NB3V1106CDTR2G [ONSEMI]

LVCMOS Low Skew Fanout Buffer Family;
NB3V1106CDTR2G
型号: NB3V1106CDTR2G
厂家: ONSEMI    ONSEMI
描述:

LVCMOS Low Skew Fanout Buffer Family

文件: 总13页 (文件大小:332K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NB3V110xC Series  
3.3V/2.5V/1.8V LVCMOS  
Low Skew Fanout Buffer  
Family  
Description  
www.onsemi.com  
The NB3V110xC are a modular, high−performance, low−skew,  
general purpose LVCMOS clock buffer family. The family of devices  
is designed with a modular approach. Four different fan−out  
variations, 1:2, 1:3, 1:4, 1:6 and 1:8, are available. All of the devices  
are pin compatible to each other for easy handling. All family  
members share the same high performing characteristics like low  
additive jitter, low skew, and wide operating temperature range. The  
NB3V110xC supports an asynchronous output enable control (OE)  
which switches the outputs into a low state when OE is low. The  
NB3V110xC devices operate in a 3.3 V, 2.5 V and 1.8 V environment  
and are characterized for operation from −40°C to 105°C.  
TSSOP−8  
DT SUFFIX  
CASE 948S  
TSSOP−14  
DT SUFFIX  
CASE 948G  
TSSOP−16  
DT SUFFIX  
CASE 948F  
WDFN8, 2x2  
MT SUFFIX  
CASE 511AT  
Features  
Operating Temperature Range: –40°C to 105°C  
High−Performance 1:2, 1:3, 1:4, 1:6, 1:8 LVCMOS Clock Buffer  
Available in 8−, 14−, 16−Pin TSSOP and WDFN8 Packages  
Very Low Output−to−Output Skew < 50 ps  
Very Low Additive Jitter < 200 fs  
MARKING DIAGRAMS  
8
16  
14  
1108  
1106  
10x  
YWW  
AG  
V
ALYWG  
G
V
ALYWG  
G
Supply Voltage: 3.3 V, 2.5 V or 1.8 V  
f  
= 250 MHz for 3.3 V; f  
= 133 MHz for 1.8 V  
= 180 MHz for 2.5 V;  
max  
max  
f
1
max  
1
1
These Devices are Pb−Free and are RoHS Compliant  
TSSOP−8  
TSSOP−14  
TSSOP−16  
BLOCK DIAGRAM  
1
0X MG  
LV  
CMOS  
LV  
CMOS  
Q0  
Q1  
Q2  
Q3  
CLKIN  
G
LV  
CMOS  
WDFN8  
A
M
L
= Assembly Location  
= Date Code  
= Wafer Lot  
LV  
CMOS  
Y
= Year  
LV  
CMOS  
W, WW = Work Week  
G
= Pb−Free Package  
S
S
(Note: Microdot may be in either location)  
S
LV  
CMOS  
ORDERING INFORMATION  
See detailed ordering, marking and shipping information on  
page 9 of this data sheet.  
Qn  
OE  
© Semiconductor Components Industries, LLC, 2017  
1
Publication Order Number:  
January, 2017 − Rev. 3  
NB3V1102C/D  
NB3V110xC Series  
CLKIN  
OE  
1
2
3
4
5
6
7
8
16  
Q1  
CLKIN  
OE  
15  
14  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Q1  
Q3  
Q0  
Q3  
VDD  
Q2  
CLKIN  
OE  
Q1  
1
2
3
4
8
7
6
5
Q0  
GND  
VDD  
Q4  
13  
12  
11  
10  
9
VDD  
Q2  
NB3V1108C  
NB3V1102C  
NB3V1103C  
NB3V1104C  
NC/Q3  
VDD  
GND  
VDD  
Q4  
GND  
Q5  
NB3V1106C  
Q0  
GND  
Q5  
NC/Q2  
GND  
GND  
Q6  
VDD  
Q7  
TSSOP−8 and WDFN8  
GND  
8
VDD  
TSSOP−14  
TSSOP−16  
Figure 1. Pin Configuration  
Table 1. PIN DESCRIPTION  
LVCMOS Clock  
Input  
LVCMOS Clock  
Output Enable  
Device  
Supply Voltage  
Device  
Ground  
LVCMOS Clock Output  
Q0, Q1, ... Q7  
3, 8  
CLKIN  
OE  
2
VDD  
GND  
Devices  
NB3V1102C  
NB3V1103C  
NB3V1104C  
NB3V1106C  
NB3V1108C  
1
1
1
1
1
6
4
4
2
3, 8, 5  
6
2
3, 8, 5, 7  
6
4
2
3, 14, 11, 13, 6, 9  
3, 16, 13, 15, 6, 11, 8, 9  
5, 8, 12  
5, 10, 14  
4, 7, 10  
4, 7, 12  
2
NOTE: Pins not mentioned in the table are NC.  
Table 2. OUTPUT LOGIC TABLE  
INPUTS  
OUTPUTS  
CLKIN  
OE  
L
Qn  
L
X
L
H
L
H
H
H
Table 3. ATTRIBUTES  
Characteristic  
Value  
Unit  
ESD Protection  
Human Body Model (HBM) per ANSI/ESDA/JEDEC JS−001−2014  
Charged Device Model (CDM) per ANSI/ESDA/JEDEC JS−002−2014  
5000  
1500  
V
V
Moisture Sensitivity, Indefinite Time Out of Dry Pack (Note 1)  
Meets or exceeds JEDEC Spec JESD78D (LU) IC Latchup Test  
Level 1  
2
1. JEDEC standard multilayer board – 2S2P (2 signal, 2 power) with a large copper heat spreader (20 mm , 2 oz.)  
www.onsemi.com  
2
 
