NB3W1200LMNG [ONSEMI]

Differential 1:12 HCSL or Push-Pull Clock ZDB/Fanout Buffer for PCle; 差分HCSL 1:12或推挽式时钟ZDB /扇出缓冲器,用于PCle
NB3W1200LMNG
型号: NB3W1200LMNG
厂家: ONSEMI    ONSEMI
描述:

Differential 1:12 HCSL or Push-Pull Clock ZDB/Fanout Buffer for PCle
差分HCSL 1:12或推挽式时钟ZDB /扇出缓冲器,用于PCle

PC 时钟
文件: 总26页 (文件大小:230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NB3N1200K, NB3W1200L  
3.3 V 100/133 MHz  
Differential 1:12 HCSL or  
Push-Pull Clock ZDB/Fanout  
Buffer for PCle  
http://onsemi.com  
Description  
The NB3N1200K and NB3W1200L differential clock buffers are  
DB1200Z and DB1200ZL compliant and are designed to work in  
conjunction with a PCIe compliant source clock synthesizer to provide  
pointtopoint clocks to multiple agents. The device is capable of  
®
distributing the reference clocks for Intel QuickPath Interconnect  
64  
1
(Intel QPI), PCIe Gen1/Gen2/Gen3, SAS, SATA, and Intel Scalable  
Memory Interconnect (Intel SMI) applications. The VCO of the  
device is optimized to support 100 MHz and 133 MHz frequency  
operation. The NB3N1200K and NB3W1200L utilize  
pseudoexternal feedback topology to achieve low inputto output  
delay variation. The NB3N1200K is configured with the HCSL buffer  
type, while the NB3W1200L is configured with the lowpower  
NMOS PushPull buffer type.  
QFN64  
MN SUFFIX  
CASE 485DH  
MARKING DIAGRAMS  
1
1
Features  
NB3N  
1200K  
AWLYYWWG  
NB3W  
1200L  
AWLYYWWG  
12 Differential Clock Output Pairs @ 0.7 V  
HCSL Compatible Outputs for NB3N1200K  
LowPower NMOS PushPull Compatible Outputs for NB3W1200L  
Optimized 100 MHz and 133 MHz Operating Frequencies to Meet  
The Next Generation PCIe Gen 2/Gen 3 and Intel QPI Phase Jitter  
DB1200Z and DB1200ZL Compliant  
NB3x1200x= Specific Device Code  
A
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
WL  
YY  
WW  
G
3.3 V 5% Supply Voltage Operation  
FixedFeedback for Lowest InputToOutput Delay Variation  
SMBus Programmable Configurations to Allow Multiple Buffers in a  
Single Control Network  
ORDERING INFORMATION  
PLL Bypass Configurable for PLL or Fanout Operation  
Programmable PLL Bandwidth  
Device  
Package  
Shipping  
NB3N1200KMNG  
NB3N1200KMNTXG  
NB3W1200LMNG  
NB3W1200LMNTXG  
QFN64  
(PbFree)  
260 Units /  
Tray  
2 Trilevel Addresses Selection (9 SMBUS Addresses)  
Individual OE Control Pin for Each of 12 Outputs  
Low Phase Jitter (Intel QPI, PCIe Gen 2/Gen 3 Phase Jitter Compliant)  
50 ps Max OutputtoOutput Skew Performance  
50 ps Max CycletoCycle Jitter (PLL mode)  
100 ps Input to Output Delay Variation Performance  
QFN 64pin Package, 9 mm x 9 mm  
QFN64  
(PbFree)  
1000 / Tape &  
Reel  
QFN64  
(PbFree)  
260 Units /  
Tray  
QFN64  
(PbFree)  
1000 / Tape &  
Reel  
Spread Spectrum Compatible: Tracks Input Clock Spreading for Low  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
EMI  
0°C to +70°C Ambient Operating Temperature  
These Devices are PbFree and are RoHS Compliant  
© Semiconductor Components Industries, LLC, 2013  
1
Publication Order Number:  
August, 2013 Rev. 0  
NB3N1200K/D  
NB3N1200K, NB3W1200L  
12  
OE_[11:0]#  
FB_OUT*  
FB_OUT#*  
DIF_[11:0]  
SSC Compatible  
PLL  
MUX  
DIF_[11:0]#  
CLK_IN  
CLK_IN#  
100M_133M#  
HBW_BYPASS_LBW#  
SA_0  
Control  
Logic  
SA_1  
PWRGD/PWRDN#  
SDA  
SCL  
IREF**  
* FB_OUT pins are for NB3N1200K only; they are NC for NB3W1200L  
** IREF pin is for NB3N1200K only; it is NC for NB3W1200L  
R
REF  
Figure 1. Simplified Block Diagram  
http://onsemi.com  
2
NB3N1200K, NB3W1200L  
PIN CONNECTIONS  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
Exposed Pad (EP)  
GND  
VDDA  
GNDA  
IREF  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
DIF_7#  
DIF_7  
OE_7#  
OE_6#  
DIF_6#  
DIF_6  
GND  
2
3
100M_133M#  
HBW_BYPASS_LBW#  
PWRGD/PWRDN#  
GND  
4
5
6
7
VDDR  
CLK_IN  
CLK_IN#  
SA_0  
SDA  
SCL  
SA_1  
FB_OUT#  
FB_OUT  
8
NB3N1200K  
VDD  
9
DIF_5#  
DIF_5  
OE_5#  
OE_4#  
DIF_4#  
DIF_4  
GND  
10  
11  
12  
13  
14  
15  
16  
(Top View)  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Figure 2. NB3N1200K Pinout: QFN64 (Top View)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
GND  
VDDA  
GNDA  
2
DIF_7#  
DIF_7  
OE_7#  
OE_6#  
DIF_6#  
DIF_6  
GND  
Exposed Pad (EP)  
3
NC  
4
100M_133M#  
HBW_BYPASS_LBW#  
5
6
PWRGD/PWRDN#  
GND  
7
8
VDDR  
CLK_IN  
CLK_IN#  
SA_0  
NB3W1200L  
9
VDD  
10  
11  
12  
13  
14  
15  
16  
DIF_5#  
DIF_5  
OE_5#  
OE_4#  
DIF_4#  
DIF_4  
GND  
SDA  
SCL  
SA_1  
NC  
(Top View)  
NC  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Figure 3. NB3W1200L Pinout: QFN64 (Top View)  
http://onsemi.com  
3
NB3N1200K, NB3W1200L  
Table 1. NB3N1200K PIN DESCRIPTIONS  
Pin Number  
Pin Name  
VDDA  
Type  
Description  
1
2
3
3.3 V  
GND  
I
3.3 V Power Supply for PLL.  
Ground for PLL.  
GNDA  
IREF  
A precision resistor is attached to this pin to set the differential output current.  
Use R  
Use R  
= 475 W, 1% for 100 Ohms trace.  
= 412 W, 1% for 85 Ohms trace.  
REF  
REF  
4
5
100M_133M#  
I, SE  
I, SE  
Input/output Frequency Selection (FS). An external pullup  
or pulldown resistor is attached to this pin to select the input/output frequency.  
High = 100 MHz Output  
Low = 133 MHz Output  
HBW_BYPASS_LBW#  
TriLevel input for selecting the PLL bandwidth or bypass mode  
(refer to trilevel threshold in Table 4).  
High = High BW mode Med = Bypass mode Low = Low BW mode  
6
7
PWRGD / PWRDN#  
GND  
I, SE  
GND  
VDD  
I, DIF  
I, DIF  
I, SE  
3.3 V LVTTL input to power up or power down the device.  
Ground for outputs.  
8
VDDR  
3.3 V power supply for receiver.  
9
CLK_IN  
0.7 V Differential True input  
10  
11  
CLK_IN#  
SA_0  
0.7 V Differential Complementary input  
3.3 V LVTTL input selecting the address.  
Trilevel input (refer to trilevel threshold in Table 4.)  
12  
13  
14  
SDA  
SCL  
I/O  
I/O  
Open collector SMBus data.  
SMBus slave clock input.  
SA_1  
I, SE  
3.3 V LVTTL input selecting the address.  
Trilevel input (refer to trilevel threshold in Table 4.)  
15  
16  
FB_OUT#  
FB_OUT  
O, DIF  
O, DIF  
Complementary Feedback out pin, termination required.  
See External Feedback Termination section.  
True Feedback out pin, termination required.  
