NB3V8312C [ONSEMI]

Ultra-Low Jitter, Low Skew 1:12 LVCMOS/LVTTL Fanout Buffer; 超低抖动,低偏移1:12 LVCMOS / LVTTL扇出缓冲器
NB3V8312C
型号: NB3V8312C
厂家: ONSEMI    ONSEMI
描述:

Ultra-Low Jitter, Low Skew 1:12 LVCMOS/LVTTL Fanout Buffer
超低抖动,低偏移1:12 LVCMOS / LVTTL扇出缓冲器

文件: 总11页 (文件大小:199K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NB3V8312C  
Ultra-Low Jitter, Low Skew  
1:12 LVCMOS/LVTTL Fanout  
Buffer  
The NB3V8312C is a high performance, low skew LVCMOS  
fanout buffer which can distribute 12 ultralow jitter clocks from an  
LVCMOS/LVTTL input up to 250 MHz.  
http://onsemi.com  
The 12 LVCMOS output pins drive 50 W series or parallel  
terminated transmission lines. The outputs can also be disabled to a  
high impedance (tristated) via the OE input, or enabled when High.  
The NB3V8312C provides an enable input, CLK_EN pin, which  
synchronously enables or disables the clock outputs while in the LOW  
state. Since this input is internally synchronized to the input clock,  
changing only when the input is LOW, potential output glitching or  
runt pulse generation is eliminated.  
32  
1
QFN32  
MN SUFFIX  
CASE 488AM  
LQFP32  
FA SUFFIX  
CASE 873A  
Separate V  
core and V  
output supplies allow the output  
V
DD  
DDO  
DDO  
buffers to operate at the same supply as the V (V = V ) or  
V
DD  
DD  
DDO  
DD  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
Q8  
Q9  
Q10  
Q11  
GND  
from a lower supply voltage. Compared to singlesupply operation,  
dual supply operation enables lower power consumption and  
outputlevel compatibility.  
R
PU  
CLK_EN  
D
The V core supply voltage can be set to 3.3 V, 2.5 V or 1.8 V,  
Q
DD  
while the V  
output supply voltage can be set to 3.3 V, 2.5 V, or  
DDO  
1.8 V, with the constraint that V V  
.
DD  
DDO  
This buffer is ideally suited for various networking, telecom, server  
and storage area networking, RRU LO reference distribution, medical  
and test equipment applications.  
CLK  
R
PD  
Features  
Power Supply Modes:  
V
DD  
(Core) / V  
(Outputs)  
DDO  
3.3 V  
3.3 V  
3.3 V  
2.5 V  
2.5 V  
1.8 V  
/ 3.3 V  
/ 2.5 V  
/ 1.8 V  
/ 2.5 V  
/ 1.8 V  
/ 1.8 V  
R
PU  
OE  
Figure 1. Simplified Logic Diagram  
250 MHz Maximum Clock Frequency  
Accepts LVCMOS, LVTTL Clock Inputs  
LVCMOS Compatible Control Inputs  
12 LVCMOS Clock Outputs  
ORDERING AND MARKING INFORMATION  
See detailed ordering and shipping information on page 9 of  
this data sheet.  
Synchronous Clock Enable  
Applications  
Output Enable to High Z State Control  
150 ps Max. Skew Between Outputs  
Temp. Range 40°C to +85°C  
32pin LQFP and QFN Packages  
These are PbFree Devices  
Networking  
Telecom  
Storage Area Network  
End Products  
Servers  
Routers  
Switches  
© Semiconductor Components Industries, LLC, 2013  
1
Publication Order Number:  
August, 2013 Rev. 0  
NB3V8312C/D  
NB3V8312C  
Exposed  
Pad (EP)  
32 31 30 29 28 27 26  
25  
24  
GND  
1
2
3
4
5
6
7
8
Q4  
23  
22  
21  
20  
19  
18  
17  
V
DD  
V
DDO  
24  
1
2
3
4
5
6
7
8
GND  
Q4  
CLK_EN  
CLK  
Q5  
V
23  
DD  
V
DDO  
GND  
22  
21  
20  
19  
18  
17  
Q5  
CLK_EN  
CLK  
NB3V8312C  
GND  
Q6  
Q6  
GND  
OE  
NB3V8312C  
GND  
OE  
V
DDO  
V
DDO  
Q7  
V
DD  
V
Q7  
DD  
GND  
GND  
GND  
GND  
9
10 11 12 13 14 15  
16  
Figure 2. LQFP32 Pinout Configuration  
Figure 3. QFN32 Pinout Configuration  
(Top View)  
(Top View)  
Table 1. PIN DESCRIPTION  
Open  
Default  
Pin  
Name  
I/O  
Description  
1, 5, 8, 12, 16, 17,  
21, 25, 29  
GND  
Power  
Ground, Negative Power Supply  
2, 7  
3
VDD  
Power  
Input  
Positive Supply for Core and Inputs  
CLK_EN  
High  
Synchronous Clock Enable Input. When High, outputs  
are enabled. When Low, outputs are disabled Low.  
Internal Pullup Resistor.  
4
6
CLK  
OE  
Input  
Low  
Singleended Clock input; LVCMOS/LVTTL. Internal  
Pulldown Resistor.  
Input  
High  
Output Enable. Internal Pullup Resistor.  
9, 11, 13, 15, 18,  
20, 22, 24, 26, 28,  
30, 32  
Q11, Q10, Q9, Q8,  
Q7, Q6, Q5, Q4,  
Q3, Q2, Q1, Q0  
Output  
Singleended LVCMOS/LVTTL outputs  
10, 14, 19, 23, 27,  
31  
VDDO  
Power  
Positive Supply for Outputs  
EP  
The Exposed Pad (EP) on the package bottom is ther-  
mally connected to the die for improved heat transfer  
out of package. The exposed pad must be attached to a  
heatsinking conduit. The pad is connected to the die  
and must only be connected electrically to GND on the  
PC board.  
1. All VDD, VDDO and GND pins must be externally connected to a power supply to guarantee proper operation. Bypass each supply pin with  
0.01 mF to GND.  
http://onsemi.com  
2
NB3V8312C  
CLK  
CLK_EN  
Q
Figure 4. CLK_EN Control Timing Diagram  
Table 2. OE, CLK_EN FUNCTION TABLES  
Inputs  
Outputs  
Q[0:11]  
HiZ  
OE  
0
CLK_EN (Note 2)  
CLK  
X
X
0
1
1
1
X
Low  
1
0
Low  
1
1
High  
2. The CLK_EN control input synchronously enables or disables the outputs as shown in Figure 4.  
This control latches on the falling edge of the selected input CLK. When CLK_EN is LOW, the  
outputs are disabled in a LOW state. When CLK_EN is HIGH, the outputs are enabled as  
shown. CLK_EN to CLK Set up and Hold times must be satisfied.  
http://onsemi.com  
3
 
