  
0.4  
25°C  
25°C  
0.3  
0.2  
0.1  
0.0  
85°C  
85°C  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
INPUT CLOCK FREQUENCY (GHz)  
INPUT CLOCK FREQUENCY (GHz)  
Figure 2. Output Voltage Amplitude (VOUTPP  
versus Input Clock Frequency (fIN) and  
Temperature at VCC − VEE = 3.3 V  
)
Figure 3. Output Voltage Amplitude (VOUTPP  
versus Input Clock Frequency (fIN) and  
Temperature at VCC − VEE = 2.5 V  
)
http://onsemi.com  
7
NB6L11  
TIME (64 ps/div)  
TIME (32 ps/div)  
Figure 4. Typical Output Waveform at  
2.488 Gb/s with PRBS 223−1 (Total System  
Pk−Pk Jitter is 17 ps. Device Pk−Pk Jitter  
Contribution is 4 ps)  
Figure 5. Typical Output Waveform at  
6.125 Gb/s with PRBS 223−1 (Total System  
Pk−Pk Jitter is 20 ps. Device Pk−Pk Jitter  
Contribution is 5 ps)  
NOTE:  
V − V = 3.3 V; V = 700 mV; T = 25°C.  
CC EE IN A  
210  
190  
170  
150  
130  
110  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
85°C  
85°C  
25°C  
−40°C  
−40°C  
25°C  
2.375  
2.5  
3.3  
3.465  
2.375  
2.5  
3.3  
3.465  
POWER SUPPLY VOLTAGE (V)  
POWER SUPPLY VOLTAGE (V)  
Figure 6. Propagation Delay versus Power  
Supply Voltage and Temperature  
Figure 7. Rise/Fall Time versus Power Supply  
Voltage and Temperature  
20  
17  
V
CC  
− V = −3.465 V  
EE  
14  
11  
8
V
CC  
− V = −2.375 V  
EE  
5
−40  
25  
85  
TEMPERATURE (°C)  
Figure 8. IEE Current versus Temperature and  
Power Supply Voltage  
http://onsemi.com  
8
NB6L11  
D
V
INPP  
V
INPP  
(D) = V (D) − V (D)  
IH IL  
(D) = V (D) − V (D)  
IH  
IL  
D
Q
V
V
(Q) = V (Q) − V (Q)  
OH OL  
OUTPP  
OUTPP  
(Q) = V (Q) − V (Q)  
OH  
OL  
Q
t
PHL  
t
PLH  
Figure 9. AC Reference Measurement  
D
D
V
th  
D
D
V
th  
Figure 10. Differential Input Driven  
Single−Ended  
Figure 11. Differential Inputs Driven  
Differentially  
V
CC  
thmax  
V
CC  
V
V
IHmax  
V
V
IHDmax  
V
V
CMmax  
ILDmax  
ILmax  
V
= V − V  
IHD ILD  
ID  
V
IH  
V
th  
V
IL  
V
CMR  
V
IHDtyp  
ILDtyp  
V
th  
V
V
V
IHmin  
V
IHDmin  
V
V
thmin  
CMmax  
V
ILmin  
ILDmin  
GND  
GND  
Figure 12. Vth Diagram  
Figure 13. VCMR Diagram  
Z = 50 W  
o
Q
D
Receiver  
Device  
Driver  
Device  
Q
Z = 50 W  
o
D
50 W  
50 W  
V
TT  
V
TT  
= V − 2.0 V  
CC  
Figure 14. Typical Termination for Output Driver and Device Evaluation  
(See Application Note AND8020/D − Termination of ECL Logic Devices.)  
http://onsemi.com  
9
NB6L11  
Resource Reference of Application Notes  
AN1405  
AN1568  
AN1650  
ECL Clock Distribution Techniques  
Interfacing Between LVDS and ECL  