See External Feedback Termination section.  
17  
18  
19  
DIF_0  
DIF_0#  
OE_0#  
O, DIF  
O, DIF  
I, SE  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
3.3 V LVTTL active low input for enabling DIF output pair 0.  
0 enables outputs, 1 disables outputs. Internal pull down.  
20  
OE_1#  
I, SE  
3.3 V LVTTL active low input for enabling DIF output pair 1.  
0 enables outputs, 1 disables outputs. Internal pull down.  
21  
22  
23  
24  
25  
26  
27  
28  
DIF_1  
DIF_1#  
GND  
O, DIF  
O, DIF  
GND  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
Ground for outputs.  
VDD  
3.3 V  
3.3 V power supply for outputs.  
VDD  
3.3 V  
3.3 V power supply for outputs.  
DIF_2  
DIF_2#  
OE_2#  
O, DIF  
O, DIF  
I, SE  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
3.3 V LVTTL active low input for enabling DIF output pair 2.  
0 enables outputs, 1 disables outputs. Internal pull down.  
29  
OE_3#  
I, SE  
3.3 V LVTTL active low input for enabling DIF output pair 3.  
0 enables outputs, 1 disables outputs. Internal pull down.  
30  
31  
32  
33  
DIF_3  
DIF_3#  
VDD  
O, DIF  
O, DIF  
3.3 V  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
3.3 V power supply for outputs.  
Ground for outputs.  
GND  
GND  
http://onsemi.com  
4
 
NB3N1200K, NB3W1200L  
Table 1. NB3N1200K PIN DESCRIPTIONS  
Pin Number  
Pin Name  
DIF_4  
Type  
Description  
34  
35  
36  
O, DIF  
O, DIF  
I, SE  
0.7 V Differential True clock output  
DIF_4#  
OE_4#  
0.7 V Differential Complementary clock output  
3.3 V LVTTL active low input for enabling DIF output pair 4.  
0 enables outputs, 1 disables outputs. Internal pull down.  
37  
OE_5#  
I, SE  
3.3 V LVTTL active low input for enabling DIF output pair 5.  
0 enables outputs, 1 disables outputs. Internal pull down.  
38  
39  
40  
41  
42  
43  
44  
DIF_5  
DIF_5#  
VDD  
O, DIF  
O, DIF  
3.3 V  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
3.3 V power supply for outputs.  
GND  
GND  
Ground for outputs.  
DIF_6  
DIF_6#  
OE_6#  
O, DIF  
O, DIF  
I, SE  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
3.3 V LVTTL active low input for enabling DIF output pair 6.  
0 enables outputs, 1 disables outputs. Internal pull down.  
45  
OE_7#  
I, SE  
3.3 V LVTTL active low input for enabling DIF output pair 7.  
0 enables outputs, 1 disables outputs. Internal pull down.  
46  
47  
48  
49  
50  
51  
52  
DIF_7  
DIF_7#  
GND  
O, DIF  
O, DIF  
GND  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
Ground for outputs.  
VDD  
3.3 V  
3.3 V power supply for outputs.  
DIF_8  
DIF_8#  
OE_8#  
O, DIF  
O, DIF  
I, SE  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
3.3 V LVTTL active low input for enabling DIF output pair 8.  
0 enables outputs, 1 disables outputs. Internal pull down.  
53  
OE_9#  
I, SE  
3.3 V LVTTL active low input for enabling DIF output pair 9.  
0 enables outputs, 1 disables outputs. Internal pull down.  
54  
55  
56  
57  
58  
59  
60  
61  
DIF_9  
DIF_9#  
VDD  
O, DIF  
O, DIF  
3.3 V  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
3.3 V power supply for outputs.  
VDD  
3.3 V  
3.3 V power supply for outputs.  
GND  
GND  
Ground for outputs.  
DIF_10  
DIF_10#  
OE_10#  
O, DIF  
O, DIF  
I, SE  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
3.3 V LVTTL active low input for enabling DIF output pair 10.  
0 enables outputs, 1 disables outputs. Internal pull down.  
62  
OE_11#  
I, SE  
3.3 V LVTTL active low input for enabling DIF output pair 11.  
0 enables outputs, 1 disables outputs. Internal pull down.  
63  
64  
DIF_11  
DIF_11#  
O, DIF  
O, DIF  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
EP  
Exposed Pad  
Thermal  
The Exposed Pad (EP) on the QFN64 package bottom is thermally connected  
to the die for improved heat transfer out of package. The exposed pad must be  
attached to a heatsinking conduit. The pad is electrically connected to the die,  
and must be electrically and thermally connected to GND on the PC board.  
http://onsemi.com  
5
NB3N1200K, NB3W1200L  
Table 2. NB3W1200L PIN DESCRIPTIONS  
Pin Number  
Pin Name  
VDDA  
Type  
Description  
1
2
3
4
3.3 V  
GND  
I/O  
3.3 V Power Supply for PLL.  
Ground for PLL.  
GNDA  
NC  
No Connect  
100M_133M#  
I, SE  
3.3 V tolerant inputs for input/output Frequency Selection (FS). An external pull−  
up or  
pulldown resistor is attached to this pin to select the input/output frequency.  
High = 100 MHz Output  
Low = 133 MHz Output  
5
HBW_BYPASS_LBW#  
I, SE  
TriLevel input for selecting the PLL bandwidth or bypass mode  
(refer to trilevel threshold in Table 4).  
High = High BW mode, Med = Bypass mode,  
Low = Low BW mode  
6
7
PWRGD / PWRDN#  
GND  
I
3.3 V LVTTL input to power up or power down the device.  
Ground for outputs.  
GND  
VDD  
I, DIF  
I, DIF  
I
8
VDDR  
3.3 V power supply for receiver.  
9
CLK_IN  
0.7 V Differential True input  
10  
11  
CLK_IN#  
SA_0  
0.7 V Differential Complementary input  
3.3 V LVTTL input selecting the address.  
Trilevel input (refer to trilevel threshold in Table 4.)  
12  
13  
14  
SDA  
SCL  
I/O  
I/O  
I
Open collector SMBus data.  
SMBus slave clock input.  
SA_1  
3.3 V LVTTL input selecting the address. Trilevel input  
(refer to trilevel threshold in Table 4.)  
15  
16  
NC  
NC  
I/O  
I/O  
No Connect. There are active signals on pin 15;  
do not connect anything to this pin.  
No Connect. There are active signals on pin 16;  
do not connect anything to this pin.  
17  
18  
19  
DIF_0  
DIF_0#  
OE_0#  
O, DIF  
O, DIF  
I, SE  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
3.3 V LVTTL active low input for enabling DIF output pair 0.  
0 enables outputs, 1 disables outputs. Internal pull down.  
20  
OE_1#  
I, SE  
3.3 V LVTTL active low input for enabling DIF output pair 1.  
0 enables outputs, 1 disables outputs. Internal pull down.  
21  
22  
23  
24  
25  
26  
27  
28  
DIF_1  
DIF_1#  
GND  
O, DIF  
O, DIF  
GND  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
Ground for outputs.  
VDD  
3.3 V  
3.3 V power supply for core.  
VDD_IO  
DIF_2  
DIF_2#  
OE_2#  
VDD  
Power supply for differential outputs.  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
O, DIF  
O, DIF  
I, SE  
3.3 V LVTTL active low input for enabling DIF output pair 2.  
0 enables outputs, 1 disables outputs. Internal pull down.  
29  
OE_3#  
I, SE  
3.3 V LVTTL active low input for enabling DIF output pair 3.  
0 enables outputs, 1 disables outputs. Internal pull down.  
30  
31  
32  
33  
DIF_3  
DIF_3#  
VDD_IO  
GND  
O, DIF  
O, DIF  
VDD  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
Power supply for differential outputs.  
Ground for outputs.  
GND  
http://onsemi.com  
6
 
NB3N1200K, NB3W1200L  
Table 2. NB3W1200L PIN DESCRIPTIONS  
Pin Number  
Pin Name  
DIF_4  
Type  
Description  
34  
35  
36  
O, DIF  
O, DIF  
I, SE  
0.7 V Differential True clock output  
DIF_4#  
OE_4#  
0.7 V Differential Complementary clock output  
3.3 V LVTTL active low input for enabling DIF output pair 4.  
0 enables outputs, 1 disables outputs. Internal pull down.  