NB3V8312C  
Table 3. ATTRIBUTES (Note 3)  
Characteristics  
Internal Input Pullup (R ) and Pulldown (R ) Resistor  
Value  
50 kW  
4 pF  
PU  
PD  
Input Capacitance, C  
IN  
Power Dissipation Capacitance, C (per Output)  
20 pF  
8 W  
PD  
R
OUT  
ESD Protection  
Human Body Model  
Machine Model  
> 1.5 kV  
> 200 V  
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 3)  
Level 1  
Flammability Rating  
Oxygen Index  
UL94 code V0 A 1/8”  
28 to 34  
Transistor Count  
464 Devices  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
3. For additional information, see Application Note AND8003/D.  
Table 4. MAXIMUM RATINGS (Note 4)  
Symbol Parameter  
Positive Power Supply  
Condition  
GND = 0 V  
Rating  
4.6  
Unit  
V
/
V
DD  
V
DDO  
V
I
Input Voltage  
0.5 v V v V + 0.5  
V
I
DD  
T
stg  
Storage Temperature Range  
65 to +150  
°C  
q
Thermal Resistance (JunctiontoAmbient)  
0 lfpm  
LQFP32  
LQFP32  
80  
55  
°C/W  
°C/W  
JA  
JC  
JA  
JC  
(Note 5)  
500 lfpm  
q
Thermal Resistance (JunctiontoCase)  
(Note 5)  
Standard Board  
LQFP32  
LQFP32  
1217  
°C/W  
°C/W  
°C/W  
q
q
Thermal Resistance (JunctiontoAmbient)  
(Note 5)  
0 lfpm  
500 lfpm  
QFN*32  
QFN*32  
31  
27  
Thermal Resistance (JunctiontoCase)  
(Note 5)  
Standard  
Board  
QFN*32  
12  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
4. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and not valid simultaneously. If  
stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected.  
5. JEDEC standard multilayer board 2S2P (2 signal, 2 power).  
http://onsemi.com  
4
 