Using Wire−OR Ties in ECLinPS De-  
signs  
AN1672  
The ECL Translator Guide  
Odd Number Counters Design  
Marking and Date Codes  
AND8001  
AND8002  
AND8003  
Storage and Handling of Drypack Sur-  
face Mount Device  
AND8020  
AND8072  
Termination of ECL Logic Devices  
Thermal Analysis and Reliability of  
Wire Bonded ECL  
AND8066  
AND8090  
Interfacing with ECLinPS  
AC Characteristics of ECL Devices  
For an updated list of Application Notes, please  
see our website at http://onsemi.com.  
http://onsemi.com  
10  
NB6L11  
PACKAGE DIMENSIONS  
SOIC−8  
D SUFFIX  
PLASTIC SOIC PACKAGE  
CASE 751−07  
ISSUE AB  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
−X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDARD IS 751−07.  
S
B
ꢀꢁ ꢉꢊ ꢃꢄ ꢀ ꢁꢀ ꢂꢀꢆ  
1
K
−Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
−Z−  
1.27 BSC  
0.050 BSC  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
1.52  
0.060  
7.0  
0.275  
4.0  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
SO−8  
http://onsemi.com  
11  
NB6L11  
PACKAGE DIMENSIONS  
TSSOP−8  
DT SUFFIX  
PLASTIC TSSOP PACKAGE  
CASE 948R−02  
ISSUE A  
8x K REF  
ꢘ ꢙ ꢖꢚ ꢌ ꢛ  
ꢂꢁ ꢜ ꢝ ꢇꢚꢘ ꢌ ꢝꢙ ꢘ ꢝ ꢘ ꢞ ꢟ ꢘꢜ ꢖꢙ ꢠꢚ ꢡ ꢟꢘ ꢔ ꢝ ꢘ ꢞ ꢢ ꢚꢡ ꢟꢘ ꢌ ꢝ  
ꢈ ꢂꢅꢁ ꢊꢇꢣ ꢂꢎꢐ ꢉꢁ  
ꢀꢁ ꢂꢀ ꢃꢄ ꢀ ꢁꢀ ꢀꢅ ꢆ  
ꢖ ꢕ  
ꢀ ꢁꢂ ꢊꢃ ꢄꢀ ꢁꢀ ꢀ ꢑꢆ ꢖ ꢕ  
ꢉꢁ ꢔ ꢙ ꢘ ꢖꢡ ꢙ ꢠꢠ ꢝꢘ ꢞ ꢜ ꢝ ꢇꢚꢘ ꢌ ꢝꢙ ꢘ ꢛ ꢇꢝ ꢠꢠꢝ ꢇꢚ ꢖꢚ ꢡ ꢁ  
ꢏꢁ ꢜ ꢝ ꢇꢚꢘ ꢌ ꢝꢙ ꢘ ꢟ ꢜ ꢙ ꢚꢌ ꢘ ꢙ ꢖ ꢝ ꢘ ꢔꢠ ꢕ ꢜ ꢚ ꢇꢙ ꢠꢜ ꢤꢠ ꢟꢌꢥ ꢁ  
ꢢ ꢡ ꢙꢖ ꢡ ꢕ ꢌꢝ ꢙ ꢘ ꢌ ꢙ ꢡ ꢞ ꢟꢖ ꢚ ꢓ ꢕꢡ ꢡ ꢌ ꢁ ꢇꢙ ꢠ ꢜ ꢤꢠ ꢟꢌꢥ  
ꢙ ꢡ ꢞ ꢟꢖ ꢚ ꢓ ꢕꢡ ꢡ ꢌ ꢌ ꢥꢟ ꢠꢠ ꢘ ꢙ ꢖ ꢚ ꢍꢔ ꢚ ꢚꢜ ꢀ ꢁꢂ ꢊ  
ꢄꢀ ꢁꢀꢀ ꢑꢆ ꢢ ꢚꢡ ꢌ ꢝꢜ ꢚ ꢁ  
ꢅꢁ ꢜ ꢝ ꢇꢚꢘ ꢌ ꢝꢙ ꢘ ꢓ ꢜ ꢙ ꢚꢌ ꢘ ꢙ ꢖ ꢝ ꢘ ꢔꢠ ꢕ ꢜ ꢚ ꢝ ꢘ ꢖ ꢚꢡ ꢠꢚ ꢟꢜ  
ꢤ ꢠꢟꢌ ꢥ ꢙ ꢡ ꢢ ꢡꢙ ꢖ ꢡ ꢕ ꢌꢝ ꢙ ꢘ ꢁ ꢝ ꢘ ꢖꢚ ꢡ ꢠꢚ ꢟꢜ ꢤꢠ ꢟꢌꢥ ꢙ ꢡ  
ꢢ ꢡ ꢙꢖ ꢡ ꢕ ꢌꢝ ꢙ ꢘ ꢌ ꢥ ꢟꢠꢠ ꢘ ꢙ ꢖ ꢚ ꢍꢔ ꢚ ꢚꢜ ꢀꢁ ꢉꢊ ꢄꢀ ꢁꢀ ꢂꢀ ꢆ  
ꢢ ꢚꢡ ꢌ ꢝꢜ ꢚ ꢁ  
2X L/2  
8
5
4
ꢀ ꢁ ꢉꢊ ꢃ ꢄꢀ ꢁ ꢀꢂ ꢀ ꢆ  
B
−U−  
L
1
M
PIN 1  
IDENT  
ꢊꢁ ꢖ ꢚꢡ ꢇꢝ ꢘ ꢟꢠ ꢘ ꢕ ꢇꢓ ꢚꢡ ꢌ ꢟ ꢡꢚ ꢌ ꢥ ꢙꢦ ꢘ ꢤ ꢙꢡ  
ꢡ ꢚꢤ ꢚ ꢡ ꢚꢘ ꢔ ꢚ ꢙ ꢘ ꢠꢈꢁ  
ꢑꢁ ꢜ ꢝ ꢇꢚꢘ ꢌ ꢝ ꢙꢘ ꢟ ꢟ ꢘꢜ ꢓ ꢟ ꢡ ꢚ ꢖꢙ ꢓ ꢚ ꢜ ꢚꢖ ꢚ ꢡ ꢇꢝ ꢘ ꢚꢜ  
ꢟ ꢖ ꢜ ꢟꢖ ꢕ ꢇ ꢢ ꢠꢟꢘ ꢚ ꢧꢦꢧ ꢁ  
ꢀ ꢁꢂ ꢊꢃ ꢄꢀ ꢁꢀ ꢀ ꢑꢆ ꢖ ꢕ  
A
−V−  
F
DETAIL E  
MILLIMETERS  
INCHES  
MIN  
DIM MIN  
MAX  
ꢏꢁ ꢂꢀ  
ꢏꢁ ꢂꢀ  
MAX  
ꢀꢁ ꢂꢉꢉ  
ꢀꢁ ꢂꢉ ꢉ  
ꢀꢁ ꢀꢅ ꢏ  
ꢀꢁ ꢀꢀ ꢑ  
ꢀꢁ ꢀꢉ ꢐ  
A
B
C
D
F
ꢉꢁ ꢎꢀ  
ꢉꢁ ꢎꢀ  
ꢀꢁ ꢐꢀ  
ꢀꢁ ꢀꢊ  
ꢀꢁ ꢅꢀ  
ꢀꢁ ꢂꢂꢅ  
ꢀꢁ ꢂꢂꢅ  
C
ꢂꢁ ꢂꢀ ꢀꢁ ꢀꢏꢂ  
ꢀꢁ ꢂꢊ ꢀꢁ ꢀꢀꢉ  
ꢀꢁ ꢒꢀ ꢀꢁ ꢀꢂꢑ  
ꢀ ꢁꢂ ꢀꢃ ꢄꢀ ꢁꢀ ꢀꢅꢆ  
−W−  
SEATING  
PLANE  
D
−T−  
G
G
K
L
ꢀꢁ ꢑꢊꢃ ꢓ ꢌꢔ  
ꢀꢁ ꢀꢉꢑ ꢃꢓ ꢌꢔ  
ꢀꢁ ꢉꢊ  
ꢀꢁ ꢅꢀ ꢀꢁ ꢀꢂꢀ  
ꢅꢁ ꢎꢀꢃ ꢓ ꢌꢔ  
ꢀꢃ ꢃꢃ  
ꢀꢁ ꢂꢎꢏ ꢃꢓ ꢌꢔ  
ꢀꢃ ꢃꢃ  
DETAIL E  
M
ꢑꢃ ꢃꢃ ꢃ  
_
ꢑ ꢃꢃꢃ  
_
_
_
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NB6L11/D  