37  
OE_5#  
I, SE  
3.3 V LVTTL active low input for enabling DIF output pair 5.  
0 enables outputs, 1 disables outputs. Internal pull down.  
38  
39  
40  
41  
42  
43  
44  
DIF_5  
DIF_5#  
VDD  
O, DIF  
O, DIF  
3.3 V  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
3.3 V power supply for core.  
GND  
GND  
Ground for outputs.  
DIF_6  
DIF_6#  
OE_6#  
O, DIF  
O, DIF  
I, SE  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
3.3 V LVTTL active low input for enabling DIF output pair 6.  
0 enables outputs, 1 disables outputs. Internal pull down.  
45  
OE_7#  
I, SE  
3.3 V LVTTL active low input for enabling DIF output pair 7.  
0 enables outputs, 1 disables outputs. Internal pull down.  
46  
47  
48  
49  
50  
51  
52  
DIF_7  
DIF_7#  
GND  
O, DIF  
O, DIF  
GND  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
Ground for outputs.  
VDD_IO  
DIF_8  
VDD  
Power supply for differential outputs.  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
O, DIF  
O, DIF  
I, SE  
DIF_8#  
OE_8#  
3.3 V LVTTL active low input for enabling DIF output pair 8.  
0 enables outputs, 1 disables outputs. Internal pull down.  
53  
OE_9#  
I, SE  
3.3 V LVTTL active low input for enabling DIF output pair 9.  
0 enables outputs, 1 disables outputs. Internal pull down.  
54  
55  
56  
57  
58  
59  
60  
61  
DIF_9  
DIF_9#  
VDD_IO  
VDD  
O, DIF  
O, DIF  
VDD  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
Power supply for differential outputs.  
3.3 V power supply for core.  
3.3 V  
GND  
GND  
Ground for outputs.  
DIF_10  
DIF_10#  
OE_10#  
O, DIF  
O, DIF  
I, SE  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
3.3 V LVTTL active low input for enabling DIF output pair 10.  
0 enables outputs, 1 disables outputs. Internal pull down.  
62  
OE_11#  
I, SE  
3.3 V LVTTL active low input for enabling DIF output pair 11.  
0 enables outputs, 1 disables outputs. Internal pull down.  
63  
64  
DIF_11  
DIF_11#  
O, DIF  
O, DIF  
0.7 V Differential True clock output  
0.7 V Differential Complementary clock output  
EP  
Exposed Pad  
Thermal  
The Exposed Pad (EP) on the QFN64 package bottom is thermally connected  
to the die for improved heat transfer out of package. The exposed pad must be  
attached to a heatsinking conduit. The pad is electrically connected to the die,  
and must be electrically and thermally connected to GND on the PC board.  
http://onsemi.com  
7
NB3N1200K, NB3W1200L  
Table 3. MAXIMUM RATINGS  
Symbol  
Parameter  
Condition  
Min  
Max  
4.6  
4.6  
4.6  
5.5  
Units  
V
V
/V  
/V  
Core Supply Voltage  
I/O Supply Voltage  
DD DDA DDR  
V
DD_IO  
V
V
IH  
(Note 1)  
Input High Voltage  
V
V
SMB Input High Voltage  
3.3 V Input Low Voltage  
Storage Temperature  
Input ESD protection  
Maximum Output Current  
SDA, SCL Pins  
V
IHSMB  
V
IL  
0.5  
65  
V
ts  
ESD prot.  
150  
°C  
V
Human Body Model  
2000  
I
Powerdown Mode  
(PWRGD/PWRDN# = 0)  
OUTmax  
NB3N1200K All Pairs Tristated  
NB3W1200L All Pairs Tristate Low/Low  
24  
12  
mA  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. Maximum VIH is not to exceed maximum VDD.  
Table 4. DC OPERATING CHARACTERISTICS (V = V  
= V  
= 3.3 V 5%, T = 0°C 70°C)  
DD  
DDA  
DDR  
A
Symbol  
/V /V  
Parameter  
Condition  
Min  
Max  
3.465  
3.465  
Units  
V
3.3 V Core Supply Voltage  
I/O Supply Voltage  
3.3 V 5%  
1.05 V to 3.3 V 5%  
At 133 MHz, C = 2 pF  
3.135  
0.975  
V
V
DD DDA DDR  
V
(Note 2)  
DD_IO  
I
Power Supply Current  
DD  
L
NB3N1200K  
NB3W1200L  
330  
180  
mA  
mA  
I
Power Down Current  
DDPD  
NB3N1200K  
NB3W1200L  
6
6
V
(Note 3)  
(Note 3)  
Input High Voltage, SingleEnded Inputs  
Input Low Voltage, SingleEnded Inputs  
CLK_IN/CLK_IN# High  
2.0  
GND0.3  
600  
5.5  
0.8  
V
V
IH  
V
IL  
V
1150  
300  
+5  
mV  
mV  
mA  
V
IHCLK_IN  
V
CLK_IN/CLK_IN# Low  
300  
5  
ILCLK_IN  
I
IL  
(Note 4)  
Input Leakage Current  
0 < V < V  
IN DD  
VIH_FS (Note 5)  
VIL_FS (Note 5)  
Input High Voltage  
0.7  
V
+0.3  
DD  
Input Low Voltage  
GND0.3  
0
0.35  
V
V
IL_Tri  
(Note 6)  
(Note 6)  
(Note 6)  
TriLevel Input Low Voltage  
TriLevel Input Med Voltage  
TriLevel Input High Voltage  
Output High Voltage SCL, SDA  
Output Low Voltage SCL, SDA  
Input Capacitance  
0.8  
1.8  
V
V
1.2  
V
IM_Tri  
V
2.2  
V
DD  
V
IH_Tri  
V
OH  
(Note 7)  
(Note 7)  
(Note 8)  
(Note 8)  
I
= 1 mA  
2.4  
V
OH  
V
OL  
I
OL  
= 1 mA  
0.4  
4.5  
4.5  
7
V
C
2.5  
2.5  
pF  
pF  
nH  
°C  
in  
C
Output Capacitance  
out  
L
pin  
Pin Inductance  
ta  
Ambient Temperature  
No Airflow  
0
70  
2. V  
applies to the low power NMOS pushpull NB3W1200L only.  
DD_IO  
3. SDA, SCL, OEn#, PWRGD/PWRDN#.  
4. Input Leakage Current does not include inputs with pullup or pulldown resistors.  
5. 100M_133M# Frequency Select (FS).  
6. SA_0, SA_1, HBW_BYPASS_LBW#.  
7. Signal edge is required to be monotonic when transitioning through this region.  
8. Ccomp capacitance based on pad metallization and silicon device capacitance. Not including package pin capacitance.  
http://onsemi.com  
8
 
NB3N1200K, NB3W1200L  
NB3N1200K / NB3W1200L Output Relational Timing Parameters  
Table 5. ELECTRICAL CHARACTERISTICS Skew and Differential Jitter Parameters  
(V = V  
= V = 3.3 V 5%, T = 0 70°C)  
DDR A  
DD  
DDA  
Group  
Description  
Min  
Typ  
Max  
Units  
CLK_IN, DIF[x:0]  
(Notes 9, 10, 12, 13)  
InputtoOutput Delay in PLL mode, nominal value  
100  
100  
ps  
CLK_IN, DIF[x:0]  
(Notes 10, 11, 13)  
InputtoOutput Delay in Bypass mode, nominal value  
2.5  
4.5  
|100|  
|250|  
50  
ns  
ps  
ps  
ps  
CLK_IN, DIF[x:0]  
(Notes 10, 11, 13)  
InputtoOutput Delay variation in PLL mode  
(over voltage and temperature), nominal value  
CLK_IN, DIF[x:0]  
(Notes 10, 11, 13)  
InputtoOutput Delay variation in Bypass mode  
(over voltage and temperature), nominal value  
DIF[11:0]  
(Notes 9, 10, 11, 13)  
OutputtoOutput Skew across all 12 outputs  
(Common to Bypass and PLL mode)  
0
9. Measured into fixed 2 pF load capacitance. Input to output skew is measured at the first output edge following the corresponding input.  
10.Measured from differential crosspoint to differential crosspoint.  
11. All Bypass Mode InputtoOutput specs refer to the timing between an input edge and the specific output edge created by it.  
12.This parameter is deterministic for a given device.  