NB3V110xC Series  
Table 4. ABSOLUTE MAXIMUM RATINGS (Note 2)  
Over operating free−air temperature range (unless otherwise noted)  
Symbol  
Condition  
Value  
Unit  
V
V
DD  
Supply Voltage Range  
Input Voltage Range (Note 3)  
Output Voltage Range (Note 3)  
Input Current  
–0.5 to 4.6  
V
IN  
–0.5 to V + 0.5  
V
DD  
V
O
–0.5 to V + 0.5  
V
DD  
I
IN  
20  
50  
mA  
mA  
°C/W  
I
O
Continuous Output Current  
q
Thermal Resistance (Junction−to−Ambient)  
TSSOP−8  
151.2*  
104*  
32*  
JA  
TSSOP−14  
TSSOP−16  
110**  
190**  
35  
WDFN8  
TSSOP−8  
TSSOP−14  
TSSOP−16  
WDFN8  
q
Thermal Resistance (Junction−to−Case top)  
°C/W  
JC  
8.6  
10  
10  
T
Maximum Junction Temperature  
Storage Temperature Range  
125  
°C  
°C  
J
T
–65 to 150  
STG  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
2
2. JEDEC standard multilayer board – 2S2P (2 signal, 2 power) with a large copper heat spreader (20 mm , 2 oz.)  
3. For additional information, see Application Note AND8003/D.  
*JEDEC51.7 four layer PCB with 100 sqmm, 2 oz with two 80x80x1oz ground planes.  
**JEDEC51.3 two layer PCB with 100 sqmm, 2 oz.  
www.onsemi.com  
3
 