相关型号:

NB6L11DTG

2.5 V/3.3 V Multilevel Input to Differential LVPECL/LVNECL 1:2 Clock or Data Fanout Buffer/Translator
ONSEMI

NB6L11DTR2

2.5V / 3.3V MULTILEVEL INPUT TO DIFFERENTIAL LVPECL/LVNECL 1:2 CLOCK OR DATA FANOUT BUFFER / TRANSLATOR
ONSEMI

NB6L11DTR2G

2.5 V/3.3 V Multilevel Input to Differential LVPECL/LVNECL 1:2 Clock or Data Fanout Buffer/Translator
ONSEMI

NB6L11M

2.5V / 3.3V 1:2 Differential CML Fanout Buffer
ONSEMI

NB6L11MMNG

2.5V / 3.3V 1:2 Differential CML Fanout Buffer
ONSEMI

NB6L11MMNR2G

2.5V / 3.3V 1:2 Differential CML Fanout Buffer
ONSEMI

NB6L11M_07

2.5V / 3.3V 1:2 Differential CML Fanout Buffer Multi−Level Inputs w/ Internal Termination
ONSEMI

NB6L11S

2.5 V 1:2 AnyLevel TM Input to LVDS Fanout Buffer / Translator
ONSEMI

NB6L11SMNG

2.5 V 1:2 AnyLevel TM Input to LVDS Fanout Buffer / Translator
ONSEMI

NB6L11SMNR2G

2.5 V 1:2 AnyLevel TM Input to LVDS Fanout Buffer / Translator
ONSEMI

NB6L11S_06

2.5 V 1:2 AnyLevel TM Input to LVDS Fanout Buffer / Translator
ONSEMI

NB6L11_06

2.5 V/3.3 V Multilevel Input to Differential LVPECL/LVNECL 1:2 Clock or Data Fanout Buffer/Translator
ONSEMI