13.Measured with scope averaging on to find mean value.  
http://onsemi.com  
9
 
NB3N1200K, NB3W1200L  
Table 6. LOW BAND PHASE JITTER PLL MODE  
Group  
Parameter  
Min  
Typ  
Max  
Units  
DIF  
Output PCIe Gen1  
13  
86  
ps  
(pp)  
(Notes 14, 16, 17)  
DIF  
Output PCIe Gen2 Low Band, 10 kHz < f < 1.5 MHz  
Output PCIe Gen2 High Band, 1.5 MHz < f < 50 MHz  
0.1  
0.8  
3.0  
3.1  
ps  
(Notes 14, 15, 17, 19)  
RMS  
DIF  
ps  
RMS  
(Notes 14, 15, 17, 19)  
HIGH BAND, 1.5 MHz < F < Nyquist  
DIF  
Output phase jitter impact – PCIe* Gen3  
0.18  
0.14  
0.07  
0.06  
1.0  
0.5  
0.3  
0.2  
ps  
(Notes 14, 15, 17, 19) (including PLL BW 2 – 4 MHz, CDR = 10 MHz)  
RMS  
DIF  
Output Intel QPI & Intel SMI REFCLK accumulated jitter  
(4.8 Gb/s or 6.4 Gb/s, 100 MHz or 133 MHz, 12 UI)  
ps  
RMS  
(Notes 14, 18, 20)  
DIF  
(Notes 14, 18)  
Output Intel QPI & Intel SMI REFCLK accumulated jitter  
(8 Gb/s, 100 MHz, 12 UI)  
ps  
RMS  
DIF  
(Notes 14, 18)  
Output Intel QPI & Intel SMI REFCLK accumulated jitter  
(9.6 Gb/s, 100 MHz, 12 UI)  
ps  
RMS  
Table 7. ADDITIVE PHASE JITTER BYPASS MODE  
Group  
Parameter  
Min  
Typ  
Max  
Units  
DIF  
Output PCIe Gen1  
0.04  
10  
ps  
(pp)  
(Notes 14, 16, 17)  
DIF  
Output PCIe Gen2 Low Band, 10 kHz < f < 1.5 MHz  
Output PCIe Gen2 High Band, 1.5 MHz < f < 50 MHz  
Output phase jitter impact – PCIe* Gen3  
0.001  
0.002  
0.001  
0.001  
0.001  
0.001  
0.3  
0.7  
0.3  
0.3  
0.1  
0.1  
ps  
(Notes 14, 15, 17, 19)  
RMS  
DIF  
ps  
RMS  
(Notes 14, 15, 17, 19)  
DIF  
ps  
RMS  
(Notes 14, 15, 17, 19)  
DIF  
Output Intel QPI & Intel SMI REFCLK accumulated jitter  
(4.8 Gb/s or 6.4 Gb/s, 100 MHz or 133 MHz, 12 UI)  
ps  
RMS  
(Notes 14, 18, 20)  
DIF  
(Notes 14, 18)  
Output Intel QPI & Intel SMI REFCLK accumulated jitter  
(8 Gb/s, 100 MHz, 12 UI)  
ps  
RMS  
DIF  
(Notes 14, 18)  
Output Intel QPI & Intel SMI REFCLK accumulated jitter  
(9.6 Gb/s, 100 MHz, 12 UI)  
ps  
RMS  
14.Post processed evaluation through Intel supplied Matlab scripts. Tested with NB3N1200K/NB3W1200L driven by a CK420BQ or equivalent.  
15.PCIe Gen3 filter characteristics are subject to final ratification by PCISIG. Please check the PCI SIG for the latest specification.  
16.These jitter numbers are defined for a BER of 1E12. Measured numbers at a smaller sample size have to be extrapolated to this BER target.  
17.= 0.54 is implying a jitter peaking of 3 dB.  
18.Measuring on 100 MHz output using Intel supplied clock template jitter tool.  
19.Measuring on 100 MHz PCIe SRC output using Intel supplied clock jitter tool.  
20.Measuring on 100 MHz, 133 MHz output using Intel supplied clock jitter tool.  
Table 8. PLL BANDWIDTH AND PEAKING  
Group  
Parameter  
Min  
Typ  
0.7  
0.4  
2.7  
0.9  
Max  
2.0  
2.5  
4.0  
1.4  
Units  
dB  
DIF (Note 21)  
DIF (Note 21)  
DIF (Note 22)  
DIF (Note 22)  
PLL Jitter Peaking (HBW_BYPASS_LBW# = 0)  
PLL Jitter Peaking (HBW_BYPASS_LBW# = 1)  
PLL Bandwidth (HBW_BYPASS_LBW# = 1)  
PLL Bandwidth (HBW_BYPASS_LBW# = 0)  
dB  
2.0  
0.7  
MHz  
MHz  
21.Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.  
22.Measured at 3 db down or half power point.  
http://onsemi.com  
10  
 
NB3N1200K, NB3W1200L  
Table 9. DIF 0.7 V AC TIMING CHARACTERISTICS (NonSpread or 0.5% Spread Spectrum Mode)  
(V = V  
= V  
= 3.3 V 5%)  
DD  
DDA  
DDR  
CLK = 100 MHz, 133.33 MHz  
Min  
Max  
1.8  
Symbol  
Tstab (Note 44)  
Parameter  
Clock Stabilization Time  
Long Accuracy  
Unit  
ms  
Laccuracy (Notes 26, 30, 38, 45)  
Tabs (Notes 26, 27, 30)  
100  
ppm  
ns  
9.94900 for 100 MHz 10.05100 for 100 MHz  
7.44925 for 133 MHz 7.55075 for 133 MHz  
9.49900 for 100 MHz 10.10126 for 100 MHz  
Absolute  
Min/Max  
Host CLK  
Period  
No Spread  
0.5% Spread  
7.44925 for 133 MHz  
1.0  
7.58845 for 133 MHz  
Slew_rate (Notes 24, 26, 30)  
DTrise / DTfall (Notes 26, 29, 40)  
Rise/Fall Matching (Notes 26, 30, 41, 43)  
VHigh (Notes 26, 29, 32)  
DIFF OUT Slew_rate (see Figure 4)  
Rise and Fall Time Variation  
4.0  
125  
20  
V/ns  
ps  
%
Voltage High (typ 0.70 Volts)  
Voltage Low (typ 0.0 Volts)  
Maximum Voltage  
660  
850  
150  
1150  
550  
Calc  
140  
mV  
mV  
mV  
mV  
VLow (Notes 26, 29, 33)  
150  
Vmax (Note 29)  
Vcross absolute (Notes 23, 25, 26, 29, 36) Absolute Crossing Point Voltages  
250  
Vcross relative (Notes 26, 28, 29, 36)  
Relative Crossing Point Voltages  
Calc  
Total D Vcross (Notes 26, 29, 37)  
Total Variation of Vcross  
Over All Edges  
mV  
Tccjitter (Notes 26, 30, 42)  
Duty Cycle (Notes 26, 30)  
tOE# Latency  
CycletoCycle Jitter  
50  
55  
12  
ps  
%
PLL and Bypass Modes  
45  
4
OE# Latency DIFF start after OE#  
Assertion  
DIFF stop after OE# Deassertion  
Clocks  
Vovs (Notes 26, 29, 34)  
Vuds (Notes 26, 29, 35)  
Vrb (Notes 26, 29)  
Maximum Voltage (Overshoot)  
Maximum Voltage (Undershoot)  
Ringback Voltage  
Vhigh + 0.3  
Vlow 0.3  
N/A  
V
V
V
0.2  
23.Measured at crossing point where the instantaneous voltage value of the rising edge of CLK equals the falling edge of CLK#.  
24.Measurment taken from differential waveform on a component test board. The slew rate is measured from 150 mV to +150 mV on the  
differential waveform. Scope is set to average because the scope sample clock is making most of the dynamic wiggles along the clock edge  
Only valid for Rising CLK_IN and Falling CLK_IN#. Signal must be monotonic through the Vol to Voh region for Trise and Tfall.  
25.This measurement refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing.  
26.Test configuration is Rs = 33.2 W, Rp = 49.9, 2 pF for 100 W transmission line; Rs = 27 W, Rp = 42.2, 2 pF for 85 W transmission line.  
27.The average period over any 1 ms period of time must be greater than the minimum and less than the maximum specified period.  
28.Vcross(rel) Min and Max are derived using the following, Vcross(rel) Min = 0.250 + 0.5 (Vhavg 0.700), Vcross(rel) Max = 0.550 0.5 (0.700  
– Vhavg), (see Figure 7).  