NB3V110xC Series  
Table 5. RECOMMENDED OPERATING CONDITIONS  
Over operating free−air temperature range (unless otherwise noted)  
Symbol  
Condition  
Min  
3.0  
Typ  
3.3  
2.5  
1.8  
Max  
3.6  
Unit  
VDD  
Supply voltage range  
3.3 V supply  
2.5 V supply  
V
2.3  
2.7  
1.8 V supply  
1.71  
1.89  
VIL  
VIH  
Vth  
Low−level input voltage  
VDD = 3.0 V to 3.6 V  
VDD/2 –  
600  
mV  
VDD = 2.3 V to 2.7 V  
VDD/2 –  
400  
VDD = 1.71 V to 1.89 V  
VDD = 3.0 V to 3.6 V  
0.3xVDD  
V
High−level input voltage  
Input threshold voltage  
VDD/2 +  
600  
mV  
VDD = 2.3 V to 2.7 V  
VDD/2 +  
400  
VDD = 1.71 V to 1.89 V  
VDD = 2.3 V to 3.6 V  
VDD = 1.71 V to 1.89 V  
0.7xVDD  
V
V
VDD/2  
VDD/2  
V
tr / tf  
tw  
Input slew rate (Note 4)  
1
4
V/ns  
ns  
Minimum pulse width at CLKIN  
VDD = 3.0 V to 3.6 V  
VDD = 2.3 V to 2.7 V  
VDD = 1.71 V to 1.89 V  
VDD = 3.0 V to 3.6 V  
VDD = 2.3 V to 2.7 V  
VDD = 1.71 V to 1.89 V  
1.8  
2.75  
3.75  
DC  
DC  
DC  
–40  
fCLK  
LVCMOS clock Input Frequency  
250  
180  
133  
105  
MHz  
TA  
Operating free−air temperature  
°C  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
4. Guaranteed by Design.  
www.onsemi.com  
4
 
NB3V110xC Series  
Table 6. DEVICE CHARACTERISTICS Over recommended operating free−air temperature range (unless otherwise noted) (Note 5)  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
OVERALL PARAMETERS FOR ALL VERSIONS  
I
Static device current  
OE = V ; CLKIN = 0 V or V ; I = 0 mA; V  
3.6 V  
=
=
=
0.2  
0.2  
0.2  
60  
mA  
DD  
DD  
DD  
O
DD  
DD  
DD  
OE = V ; CLKIN = 0 V or V ; I = 0 mA; V  
DD  
DD  
O
2.7 V  
OE = V ; CLKIN = 0 V or V ; I = 0 mA; V  
DD  
DD  
O
1.89 V  
OE = 0 V; CLKIN = 0 V or V ; I = 0 mA; V =  
DD  
I
Power down current  
mA  
PD  
DD  
O
3.6 V, 2.7 V or 1.89 V (For 1102C, 1103C, 1104C)  
OE = 0 V; CLKIN = 0 V or V ; I = 0 mA; V  
=
DD  
75  
DD  
O
3.6 V, 2.7 V or 1.89 V (For 1106C, 1108C)  
C
Power dissipation capacitance per out-  
put (Note 6)  
V
V
V
= 3.3 V; f = 10 MHz  
= 2.5 V; f = 10 MHz  
= 1.8 V; f = 10 MHz  
9
9
9
pF  
mA  
PD  
DD  
DD  
DD  
I
Input leakage current at OE  
Input leakage current at CLKIN  
Input leakage current at OE, CLKIN  
Output impedance  
V = 0 V or V , V = 3.6 V or 2.7 V  
I
8
8
8
I
DD  
DD  
V = 0 V or V , V = 1.89 V  
I
DD  
DD  
R
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= 3.3 V  
= 2.5 V  
= 1.8 V  
40  
45  
60  
W
OUT  
f
Output frequency  
= 3.0 V to 3.6 V  
= 2.3 V to 2.7 V  
= 1.71 V to 1.89 V  
DC  
DC  
DC  
250  
180  
133  
MHz  
OUT  
OUTPUT PARAMETERS FOR V = 3.3 V + 0.3 V  
DD  
V
OH  
High−level output voltage  
V
V
V
V
V
V
= 3 V, I = –0.1 mA  
2.9  
2.5  
2.2  
V
V
DD  
DD  
DD  
DD  
DD  
DD  
OH  
= 3 V, I = –8 mA  
OH  
= 3 V, I = –12 mA  
OH  
V
OL  
Low−level output voltage  
= 3 V, I = 0.1 mA  
0.1  
0.5  
0.8  
2.0  
50  
OL  
= 3 V, I = 8 mA  
OL  
= 3 V, I = 12 mA  
OL  
t
, t  
Propagation delay (Note 7)  
Output skew (Note 7)  
CLKIN to Qn  
0.8  
ns  
ps  
PLH PHL  
t
Equal load of each output 85°C  
Equal load of each output 105°C  
sk(o)  
60  
t /t  
Rise and fall time  
20%–80% (V − V )  
OL  
0.12  
0.8  
6
ns  
ns  
ns  
ps  
ns  
fs  
r
f
OH  
t
Output disable time (Note 7)  
Output enable time (Note 7)  
OE to Qn  
OE to Qn  
DIS  
t
6
EN  
t
Pulse skew; tPLH(Qn) – tPHL(Qn) (Note 8) To be measured with input duty cycle of 50%  
180  
0.5  
100  
sk(p)  
t
Part−to−part skew  
Additive jitter rms  
Under equal operating conditions for two parts  
sk(pp)  
12 kHz...20 MHz f  
12 kHz...20 MHz f  
= 100 MHz  
T
jit(  
f
OUT  
OUT  
)
= 156.25 MHz  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
5. All typical values are at respective nominal V . For switching characteristics, outputs are terminated to 50 W to V /2 (see Figure 2).  
DD  
DD  
6. This is the formula for the power dissipation calculation.  
Ptot = Pstat + Pdyn + PCload [W] P  
= V x I [W]  
stat  
DD DD  
P
P
= C x V 2 x ƒ x n [W]  
dyn  
PD DD  
= C  
x V 2 x ƒ x n [W]  
DD  
Cload  
load  
n = Number of switching output pins  
7. With rail to rail input clock.  
8. t  
depends on output rise− and fall−time (t /t ). The output duty−cycle can be calculated: odc = (t  
t
)/t  
; t  
is  
sk(p)  
r
f
w(OUT)  
sk(p) period w(OUT)  
pulse−width of ideal output waveform and tperiod is 1/f  
.
OUT  
www.onsemi.com  
5
 