NB3V8312C  
Table 5. LVCMOS/LVTTL DC CHARACTERISTICS (T = 40°C to +85°C)  
A
Symbol  
Characteristics  
Conditions  
Min  
Typ  
Max  
Unit  
2.0  
V
+
DD  
V
V
= 3.465 V  
= 2.625 V  
V
DD  
0.3  
1.7  
V
DD  
0.3  
+
+
V
V
V
IH  
Input High Voltage  
DD  
0.65 x  
V
DD  
0.3  
V
= 2.0 V  
DD  
V
DD  
V
= 3.465 V  
= 2.625 V  
0.3  
0.3  
0.3  
1.3  
0.7  
V
V
DD  
V
DD  
V
IL  
Input Low Voltage  
0.35 x  
V
= 2.0 V  
V
DD  
V
DD  
CLK  
150  
5
Input High  
Current  
I
V
= V = 3.465 V or 2.625 V or 2.0 V  
mA  
IH  
DD  
IN  
OE, CLK_EN  
CLK  
5  
150  
2.6  
Input Low  
Current  
I
V
= 3.465 V or 2.625 V or 2.0 V, V = 0 V  
mA  
IL  
DD  
IN  
OE, CLK_EN  
V
V
= 3.3 V 5%  
= 2.5 V 5%  
DDO  
1.8  
DDO  
V
DDO  
= 2.5 V 5%; I = 1 mA  
2.0  
OH  
V
OH  
Output High Voltage (Note 6)  
V
V
DD  
0.4  
V
DDO  
= 1.8 V 0.2 V  
V
DD  
0.2  
V
DDO  
= 1.8 V 0.2 V; I = 100 mA  
OH  
V
V
= 3. 3V 5%  
= 2.5 V 5%  
0.5  
0.45  
0.4  
DDO  
DDO  
V
DDO  
= 2.5 V 5%; I = 1 mA  
OL  
V
OL  
Output Low Voltage (Note 6)  
V
V
= 1.8 V 0.2 V  
0.35  
0.2  
DDO  
V
DDO  
= 1.8 V 0.2 V; I = 100 mA  
OL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
6. Outputs terminated 50 W to V /2 unless otherwise specified. See Figure 7.  
DDO  
Table 6. POWER SUPPLY DC CHARACTERISTICS, (T = 40°C to +85°C)  
A
V
(Core)  
V
DDO  
(Outputs)  
Min  
Typ  
Max  
10  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
DD  
3.3 V 5%  
3.3 V 5%  
3.3 V 5%  
2.5 V 5%  
2.5 V 5%  
1.8 V 0.2 V  
3.3 V 5%  
2.5 V 5%  
1.8 V 0.2V  
2.5 V 5%  
10  
10  
10  
1.8 V 0.2V  
1.8 V 0.2V  
10  
10  
http://onsemi.com  
5
 