29.Measurement taken from Single Ended waveform.  
30.Measurement taken from differential waveform. Bypass mode, input duty cycle = 50%.  
31.Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
32.VHigh is defined as the statistical average High value as obtained by using the Oscilloscope VHigh Math function.  
33.VLow is defined as the statistical average Low value as obtained by using the Oscilloscope VLow Math function.  
34.Overshoot is defined as the absolute value of the maximum voltage.  
35.Undershoot is defined as the absolute value of the minimum voltage.  
36.The crossing point must meet the absolute and relative crossing point specifications simultaneously.  
37.DVcross is defined as the total variation of all crossing voltages of Rising DIFF and Falling DIFF#. This is the maximum allowed variance  
in Vcross for any particular system.  
38.Using frequency counter with the measurement interval equal or greater than 0.15 s, target frequencies are 100,000,000 Hz, 133,333,333 Hz.  
39.Using frequency counter with the measurement interval equal or greater than 0.15 s, target frequencies are 99,750,00 Hz, 133,000,000 Hz.  
40.Measured with oscilloscope, averaging off, using min max statistics. Variation is the delta between min and max.  
41.Measured with oscilloscope, averaging on, The difference between the rising edge rate (average) of DIFF versus the falling edge rate  
(average) of DIFF#. Measured in a 75 mV window around the crosspoint of DIFF and DIFF#.  
42.Measured with device in PLL mode, in BYPASS mode jitter is additive.  
43.Rise/Fall matching is derived using the following, 2*(Trise – Tfall) / (Trise + Tfall).  
44.This is the time from the valid CLK_IN input clocks and the assertion of the PWRGD signal level at 1.8 V – 2.0 V to the time that stable clocks  
are output from the buffer chip (PLL locked).  
45.All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK410B+/CK420BQ accuracy  
requirements. The NB3N1200K and NB3W1200L itself do not contribute to ppm error.  
http://onsemi.com  
11  
 
NB3N1200K, NB3W1200L  
Table 10. CLOCK PERIOD SSC DISABLED  
SSC OFF  
Measurement Window  
1 Clock  
1 ms  
0.1 s  
0.1 s  
0.1 s  
1 ms  
1 Clock  
Center  
Freq.  
MHz  
Jitter cc  
Abs Per Min  
SSC Short  
Avg Min  
ppm Long  
Avg Min  
0 ppm  
Period  
+ ppm Long  
Avg Max  
+ SSC Short  
Avg Max  
+ Jitter cc  
Abs Per Max  
Units  
ns  
100.00  
133.33  
9.94900  
7.44925  
9.99900  
7.49925  
10.00000  
7.50000  
10.00100  
7.50075  
10.05100  
7.55075  
ns  
Table 11. CLOCK PERIOD SSC ENABLED  
SSC ON  
Measurement Window  
0.1 s  
1 Clock  
1 ms  
0.1 s  
0.1 s  
1 ms  
1 Clock  
Center  
Freq.  
MHz  
Jitter cc  
Abs Per Min  
SSC Short  
Avg Min  
ppm Long  
Avg Min  
0 ppm  
Period  
+ ppm Long  
Avg Max  
+ SSC Short  
Avg Max  
+ Jitter cc  
Abs Per Max  
Units  
ns  
99.75  
9.94900  
7.44925  
9.99900  
7.49925  
10.02406  
7.51805  
10.02506  
7.51880  
10.02607  
7.51955  
10.05126  
7.53845  
10.10126  
7.58845  
133.00  
ns  
Table 12. INPUT EDGE RATE (Note 46)  
Frequency Select (FS)  
100 MHz  
Min  
0.35  
0.35  
Max  
N/A  
N/A  
Unit  
V/ns  
V/ns  
133 MHz  
46.Input edge rate is based on single ended measurement. This is the minimum input edge rate at which the NB3N1200K / NB3W1200L devices  
are guaranteed to meet all performance specifications.  
http://onsemi.com  
12  
 
NB3N1200K, NB3W1200L  
Measurement Points for Differential  
DIFF #  
X
Trise (DIFF )  
X
VOH = 0.525 V  
VCross  
VOL = 0.175 V  
Tfall (DIFF #)  
X
DIFF  
X
Figure 4. SingleEnded Measurement Points for Trise, Tfall  
Vovs  
VHigh  
Vrb  
Vrb  
VLow  
Vuds  
Figure 5. SingleEnded Measurement Points for Vovs, Vuds, Vrb  
TPeriod  
High Duty Cycle%  
Low Duty Cycle%  
Skew measurement point  
0.0 V  
Figure 6. Differential (DIFFX – DIFFX#) Measurement Points (Tperiod, Duty Cycle, Jitter)  
http://onsemi.com  
13  
NB3N1200K, NB3W1200L  
600  
550  
500  
450  
400  
350  
300  
CLK_IN, CLK_IN#  
The differential input clock is expected to be sourced from  
a clock synthesizer.  
Vcross(rel) Max  
OE# and Output Enables (Control Registers)  
For  
For  
Each output can be individually enabled or disabled by  
SMBus control register bits. Additionally, each output of the  
DIF[11:0] has a dedicated OE# pin. The OE# pins are  
asynchronous assertedlow signals. The Output Enable bits  
in the SMBus registers are active high and are set to enable  
by default.  
The disabled state for the NB3N1200K HCSL outputs is  
HiZ, with the termination network pulling the outputs  
Low/Low. The disabled state for the NB3W1200L low  
power NMOS PushPull outputs is Low/Low. In the  
following text, if the NB3N1200K HCSL output is referred  
to as HiZ or Tristate, the equivalent state of the  
NB3W1200L NMOS Pushpull output is Low/Low.  
Please note that the logic level for assertion or deassertion  
is different in software than it is on hardware. This follows  
hardware default nomenclature for communication  
channels (e.g., output is enabled if OE# pin is pulled low)  
and still maintains software programming logic (e.g., output  
is enabled if OE register is true).  
Vhigh < 700 mV  
Use Equ. 1  
Vhigh > 700 mV  
Use Equ. 2  
Vcross(rel) Min  
250  
200  
625 650 675 700 725 750 775 800 825 850  
VHigh AVERAGE (mV)  
Equ 1: Vcross(rel) Max = 0.550 0.5(0.7 Vhavg)  
Equ 2: Vcross(rel) Min = 0.250 + 0.5(Vhavg 0.7)  
Figure 7. Vcross Range Clarification  
The picture above illustrates the effect of Vhigh above and  
below 700 mV on the Vcross range. The purpose of this is  
to prevent a 250 mV Vcross with an 850 mV Vhigh. In  
addition, this prevents the case of a 550 mV Vcross with a  
660 mV Vhigh. The actual specification for Vcross is  
dependent upon the measured amplitude of Vhigh.  
Please refer to Table 13 for the truth table for enabling and  
disabling outputs via hardware and software. Note that both  
the control register bit must be a ‘1’ AND the OE# pin must  
be a ‘0’ for the output to be active.  
NOTE: The assertion and deassertion of this signal is  
absolutely asynchronous.  
Table 13. NB3N1200K OE AND POWER MANAGEMENT  
Inputs  
OE# Hardware Pins & Control Register Bits  
Outputs  
PWRGD/  
PWRDN#  
CLK_IN/  
CLK_IN#  
SMBUS  
Enable Bit  
FB_OUT/  
FB_OUT#  
OE# Pin  
DIF/DIF# [11:0]  
HiZ  
PLL State  
OFF  
0
1
X
X
0
1
1
X
X
0
1
HiZ  
Running  
HiZ  
Running  
Running  
Running  
ON  
Running  
HiZ  
ON  
ON  
Table 14. NB3W1200L POWER MANAGEMENT  
Inputs  
OE# Hardware Pins & Control Register Bits  
Outputs  
PWRGD/  
PWRDN#  
CLK_IN/  
CLK_IN#  
SMBUS  
Enable Bit  
NC pins  
(Pins 15, 16)  
OE# Pin  
DIF/DIF# [11:0]  
Low/Low  
PLL State  
OFF  
0
1
X
X
0
1
1
X
X
0
1
Low/Low  
Running  
Running  
Running  
Running  
Low/Low  
ON  
Running  
ON  
Low/Low  
ON  
http://onsemi.com  
14  
 
NB3N1200K, NB3W1200L  
OE# Assertion (Transition from ‘1’ to ‘0’)  
Table 16. SMBUS ADDRESS TABLE  
All differential outputs that were tristated are to resume  
normal operation in a glitch free manner. The latency from  
the assertion to active outputs is 4 12 DIF clock periods.  