NB3V110xC Series  
Table 7. DEVICE CHARACTERISTICS (continued)  
Over recommended operating free−air temperature range (unless otherwise noted) (Note 5)  
Symbol Parameter Condition  
Min  
Typ  
Max  
Unit  
V
OUTPUT PARAMETERS FOR V = 2.5 V + 0.2 V  
DD  
V
High−level output voltage  
V
V
V
V
= 2.3 V, I = 0.1 mA  
2.2  
1.7  
OH  
DD  
DD  
DD  
DD  
OH  
= 2.3 V, I = 8 mA  
OH  
V
Low−level output voltage  
= 2.3 V, I = 0.1 mA  
0.1  
0.5  
V
OL  
OL  
= 2.3 V, I = 8 mA  
OL  
t
, t  
Propagation delay (Note 10)  
Output skew (Note 10)  
CLKIN to Qn  
1.8  
ns  
ps  
PLH PHL  
t
Equal load of each output 85°C  
Equal load of each output 105°C  
50  
60  
sk(o)  
t /t  
Rise and fall time  
20%–80% (V − V )  
OL  
0.12  
1.2  
10  
ns  
ns  
ns  
ps  
r
f
OH  
t
Output disable time (Note 10)  
Output enable time (Note 10)  
OE to Qn  
OE to Qn  
DIS  
t
10  
EN  
t
t
Pulse skew ; PLH(Qn) – tPHL(Qn)  
To be measured with input duty cycle of 50%  
220  
sk(p)  
(Note 9)  
t
Part−to−part skew  
Under equal operating conditions for two  
parts  
1.2  
ns  
fs  
sk(pp)  
tjit  
Additive jitter rms  
12 kHz...20 MHz f  
12 kHz...20 MHz f  
= 100 MHz  
150  
100  
f
(
)
OUT  
OUT  
= 156.25 MHz  
OUTPUT PARAMETERS FOR V = 1.8 V + 5%  
DD  
V
High−level output voltage  
V
V
V
V
= 1.71 V, I = 0.1 mA  
1.6  
V
V
OH  
DD  
DD  
DD  
DD  
OH  
= 1.71 V, I = 4 mA  
0.75xV  
OH  
DD  
V
OL  
Low−level output voltage  
= 1.71 V, I = 0.1 mA  
0.1  
0.25xV  
3.5  
OL  
= 1.71 V, I = 4 mA  
OL  
DD  
t
, t  
Propagation delay (Note 10)  
Output skew (Note 10)  
CLKIN to Qn  
1.8  
ns  
ps  
ns  
ns  
ns  
ps  
PLH PHL  
t
Equal load of each output  
75  
sk(o)  
t /t  
Rise and fall time  
20%–80% (V − V )  
OL  
0.17  
1.2  
r
f
OH  
t
Output disable time (Note 10)  
Output enable time (Note 10)  
OE to Qn  
OE to Qn  
10  
DIS  
t
10  
EN  
t
t
Pulse skew ; PLH(Qn) – tPHL(Qn)  
To be measured with input duty cycle of 50%  
450  
sk(p)  
(Note 9)  
t
Part−to−part skew  
Under equal operating conditions for two  
parts  
1.2  
ns  
sk(pp)  
tjit  
(
Additive jitter rms  
12 kHz...20 MHz, f  
= 100 MHz  
200  
fs  
f
OUT  
)
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
9. t  
depends on output rise− and fall−time (t /t ). The output duty−cycle can be calculated: odc = (t  
t
)/t  
; t  
is  
sk(p)  
r
f
w(OUT)  
sk(p) period w(OUT)  
pulse−width of ideal output waveform and tperiod is 1/f  
10.With rail to rail input clock.  
.
OUT  
www.onsemi.com  
6
 