NB3V8312C  
Table 7. AC CHARACTERISTICS (T = 40°C to +85°C) (Note 7)  
A
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
f
Maximum Operating Frequency  
V
/ V  
DD DDO  
MAX  
3.3 V 5% / 3.3 V 5%  
3.3 V 5% / 2.5 V 5%  
250  
250  
200  
250  
200  
200  
3.3 V 5% / 1.8 V 0.2 V  
2.5 V 5% / 2.5 V 5%  
2.5 V 5% / 1.8 V 0.2 V  
1.8 V 0.2 V / 1.8 V 0.2 V  
MHz  
t
Propagation Delay, Low to High; (Note 8)  
V
/ V  
pLH  
DD DDO  
3.3 V 5% / 3.3 V 5%  
3.3 V 5% / 2.5 V 5%  
0.9  
1.0  
1.0  
1.3  
1.3  
2.4  
2.2  
2.3  
3.0  
3.1  
3.5  
4.2  
3.3 V 5% / 1.8 V 0.2 V  
2.5 V 5% / 2.5 V 5%  
2.5 V 5% / 1.8 V 0.2 V  
1.8 V 0.2 V / 1.8 V 0.2 V  
ns  
fs  
t
jit  
Additive Phase Jitter, RMS;  
V
/ V  
DD DDO  
f
= 100 MHz  
3.3 V 5% / 3.3 V 5%  
3.3 V 5% / 2.5 V 5%  
30  
40  
C
Integration Range: 12 kHz 20 MHz  
See Figure 5  
3.3 V 5% / 1.8 V 0.2 V  
2.5 V 5% / 2.5 V 5%  
50  
20  
2.5 V 5% / 1.8 V 0.2 V  
1.8 V 0.2 V / 1.8 V 0.2 V  
100  
130  
t
Outputtooutput skew; (Note 9); Figure 6  
ParttoPart Skew; (Note 10)  
Output rise and fall times  
V
/ V  
sk(o)  
DD DDO  
3.3 V 5% / 3.3 V 5%  
3.3 V 5% / 2.5 V 5%  
125  
135  
145  
150  
150  
140  
3.3 V 5% / 1.8 V 0.2 V  
2.5 V 5% / 2.5 V 5%  
2.5 V 5% / 1.8 V 0.2 V  
1.8 V 0.2 V / 1.8 V 0.2 V  
ps  
ps  
ps  
%
t
V
/ V  
DD DDO  
sk(pp)  
3.3 V 5% / 3.3 V 5%  
3.3 V 5% / 2.5 V 5%  
250  
250  
250  
250  
250  
250  
3.3 V 5% / 1.8 V 0.2 V  
2.5 V 5% / 2.5 V 5%  
2.5 V 5% / 1.8 V 0.2 V  
1.8 V 0.2 V / 1.8 V 0.2 V  
t /t  
f
V
/ V  
r
DD DDO  
3.3 V 5% / 3.3 V 5%  
3.3 V 5% / 2.5 V 5%  
3.3 V 5% / 1.8 V 0.2 V  
2.5 V 5% / 2.5 V 5%  
2.5 V 5% / 1.8 V 0.2 V  
1.8 V 0.2 V / 1.8 V 0.2 V  
200  
200  
200  
200  
200  
200  
700  
700  
700  
700  
700  
800  
ODC  
Output Duty Cycle (Note 11)  
V / V  
DD DDO  
f 200 MHz, 3.3 V 5% / 3.3 V 5%  
f 150 MHz, 3.3 V 5% / 2.5 V 5%  
f 100 MHz, 3.3 V 5% / 1.8 V 0.2 V  
f 150 MHz, 2.5 V 5% / 2.5 V 5%  
f 100 MHz, 2.5 V 5% / 1.8 V 0.2 V  
f 100 MHz, 1.8 V 0.2 V / 1.8 V 0.2 V  
45  
45  
45  
45  
45  
45  
55  
55  
55  
55  
55  
55  
All parameters measured at f  
unless noted otherwise.  
MAX  
7. Outputs loaded with 50 W to V  
/2; see Figure 7. CLOCK input with 50% duty cycle; minimum input amplitude = 1.2 V at V = 3.3 V,  
DDO  
DD  
1.0 V at V = 2.5 V, V /2 at V = 1.8 V.  
DD  
DD  
DD  
8. Measured from the V /2 of the input to V  
/2 of the output.  
DDO  
DD  
9. Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V  
/2.  
DDO  
10.Defined as skew between outputs on different devices operating at the same supply voltage and with equal load conditions.  
Using the same type of input on each device, the output is measured at V /2.  
DDO  
11. Clock input with 50% duty cycles, railtorail amplitude and t /t = 500 ps.  
r
f
http://onsemi.com  
6
 