SA_1  
L
SA_0  
L
SMBUS Address  
D8  
DA  
DE  
C2  
C4  
C6  
CA  
CC  
CE  
L
M
H
OE# De-Assertion (Transition from ‘0’ to ‘1’)  
The impact of deasserting OE# is each corresponding  
output will transition from normal operation to tristate in  
a glitch free manner. A minimum of 4 valid clocks will be  
provided after the deassertion of OE#. The maximum  
latency from the deassertion to tristated outputs is 12 DIF  
clock periods.  
L
M
M
M
H
L
M
H
L
H
M
H
100M_133M# Frequency Selection (FS)  
H
The NB3N1200K / NB3W1200L is optimized for lowest  
phase jitter performance at 100 MHz and 133 MHz  
operating frequencies. The 100M_133M# is a hardware pin,  
which programs the appropriate output frequency of the DIF  
pairs. Note that the CLK_IN frequency is equal to  
CLK_OUT frequency; this means that the NB3N1200K /  
NB3W1200L is operated in the 1:1 mode only. The  
Frequency Selection can be enabled by the 100M_133M#  
hardware pin. An external pullup or pulldown resistor is  
attached to this pin to select the input/output frequency. The  
functionality is summarized in Table 15.  
PWRGD/PWRDN#  
PWRGD is asserted high and deasserted low.  
Deassertion of PWRGD (pulling the signal low) is  
equivalent to indicating a powerdown condition. PWRGD  
(assertion) is used by the NB3N1200K / NB3W1200L to  
sample initial configurations such as frequency select  
condition and SA selections.  
After PWRGD has been asserted high for the first time,  
the pin becomes a PWRDN# (Power Down) pin that can be  
used to shut off all clocks cleanly and instruct the device to  
invoke power savings mode. PWRDN# is a completely  
asynchronous active low input. When entering power  
savings mode, PWRDN# should be asserted low prior to  
shutting off the input clock or power to ensure all clocks  
shut down in a glitch free manner. When PWRDN# is  
asserted low, all clocks will be tri-stated prior to turning off  
the VCO. When PWRDN# is de-asserted high, all clocks  
will start and stop without any abnormal behavior and will  
meet all AC and DC parameters.  
Table 15. FREQUENCY SELECT (FS) PROGRAM  
Optimized Frequency  
(CLK_IN = CLK_OUT)  
100M_133M#  
0
1
133.33 MHz  
100.00 MHz  
NOTE: All differential outputs transition from 100 MHz  
to 133 MHz or from 133 MHz to 100 MHz in a  
glitch free manner.  
NOTE: The assertion and de-assertion of PWRDN# is  
SA_0, SA_1 – Address Selection  
absolutely asynchronous.  
SA_0 and SA_1 are trilevel hardware pins, which  
program the appropriate address for the NB3N1200K /  
NB3W1200L. The two tri-level input pins that can  
configure the NB3N1200K / NB3W1200L to nine different  
addresses (refer to Table 4 for VIL_Tri, VIM_Tri, VIH_Tri  
signal level).  
WARNING: Disabling of the CLK_IN input clock prior  
to assertion of PWRDN# is an undefined  
mode and not recommended. Operation in  
this mode may result in glitches, excessive  
frequency shifting, etc.  
Table 17. PWRGD/PWRDN# FUNCTIONALITY  
PWRGD/PWRDN#  
DIF  
DIF#  
0
1
Tristate  
Normal  
Tristate  
Normal  
http://onsemi.com  
15  
 
NB3N1200K, NB3W1200L  
PWRDN# Assertion  
When PWRDN# is sampled low by two consecutive rising edges of DIF#, all differential outputs must held tri-stated on the  
next DIF# high to low transition.  
PWRDN#  
DIF  
DIF#  
Figure 8. PWRDN#—Assertion  
PWRGD Assertion  
The powerup latency is to be less than 1.8 ms. This is the  
time from the valid CLK_IN input clocks and the assertion  
of the PWRGD signal to the time that stable clocks are  
output from the buffer chip (PLL locked). All differential  
outputs stopped in a tristate condition resulting from power  
down must be driven high in less than 300 ms of PWRDN#  
deassertion to a voltage greater than 200 mV.  
Tstable  
<1.8 mS  
PWRGD  
DIF  
DIF#  
Tdrive_PWRDN#  
<300 ms; >200 mV  
Figure 9. PWRGD Assertion (Pwrdown Deassertion)  
HBW_BYPASS_LBW#  
cycletocyclejitter (50 ps + input jitter) on DIF outputs. In  
the case of PLL mode, the input clock is passed through a  
PLL to reduce high frequency jitter. The PLL HBW,  
BYPASS, and PLL LBW mode may be selected by asserting  
the HBW_BYPASS_LBW# input pin to the appropriate  
level per the following table:  
The HBW_BYPASS_LBW# is a tri level function input  
pin (refer to Table 13 for VIL_Tri, VIM_Tri,  
VIH_Trisignal level). It is used to select between PLL high  
bandwidth, bypass mode and PLL low bandwidth mode. In  
the bypass mode, the input clock is passed directly to the  
output stage which may result in up to 50 ps of additive  
Table 18. PLL BANDWIDTH AND READBACK TABLE  
HBW_BYPASS_LBW#  
Pin  
Byte 0,  
Bit 7  
Byte 0,  
Bit 6  
Mode  
LBW  
L
M
H
0
0
1
0
1
1
BYPASS  
HBW  
Additionally, the NB3N1200K/NB3W1200L has the  
ability to override the Latch value of the PLL operating  
mode from hardware strap pin 5 via use of Byte 0, bits 2 and  
1. Byte 0 Bit 3 must be set to 1 to allow user to change Bits  
2 and 1 to affect the PLL. Bits 7 and 6 will always read back  
the original latched value. A warm reset of the system will  
have to be accomplished if the user changes these bits.  
http://onsemi.com  
16  
NB3N1200K, NB3W1200L  
External Feedback Termination  
NB3N1200K External Feedback Termination  
For 100 W trace impedance line:  
Rs = 33 W; Rp = 49.9 W  
The NB3N1200K utilizes fixed external feedback  
topology to achieve low inputtooutput delay variation. A  
normal HCSL termination will be needed on the  
FB_OUT/FB_OUT# pin 15 and pin 16. A combined shunt  
and series resistors value can be used to form a single  
termination resistor for the RFB_term.  
Therefore,  
R
= 82.9 W  
FB_term  
NOTE: Use the standard 82.5 W, 1% resistor value.  
For 85 W trace impedance line:  
Rs = 27 W; Rp = 43.2 W  
The termination resistor value is the sum of the Rs and Rp  
values.  
Therefore,  
R
= 70.2 W  
FB_term  
NOTE: Use the standard 69.8 W, 1% resistor value.  
R
R
FB_term  
FB_term  
FB_OUT  
FB_OUT#  
NB3N1200K  
Figure 10. External Feedback Example Schematic  
NB3W1200L Feedback Termination  
Table 19. FEEDBACK TERMINATION RESISTORS  
There is no termination resistor needed at pin 15 and pin  
16 of the NB3W1200L NMOS pushpull low power buffer.  
Pin 15 and pin 16 of the NB3W1200L are no connect (NC)  
pins. These pins have an active signal on them, so they  
MUST be left unconnected.  
Board Trace Impedance  
R
Units  
FB_term  
100  
82.5  
1%  
W
85  
69.8  
1%  
W
http://onsemi.com  
17  
NB3N1200K, NB3W1200L  
Byte Read/Write  
Reading or writing a register in a SMBus slave device in  
byte mode always involves specifying the register number.  
data and the master acknowledges it until the last byte is sent.  
The master terminates the transfer with a NAK, then a stop  
th  
condition. For byte operation, the 2*7 bit of the command  
th  
byte must be set. For block operations, the 2*7 bit must be  
Read. The standard byte read is as shown in the following  
figure. It is an extension of the byte write. The write start  
condition is repeated then the slave device starts sending  
reset. If the bit is not set, the next byte must be the byte  
transfer count.  