NB3V110xC Series  
PARAMETERS MEASUREMENT INFORMATION  
V
= 3.3 V, 2.5 V or 1.8 V  
DD  
LVCMOS  
Output  
Z
= 50 Ω  
O
R=50 W  
C=2pF  
from Measurement Equipment  
parasitic capacitance  
V
/2  
DD  
Figure 2. Test Load Circuit  
V
DD  
V
= 3.3 V, 2.5V or 1.8 V  
DD  
R=100 W  
LVCMOS  
Output  
Z
= 50 Ω  
O
parasitic input capacitance  
R=100 W  
Figure 3. Application Load with 50 W Line Termination  
V
= 3.3 V, 2.5 V or 1.8 V  
DD  
RS = 10 Ohms (V = 3.3 V)  
DD  
RS = 5 Ohms (V = 2.5 V)  
DD  
RS = 0 Ohms (V = 1.8 V)  
DD  
LVCMOS  
Output  
Z
= 50 Ω  
O
parasitic input capacitance  
Figure 4. Application Load with Series Line Termination  
VDD /2  
VIN /2  
Qn  
OE  
Qn  
VIN /2  
VDD /2  
Qn+1  
tsk(o)  
Figure 6. Output Skew tSk(o)  
tDIS  
tEN  
tsk(o)  
Figure 5. tDIS and tEN for Disable Low  
www.onsemi.com  
7
NB3V110xC Series  
V
/ 2  
DD  
CLKIN  
CLKIN  
V
OH  
80% V  
−V  
OH OL  
Q
n
V
/ 2  
DD  
20% V  
−V  
OH OL  
Q
n
V
OL  
t
t
f
r
t
PLH  
t
PHL  
Note: t  
= |t  
− t  
PHL  
|
sk(p)  
PLH  
Figure 7. Pulse Skew tsk(p) and Propagation Delay  
PLH/tPHL  
Figure 8. Rise/Fall Times tr /tf  
t
F_carrier = 100 MHz  
Integration Range: 12 kHz − 20 MHz  
DUT + Source Phase Jitter = 66.92 fs  
Input Source Phase Jitter = 36.72 fs  
Output (DUT + Source)  
Input Source  
Output  
Input Source 100 MHz  
Figure 9. Typical NB3V110xC Phase Noise Plot at fCarrier = 100 MHz, VDD = 3.3 V, 255C  
The above phase noise data was captured using Agilent  
E5052A/B. The data displays the input phase noise and  
output phase noise used to calculate the additive phase jitter  
at a specified integration range. The additive RMS phase  
jitter contributed by the device (integrated between 12 kHz  
and 20 MHz) is 55.94 fs. The additive RMS phase jitter  
performance of the fan out buffer is highly dependent on the  
phase noise of the input source.  
To obtain the most precise additive phase noise  
measurement, it is vital that the source phase noise be  
notably lower than that of the DUT. If the phase noise of the  
source is greater than the noise floor of the device under test,  
the source noise will dominate the additive phase jitter  
calculation and lead to an incorrect negative result for the  
additive phase noise within the integration range. The  
Figure above is a good example of the NB3V110xC source  
generator phase noise having a significantly lower floor than  
the DUT and results in an additive phase jitter of 55.94 fs.  
Ǹ
2
2
Additive RMS phase jitter + RMS phase jitter of output * RMS phase jitter of input  
2
2
55.94 fs + Ǹ66.92 fs * 36.72 fs  
www.onsemi.com  
8
 