NB3V8312C  
NB3V8312C  
Additive Phase Jitter @ 100 MHz  
VDD = VDDO = 3.3 V  
Filter = 12 kHz 20 MHz  
Source RMS Jitter = 200.53 fs  
Output RMS Jitter = 202.73 fs  
12 kHz to 20 MHz = 29.8 fs (typical)  
2
2
RMS addititive jitter + ǸRMS phase jitter of output  
* RMS phase jitter of input  
2
2
29.8 + Ǹ202.73 fs  
* 200.53 fs  
Output (DUT + Source)  
Input Source  
Figure 5. Typical Phase Noise Plot at fcarrier = 100 MHz at an Operating Voltage of 3.3 V, Room Temperature  
The above phase noise data was captured using Agilent  
E5052A/B. The data displays the input phase noise and  
output phase noise used to calculate the additive phase jitter  
at a specified integration range. The RMS Phase Jitter  
contributed by the device (integrated between 12 kHz and  
20 MHz) is 29.8 fs.  
notably lower than that of the DUT. If the phase noise of the  
source is greater than the device under test output, the source  
noise will dominate the additive phase jitter calculation and  
lead to an artificially low result for the additive phase noise  
measurement within the integration range. The Figure above  
is a good example of the NB3V8312C source generator  
phase noise having a significantly higher floor such that the  
DUT output results in an additive phase jitter of 29.8 fs.  
The additive phase jitter performance of the fanout buffer  
is highly dependent on the phase noise of the input source.  
To obtain the most accurate additive phase noise  
measurement, it is vital that the source phase noise be  
2
2
RMS addititive jitter + ǸRMS phase jitter of output * RMS phase jitter of input  
2
2
29.8 + Ǹ202.73 fs * 200.53 fs  
http://onsemi.com  
7
NB3V8312C  
V
PP  
= V V  
IH  
IL  
CLK  
CLK  
V
V
DD  
2
DD  
V
IHCMR  
2
GND  
V
DD  
V
DD  
2
LVCMOS_CLK  
2
V
DDO  
2
V
DDO  
2
Qx  
t
LH  
t
PHL  
V
V
V
DDO  
2
DDO  
2
DDO  
2
t
PW  
Qx  
t
P
% + ǒt  
Ǔ
t
ńt   100  
SKEWDC  
PW  
P
Figure 6. AC Reference Measurement  
V
DD  
V
DDO  
Z
O
= 50 W  
NB3V8312C  
GND  
Q
Scope  
IN  
x
50 W  
V
÷ 2 = 0 V = Ground  
DDO  
Figure 7. Typical Device Evaluation and Termination Setup See Table 8  
Table 8. TEST SUPPLY SETUP. VDDO SUPPLY MAY BE CENTERED ON 0.0 V (SCOPE GND) TO PERMIT DIRECT  
CONNECTION INTO “50 W TO GND” SCOPE MODULE. VDD SUPPLY TRACKS DUT GND PIN  
Spec Condition:  
V
Test Setup  
VDDO Test Setup  
+1.65 V 5%  
+1.25 V 5%  
+0.9 V 0.1 V  
+1.25 V 5%  
+0.9 V 0.1 V  
+0.9 V 0.1 V  
GND Pin Test Setup  
1.65 V 5%  
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= 3.3 V 5%, V  
= 3.3 V 5%, V  
= 3.3 V 5%, V  
= 2.5 V 5%, V  
= 2.5 V 5%, V  
= 3.3 V 5%  
= 2.5 V 5%  
= 1.8 V 5%  
O = 2.5 V 5%  
= 1.8 V 0.2 V  
+1.65 5%  
+2.05 V 5%  
+2.4 V 5%  
+1.25 V 5%  
+1.6 V 5%  
DDO  
DDO  
DDO  
DDO  
DDO  
1.25 V 5%  
0.9 V 0.1 V  
1.25 V 5%  
0.9 V 0.1 V  
0.9 V 0.1 V  
= 1.8 V 0.2 V, V  
= 1.8 V 0.2 V  
+0.9 V 0.1 V  
DDO  
http://onsemi.com  
8
 