1
T
7
1
1
8
1
1
r
7
1
1
8
1
1
Slave  
Wr A Command  
A
Slave  
Rd A  
Data Byte 0  
N
P
Repeat starT  
Not ack  
stoP  
Register # to read  
2*7 bit = 1  
starT  
Acknowledge  
Condition  
Command  
Condition  
Byte Read Protocol  
Figure 11. Byte Read Protocol  
Write. The following figure illustrates a simple typical byte  
write. For byte operation the 2*7th bit of the command byte  
must be set. For block operations, the 2*7th bit must be reset.  
If the bit is not set, the next byte must be the byte transfer  
count. The count can be between 1 and 32. It is not allowed  
to be zero or exceed 32.  
1
T
7
1
1
8
1
8
1
1
M to Master to  
S to Slave to  
Slave  
Wr A Command  
A
Data Byte 0  
A
P
Register # to write  
2*7 bit = 1  
starT  
stoP  
Acknowledge  
Condition  
Command  
Condition  
Byte Write Protocol  
Figure 12. Byte Write Protocol  
Block Read/Write  
Read. After the slave address is sent with the r/w condition  
bitset, the command byte is sent with the MSB = 0. The slave  
Ack’s the register index in the command byte. The master  
sends a repeat start function. After the slave Ack’s this, the  
slave sends the number of bytes it wants to transfer (>0 and  
<33). The master Ack’s each byte except the last and sends  
a stop function.  
1
T
7
1
1
8
1
1
7
1
1
Slave  
Wr A Command Code  
A
r
Slave  
Rd A  
repeat starT Condition  
Register # to write  
2*7 bit = 0  
starT  
Acknowledge  
Condition  
Command  
8
1
8
1
8
1
1
Data Byte  
A
Data Byte 0  
A
Data Byte 1  
N
P
Not acknowledge  
stoP  
Condition  
Block Read Protocol  
Figure 13. Block Read Protocol  
http://onsemi.com  
18  
NB3N1200K, NB3W1200L  
Write. After the slave address is sent with the r/w condition  
will transfer to the slave device. The byte count must be  
greater than zero and less than 33. Following this byte are the  
data bytes to be transferred to the slave device. The slave  
device always acknowledges each byte received. The  
transfer is terminated after the slave sends the Ack and the  
master sends a stop function.  
bit not set, the command byte is sent with the MSB = 0. The  
lower seven bits indicate what register to start the transfer at.  
If the command byte is 00h, the slave device will be  
compatible with existing block mode slave devices. The  
next byte of a write must be the count of bytes that the master  
1
T
7
1
1
8
1
M to Master to  
S to Slave to  
Slave Address Wr A Command  
A
Register # to write  
2*7 bit = 0  
starT  
Acknowledge  
Condition  
Command bit  
1
8
8
1
8
1
1
Byte Count = 2  
A
Data Byte 0  
A
Data Byte 1  
A
P
stoP  
Condition  
Block Write Protocol  
Figure 14. Block Write Protocol  
NB3N1200K/NB3W1200L Control Register  
Table 20. BYTE 0: FREQUENCY SELECT, OUTPUT ENABLE, PLL MODE CONTROL REGISTER  
Output(s)  
Affected  
Bit  
Description  
If Bit = 0  
If Bit = 1  
Type  
Default  
0
100M_133M# Frequency Select (FS)  
133 MHz  
100 MHz  
R
Latched at  
power up  
DIF[11:0]  
1
2
3
4
5
6
PLL Mode 0  
PLL Mode 1  
See PLL Operating Mode  
Readback Table  
RW  
RW  
RW  
1
1
0
0
0
PLL Software Enable  
Reserved  
HW Latch  
SMBUS Control  
Reserved  
PLL Mode 0  
See PLL Operating Mode  
Readback Table  
R
R
Latched at  
power up  
7
PLL Mode 1  
See PLL Operating Mode  
Readback Table  
Latched at  
power up  
NOTE: Byte 0, bit_[3:1] are BW PLL SW enable for the NB3W1200L and NB3N1200K. Setting bit 3 to ‘1’ allows the  
user to override the Latch value from pin 5 via use of bits 2 and 1. Use the values from the PLL Operating Mode  
Readback Table. Note that Bits 7 and 6 will keep the value originally latched on pin 5. A warm reset of the  
system will have to be accomplished if the user changes these bits.  
http://onsemi.com  
19  
NB3N1200K, NB3W1200L  
Table 21. BYTE 1: OUTPUT ENABLE CONTROL REGISTER  
Output(s)  
Affected  
Bit  
Description  
If Bit = 0  
If Bit = 1  
Type  
Default  
0
Output Enable DIF 0  
HiZ for NB3N1200K  
Low/Low for NB3W1200L  
HiZ for NB3N1200K  
Low/Low for NB3W1200L  
HiZ for NB3N1200K  
Low/Low for NB3W1200L  
HiZ for NB3N1200K  
Low/Low for NB3W1200L  
HiZ for NB3N1200K  
Low/Low for NB3W1200L  
HiZ for NB3N1200K  
Low/Low for NB3W1200L  
HiZ for NB3N1200K  
Low/Low for NB3W1200L  
HiZ for NB3N1200K  
Low/Low for NB3W1200L  
Enabled  
RW  
1
DIF_0,  
DIF_0#  
1
2
3
4
5
6
7
Output Enable DIF 1  
Output Enable DIF 2  
Output Enable DIF 3  
Output Enable DIF 4  
Output Enable DIF 5  
Output Enable DIF 6  
Output Enable DIF 7  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
1
1
1
1
1
1
1
DIF_1,  
DIF_1#  
DIF_2,  
DIF_2#  
DIF_3,  
DIF_3#  
DIF_4,  
DIF_4#  
DIF_5,  
DIF_5#  
DIF_6,  
DIF_6#  
DIF_7,  
DIF_7#  
Table 22. BYTE 2: OUTPUT ENABLE CONTROL REGISTER  
Output(s)  
Affected  
Bit  
Description  
If Bit = 0  
If Bit = 1  
Type  
Default  
0
Output Enable DIF 8  
HiZ for NB3N1200K  
Low/Low for NB3W1200L  
HiZ for NB3N1200K  
Low/Low for NB3W1200L  
HiZ for NB3N1200K  
Low/Low for NB3W1200L  
HiZ for NB3N1200K  
Low/Low for NB3W1200L  
Enabled  
RW  
1
DIF_8,  
DIF_8#  
1
2
3
Output Enable DIF 9  
Output Enable DIF 10  
Output Enable DIF 11  
Enabled  
Enabled  
Enabled  
RW  
RW  
RW  
1
1
1
DIF_9,  
DIF_9#  
DIF_10,  
DIF_10#  
DIF_11,  
DIF_11#  
4
5
6
7
Reserved  
Reserved  
Reserved  
Reserved  
http://onsemi.com  
20  
NB3N1200K, NB3W1200L  
Table 23. BYTE 3: OE_[7:0]# PINS REALTIME READBACK CONTROL REGISTER  
Output(s)  
Affected  
Bit  
0
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
If Bit = 0  
If Bit = 1  
Type  
Default  
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
Table 24. BYTE 4: OE_[11:8]# PINS REALTIME READBACK CONTROL REGISTER  
Output(s)  
Affected  
Bit  
0
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
If Bit = 0  
If Bit = 1  
Type  
Default  
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
Table 25. BYTE 5: VENDOR/REVISION IDENTIFICATION CONTROL REGISTER  
Bit  
0
Description  
Vendor ID Bit 0  
If Bit = 0  
If Bit = 1  
Type  
R
Default  
1
1
1
Vendor ID Bit 1  
R
1111 = ON Semiconductor  
Vendor ID  
2
Vendor ID Bit 2  
R
1
3
Vendor ID Bit 3  
R
1
4
Revision Code Bit 0  
Revision Code Bit 1  
Revision Code Bit 2  
Revision Code Bit 3  
R
X
X
X
X
5
R
0011  
Revision Code  
6
R
7
R
http://onsemi.com  
21  
NB3N1200K, NB3W1200L  
Table 26. BYTE 6: DEVICE ID CONTROL REGISTER  
Bit  
0
Description  
Device ID 0  
If Bit = 0  
If Bit = 1  
Type  
R
1200K  
1200L  
0
0
0
1
1
1
1
0
0
1
0
0
0
0
0
1
1
Device ID 1  
R
2
Device ID 2  
R
3
Device ID 3  
R
1200K = 120d = 78hex  
1200L = 130d = 82hex  
4
Device ID 4  
R
5
Device ID 5  
R
6
Device ID 6  
R
7
Device ID 7 (MSB)  
R
Table 27. BYTE 7: BYTE COUNT REGISTER  
Bit  
Description  
If Bit = 0  
If Bit = 1  
Type  
Default  
0
BC0 Writing to this register configures  
RW  
0
0
0
1
0
how many bytes will be read back  
1
2
3
4
BC1 Writing to this register configures  
RW  
RW  
RW  
RW  
how many bytes will be read back  
BC2 Writing to this register configures  
how many bytes will be read back  
BC3 Writing to this register configures  
how many bytes will be read back  
BC4 Writing to this register configures  
how many bytes will be read back  
5
6
7
Reserved  
Reserved  
Reserved  
0
0
0
Table 28. BYTE 8 AND BEYOND: VENDOR SPECIFIC  
Bit  
0
Description  
If Bit = 0  
If Bit = 1  
Type  
Default  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
http://onsemi.com  
22  
NB3N1200K, NB3W1200L  
Buffer PowerUp State Machine  
Table 29. BUFFER POWERUP STATE MACHINE  
State  
Description  
0
1
2
3
3.3 V Buffer power off  
After 3.3 V supply is detected to rise above 1.8 V–2.0 V, the buffer enters State 1 and initiates a 0.1 ms–0.3 ms delay.  