NB3V110xC Series  
F_carrier = 156.25 MHz  
Integration Range: 12 kHz − 20 MHz  
DUT + Source Phase Jitter = 51.76 fs  
Input Source Phase Jitter = 23.5 fs  
Output (DUT + Source)  
Input Source  
Output  
Input Source 156.25 MHz  
Figure 10. Typical NB3V110xC Phase Noise Plot at fCarrier = 156.25 MHz, VCC = 3.3 V V, 255C  
The additive RMS phase jitter contributed by the device (integrated between 12 kHz and 20 MHz) is 46.11 fs.  
Ǹ
2
2
Additive RMS phase jitter + RMS phase jitter of output * RMS phase jitter of input  
2
2
46.11 fs + Ǹ51.76 fs * 23.5 fs  
Figures 9 and 10 were created with measured data from  
Agilent−E5052A/B Signal Source Analyzer using ON  
Semiconductor Phase Noise Explorer web tool. This free  
application enables an interactive environment for advanced  
phase noise and jitter analysis of timing devices and clock  
tree designs. To see the performance of NB3V110xC  
beyond conditions outlined in this datasheet, please visit the  
ON Semiconductor Green Point Design Tools homepage.  
Table 8. ORDERING INFORMATION  
Device  
NB3V1102CDTR2G  
Marking  
102  
Package  
Shipping  
TSSOP−8  
(Pb−Free)  
NB3V1103CDTR2G  
NB3V1104CDTR2G  
NB3V1102CMTTBG  
NB3V1104CMTTBG  
NB3V1106CDTR2G  
103  
2500 / Tape & Reel  
104  
02  
WDFN8  
(Pb−Free)  
3000 / Tape & Reel  
04  
1106  
V
TSSOP−14  
(Pb−Free)  
2500 / Tape & Reel  
2500 / Tape & Reel  
NB3V1108CDTR2G  
1108  
V
TSSOP−16  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
NOTE: Please contact your ON Semiconductor sales representative for availability of parts in tube.  
www.onsemi.com  
9
NB3V110xC Series  
PACKAGE DIMENSIONS  
TSSOP−8  
CASE 948S  
ISSUE C  
8x K REF  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
M
S
S
V
0.10 (0.004)  
T U  
S
0.20 (0.008) T U  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.  
PROTRUSIONS OR GATE BURRS. MOLD FLASH  
OR GATE BURRS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)  
PER SIDE.  
5. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
6. DIMENSION A AND B ARE TO BE DETERMINED  
AT DATUM PLANE -W-.  
8
5
4
2X L/2  
B
−U−  
J
J1  
L
1
PIN 1  
IDENT  
K1  
K
S
0.20 (0.008) T U  
A
SECTION N−N  
−V−  
MILLIMETERS  
INCHES  
MIN  
DIM MIN  
MAX  
3.10  
4.50  
1.10  
0.15  
0.70  
MAX  
0.122  
0.177  
0.043  
0.006  
0.028  
A
B
2.90  
4.30  
---  
0.114  
0.169  
---  
−W−  
C
C
0.076 (0.003)  
D
0.05  
0.50  
0.002  
0.020  
F
DETAIL E  
SEATING  
D
−T−  
G
G
J
0.65 BSC  
0.026 BSC  
PLANE  
0.09  
0.09  
0.19  
0.19  
0.20  
0.16  
0.30  
0.25  
0.004  
0.004  
0.007  
0.007  
0.008  
0.006  
0.012  
0.010  
J1  
K
0.25 (0.010)  
N
K1  
L
6.40 BSC  
0.252 BSC  
0
M
M
0
8
8
_
_
_
_
N
F
DETAIL E  
www.onsemi.com  
10  
NB3V110xC Series  
PACKAGE DIMENSIONS  
TSSOP−14  
CASE 948G  
ISSUE B  
NOTES:  
14X K REF  
1. DIMENSIONING AND TOLERANCING PER  
M
S
S
V
ANSI Y14.5M, 1982.  
0.10 (0.004)  
T U  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL  
NOT EXCEED 0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL  