NB3V8312C  
MARKING DIAGRAMS*  
32  
1
NB3V  
NB3V  
8312C  
AWLYYWWG  
8312C  
AWLYYWWG  
LQFP32  
QFN32  
A
= Assembly Location  
WL  
YY  
WW  
G
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
(*Note: Microdot may be in either location)  
*For additional marking information, refer to  
Application Note AND8002/D.  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NB3V8312CFAG  
LQFP32  
(PbFree)  
250 Units / Tray  
2000 / Tape & Reel  
74 Units / Rail  
NB3V8312CFAR2G  
NB3V8312CMNG  
NB3V8312CMNR4G  
LQFP32  
(PbFree)  
QFN32  
(PbFree)  
QFN32  
(PbFree)  
1000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
9
NB3V8312C  
PACKAGE DIMENSIONS  
32 LEAD LQFP  
CASE 873A02  
ISSUE C  
4X  
A
A1  
0.20 (0.008) AB T-U  
Z
32  
25  
BASE  
METAL  
1
U−  
T−  
N
AE  
AE  
B
V
P
F
D
B1  
DETAIL Y  
V1  
17  
8
DETAIL Y  
J
9
4X  
Z−  
0.20 (0.008) AC T-U  
Z
9
SECTION AEAE  
S1  
_
8X M  
S
R
DETAIL AD  
E
G
C
AB−  
AC−  
SEATING  
PLANE  
W
0.10 (0.004) AC  
_
Q
H
K
NOTES:  
X
MILLIMETERS  
DIM MIN MAX  
7.000 BSC  
3.500 BSC  
INCHES  
MIN MAX  
0.276 BSC  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
A
A1  
B
DETAIL AD  
2. CONTROLLING DIMENSION:  
MILLIMETER.  
0.138 BSC  
0.276 BSC  
0.138 BSC  
7.000 BSC  
3.500 BSC  
3. DATUM PLANE ABIS LOCATED AT  
BOTTOM OF LEAD AND IS COINCIDENT  
WITH THE LEAD WHERE THE LEAD  
EXITS THE PLASTIC BODY AT THE  
BOTTOM OF THE PARTING LINE.  
4. DATUMS T, U, AND ZTO BE  
DETERMINED AT DATUM PLANE AB.  
5. DIMENSIONS S AND V TO BE  
DETERMINED AT SEATING PLANE AC.  
6. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE  
PROTRUSION IS 0.250 (0.010) PER SIDE.  
DIMENSIONS A AND B DO INCLUDE  
MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE AB.  
7. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. DAMBAR  
PROTRUSION SHALL NOT CAUSE THE  
D DIMENSION TO EXCEED 0.520 (0.020).  
8. MINIMUM SOLDER PLATE THICKNESS  
SHALL BE 0.0076 (0.0003).  
B1  
C
1.400  
1.600  
0.450  
1.450  
0.400  
0.055  
0.063  
D
0.300  
1.350  
0.300  
0.012  
0.053  
0.012  
0.018  
0.057  
0.016  
E
F
G
H
0.800 BSC  
0.031 BSC  
0.050  
0.090  
0.450  
0.150  
0.200  
0.750  
0.002  
0.004  
0.018  
0.006  
0.008  
0.030  
J
K
_
12 REF  
_
12 REF  
M
N
0.090  
0.160  
0.004  
0.006  
P
0.400 BSC  
1_  
0.016 BSC  
1_  
Q
R
5_  
5 _  
0.150  
0.250  
0.006  
0.010  
S
9.000 BSC  
0.354 BSC  
S1  
V
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
0.177 BSC  
0.354 BSC  
0.177 BSC  
0.008 REF  
0.039 REF  
V1  
W
X
9. EXACT SHAPE OF EACH CORNER MAY  
VARY FROM DEPICTION.  
http://onsemi.com  
10  
NB3V8312C  
PACKAGE DIMENSIONS  
QFN32 5x5, 0.5P  
CASE 488AM  
ISSUE O  
A
B
NOTES:  
1. DIMENSIONS AND TOLERANCING PER  
ASME Y14.5M, 1994.  
D
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.25 AND 0.30 MM TERMINAL  
PIN ONE  
LOCATION  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
E
MILLIMETERS  
DIM MIN  
0.800 0.900 1.000  
A1 0.000 0.025 0.050  
NOM MAX  
A
2 X  
0.15  
C
TOP VIEW  
A3  
b
D
0.200 REF  
0.180 0.250 0.300  
5.00 BSC  
2 X  
0.15  
C
C
D2 2.950 3.100 3.250  
5.00 BSC  
E2 2.950 3.100 3.250  
E
(A3)  
0.10  
0.08  
e
K
L
0.500 BSC  
0.200 −−−  
0.300 0.400 0.500  
A
−−−  
SEATING  
PLANE  
32 X  
C
A1  
SIDE VIEW  
D2  
C
SOLDERING FOOTPRINT*  
L
5.30  
EXPOSED PAD  
32 X  
K
16  
9
32 X  
3.20  
17  
8
32 X  
0.63  
E2  
1
24  
3.20 5.30  
25  
32  
32 X  
b
e
0.10  
0.05  
C
A
B
32 X  
0.28  
C
28 X  
0.50 PITCH  
BOTTOM VIEW  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,  
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. SCILLC  
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications  
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC  
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture  
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NB3V8312C/D  

相关型号:

NB3V8312CFAG

Ultra-Low Jitter, Low Skew 1:12 LVCMOS/LVTTL Fanout Buffer
ONSEMI

NB3V8312CFAR2G

Ultra-Low Jitter, Low Skew 1:12 LVCMOS/LVTTL Fanout Buffer
ONSEMI

NB3V8312CMNG

Ultra-Low Jitter, Low Skew 1:12 LVCMOS/LVTTL Fanout Buffer
ONSEMI

NB3V8312CMNR4G

Ultra-Low Jitter, Low Skew 1:12 LVCMOS/LVTTL Fanout Buffer
ONSEMI

NB3W1200LMNG

Differential 1:12 HCSL or Push-Pull Clock ZDB/Fanout Buffer for PCle
ONSEMI

NB3W1200LMNTXG

Differential 1:12 HCSL or Push-Pull Clock ZDB/Fanout Buffer for PCle
ONSEMI

NB3W1900L

Differential 1:19 HCSL-Compatible Push‐Pull Clock ZDB/Fanout Buffer
ONSEMI

NB3W1900LMNG

Differential 1:19 HCSL-Compatible Push‐Pull Clock ZDB/Fanout Buffer
ONSEMI

NB3W1900LMNTXG

Differential 1:19 HCSL-Compatible Push‐Pull Clock ZDB/Fanout Buffer
ONSEMI

NB3W1900L_16

3.3 V 100/133 MHz Differential 1:19 HCSL-Compatible Push‐Pull Clock ZDB/Fanout Buffer
ONSEMI

NB3W1900L_18

Differential 1:19 HCSL-Compatible Push‐Pull Clock ZDB/Fanout Buffer
ONSEMI

NB3W800L

Differential 1:8 HCSLCompatible Push-Pull Clock
ONSEMI