IN EXCESS OF THE K DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
S
0.15 (0.006) T U  
N
0.25 (0.010)  
14  
8
2X L/2  
M
B
−U−  
L
N
PIN 1  
IDENT.  
F
7
1
DETAIL E  
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE −W−.  
S
K
0.15 (0.006) T U  
A
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
K1  
−V−  
A
B
C
D
F
4.90  
4.30  
−−−  
0.05  
0.50  
5.10 0.193 0.200  
4.50 0.169 0.177  
J J1  
1.20  
−−− 0.047  
0.15 0.002 0.006  
0.75 0.020 0.030  
SECTION N−N  
G
H
J
J1  
K
0.65 BSC  
0.026 BSC  
0.60 0.020 0.024  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
0.50  
0.09  
0.09  
0.19  
−W−  
C
K1 0.19  
L
M
6.40 BSC  
0.252 BSC  
0.10 (0.004)  
0
8
0
8
_
_
_
_
SEATING  
−T−  
H
G
DETAIL E  
D
PLANE  
SOLDERING FOOTPRINT*  
7.06  
1
0.65  
PITCH  
14X  
0.36  
14X  
1.26  
DIMENSIONS: MILLIMETERS  
www.onsemi.com  
11  
NB3V110xC Series  
PACKAGE DIMENSIONS  
TSSOP−16  
CASE 948F  
ISSUE B  
16X KREF  
NOTES:  
M
S
S
0.10 (0.004)  
T U  
V
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
S
0.15 (0.006) T U  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH. PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL  
NOT EXCEED 0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL  
IN EXCESS OF THE K DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
K
K1  
16  
9
2X L/2  
J1  
SECTION N−N  
B
−U−  
L
J
PIN 1  
IDENT.  
N
8
0.25 (0.010)  
1
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE −W−.  
M
S
0.15 (0.006) T U  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
A
N
−V−  
A
B
4.90  
4.30  
−−−  
5.10 0.193 0.200  
4.50 0.169 0.177  
F
C
1.20  
−−− 0.047  
D
F
0.05  
0.50  
0.15 0.002 0.006  
0.75 0.020 0.030  
DETAIL E  
G
H
J
J1  
K
K1  
L
0.65 BSC  
0.026 BSC  
0.18  
0.09  
0.09  
0.19  
0.19  
0.28 0.007 0.011  
−W−  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
C
0.10 (0.004)  
6.40 BSC  
0.252 BSC  
H
DETAIL E  
SEATING  
−T−  
M
0
8
0
8
_
_
_
_
D
PLANE  
G
SOLDERING FOOTPRINT  
7.06  
1
0.65  
PITCH  
16X  
0.36  
16X  
1.26  
DIMENSIONS: MILLIMETERS  
www.onsemi.com  
12  
NB3V110xC Series  
PACKAGE DIMENSIONS  
WDFN8 2x2, 0.5P  
CASE 511AT  
ISSUE O  
L
L
D
A
B
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.15 AND 0.30 MM FROM TERMINAL TIP.  
L1  
PIN ONE  
REFERENCE  
DETAIL A  
E
ALTERNATE TERMINAL  
CONSTRUCTIONS  
MILLIMETERS  
DIM  
A
MIN  
0.70  
0.00  
MAX  
0.80  
0.05  
2X  
0.10  
C
A1  
A3  
b
0.20 REF  
2X  
0.10  
C
0.20  
0.30  
EXPOSED Cu  
MOLD CMPD  
TOP VIEW  
2.00 BSC  
D
E
2.00 BSC  
0.50 BSC  
e
DETAIL B  
L
0.40  
---  
0.60  
0.15  
0.70  
0.05  
C
L1  
L2  
DETAIL B  
0.50  
A
ALTERNATE  
CONSTRUCTIONS  
8X  
0.05  
C
A1  
A3  
RECOMMENDED  
SOLDERING FOOTPRINT*  
SEATING  
PLANE  
C
SIDE VIEW  
7X  
0.78  
PACKAGE  
OUTLINE  
e/2  
e
DETAIL A  
7X  
L
4
1
L2  
2.30  
0.88  
1
8
5
8X  
b
0.50  
PITCH  
8X  
0.30  
0.10  
0.05  
C
A
B
DIMENSIONS: MILLIMETERS  
NOTE 3  
C
BOTTOM VIEW  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NB3V1102C/D  

相关型号:

NB3V1108C

LVCMOS Low Skew Fanout Buffer Family
ONSEMI

NB3V1108CDTR2G

LVCMOS Low Skew Fanout Buffer Family
ONSEMI

NB3V110XC

LVCMOS Low Skew Fanout Buffer Family
ONSEMI

NB3V60113G

1.8 V Programmable OmniClock Generator
ONSEMI

NB3V60113G00MTR2G

1.8 V Programmable OmniClock Generator
ONSEMI

NB3V60113GV3

1.8 V 12.288 MHz OmniClock Generator
ONSEMI

NB3V60113GV3MTR2G

1.8 V 12.288 MHz OmniClock Generator
ONSEMI

NB3V60113GxxMTR2G

1.8 V Programmable OmniClock Generator
ONSEMI

NB3V8312C

Ultra-Low Jitter, Low Skew 1:12 LVCMOS/LVTTL Fanout Buffer
ONSEMI

NB3V8312CFAG

Ultra-Low Jitter, Low Skew 1:12 LVCMOS/LVTTL Fanout Buffer
ONSEMI

NB3V8312CFAR2G

Ultra-Low Jitter, Low Skew 1:12 LVCMOS/LVTTL Fanout Buffer
ONSEMI

NB3V8312CMNG

Ultra-Low Jitter, Low Skew 1:12 LVCMOS/LVTTL Fanout Buffer
ONSEMI