Buffer waits for a valid clock on the CLK input and PWRDN# deassertion  
Once the PLL is locked to the CLK_IN input clock, the buffer enters state 3 and enables outputs for normal operation.  
(Notes 47, 48)  
47.The total power up latency from power on to all outputs active must be less than 1.8 ms (assuming a valid clock is present on CLK_IN input).  
48.If power is valid and powerdown is deasserted but no input clocks are present on the CLK_IN input, DIF clocks must remain disabled. Only  
after valid input clocks are detected, valid power, PWRDN# deasserted with the PLL locked/stable and the DIF outputs enabled.  
No input clock  
State 1  
State 2  
Wait for input  
clock and  
powerdown  
deassertion  
Delay  
0.1 ms 0.3 ms  
Powerdown Asserted  
State 3  
State 0  
Normal  
Operation  
Power Off  
Figure 15. Buffer PowerUp State Diagram  
http://onsemi.com  
23  
 
NB3N1200K, NB3W1200L  
Table 30. DIF CLOCK OUTPUT CURRENT  
Board Target Trace/Term Z  
Reference R, I = V /(3*R )  
Output Current  
V
OH  
@ Z  
ref  
DD  
r
100 W  
85 W  
R
= 475 W 1%, I = 2.32 mA  
I
I
= 6*I  
= 6*I  
0.7 V @ 50 W  
REF  
REF  
ref  
OH  
OH  
ref  
ref  
R
= 412 W, 1%, I = 2.67 mA  
0.7 V @ 43.2 W  
ref  
NMOS PushPull Buffer Specifications for NB3W1200L  
Low Power NMOS PushPull Differential Buffer  
The NB3W1200L utilizes the lowpower output buffer  
for all differential clocks. This buffer uses efficient NMOS  
pushpull drivers powered off a low voltage rail, offering a  
reduction in power consumption, improved edge rate  
performance, and cross point voltage control.  
3.3 V  
0.8 V Nominal  
Receiver  
Rs  
Rs  
Clock  
TLine 10Typical  
Zo = 20  
ohms  
2 pF  
3.3 V  
Core  
Source Terminated  
2 pF  
Clock#  
TLine 10Typical  
Figure 16. NMOS PushPull Buffer Diagram  
Power Filtering Example  
Ferrite Bead Power Filtering  
Recommended ferrite bead filtering equivalent to the following:  
600 W impedance at 100 MHz, 0.1 W DCR max., 400 mA current rating.  
V3P3  
Place at pin  
VDD for PLL  
FB1  
R1  
2.2  
VDDA  
C7  
FERRITE  
C9  
1 mF  
0.1 mF  
R2  
2.2  
VDDR  
C8  
VDD for Input Receiver  
VDD_DIFF  
C10  
1 mF  
0.1 mF  
C5  
C5  
0.1 mF  
0.1 mF  
VDD_DIFF  
C1  
10 mF  
C2  
0.1 mF  
C4  
0.1 mF  
C3  
0.1 mF  
C5  
0.1 mF  
C5  
0.1 mF  
Figure 17. Schematic Example of the NB3N1200K / NB3W1200L Power Filtering  
http://onsemi.com  
24  
NB3N1200K, NB3W1200L  
Termination of Differential Outputs  
Table 31. NB3N1200K RESISTIVE LUMPED TEST LOADS FOR DIFFERENTIAL CLOCKS  
Clock  
Board Trace Impedance  
R
R
RI  
ref  
Units  
s
p
DIFF Clocks –  
33  
49.9  
475  
1%  
W
50 W configuration  
100  
85  
5%  
1%  
DIFF Clocks –  
43 W configuration  
27  
5%  
42.2  
1%  
412  
1%  
W
Table 32. NB3W1200L RESISTIVE LUMPED TEST LOADS FOR DIFFERENTIAL CLOCKS  
Clock  
Board Trace Impedance  
R
R
RI  
ref  
Units  
s
p
DIFF Clocks –  
33  
W
50 W configuration  
100  
85  
5%  
N/A  
N/A  
N/A  
N/A  
DIFF Clocks –  
43 W configuration  
27  
5%  
W
Termination of Differential HCSL Type Outputs (NB3N1200K)  
CLOCK  
Rs  
TLA = 10 in.  
CLOCK#  
Rs  
TLA = 10 in.  
2 pF  
5%  
2 pF  
5%  
Rp  
Rp  
475 W  
1%  
Figure 18. 0.7 V Configuration Test Load Board Termination for HCSL NB3N1200K  
Termination of Differential NMOS PushPull Type Outputs (NB3W1200L)  
Receiver  
Rs  
Rs  
Clock  
TLine 10Typical  
Source Terminated  
TLine 10Typical  
2 pF  
2 pF  
Clock#  
Figure 19. 0.7 V Configuration Test Load Board Termination for NMOS PushPull NB3W1200L  
http://onsemi.com  
25  
NB3N1200K, NB3W1200L  
PACKAGE DIMENSIONS  
QFN64 9x9, 0.5P (PUNCH & SAWN)  
CASE 485DH  
ISSUE O  
2X  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
0.15  
C
PIN ONE  
INDICATOR  
A
2. CONTROLLING DIMENSIONS: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.15 AND 0.25mm FROM THE TERMINAL TIP  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
5. ALL DIMENSIONS APPLY TO BOTH THE  
SAWN AND PUNCH PACKAGES.  
D
A B  
B
PIN ONE  
INDICATOR  
MILLIMETERS  
E
DIM MIN  
MAX  
1.00  
0.05  
A
A1  
A3  
b
0.80  
0.00  
0.20 REF  
2X  
0.18  
0.30  
D
D2  
E
9.00 BSC  
0.15  
C
5.90  
6.25  
TOP VIEW  
TOP VIEW  
ALTERNATE CONSTRUCTION  
9.00 BSC  
E2  
e
L
5.90  
0.50 BSC  
0.30  
0.00  
6.25  
0.50  
0.15  
DETAIL B  
A
A3  
A1  
0.10  
0.08  
C
L1  
A3  
C
SEATING  
PLANE  
SIDE VIEW  
C
NOTE 4  
SIDE VIEW  
D2  
ALTERNATE CONSTRUCTION  
64X  
L
M
0.10  
C A B  
DETAIL A  
17  
17  
M
33  
33  
0.10  
C A B  
DETAIL C  
RECOMMENDED  
SOLDERING FOOTPRINT  
E2  
64X  
0.62  
9.30  
6.40  
PACKAGE  
OUTLINE  
1
1
64  
64  
49  
49  
e
e/2  
64X b  
BOTTOM VIEW  
ALTERNATE CONSTRUCTION  
M
M
0.10  
C A B  
NOTE 3  
0.05  
C
BOTTOM VIEW  
9.30  
6.40  
L1  
EXPOSED Cu  
MOLD CMPD  
L
L
L
64X  
0.32  
DETAIL A  
DETAIL C  
DETAIL B  
0.50  
PITCH  
ALTERNATE  
ALTERNATE  
ALTERNATE  
DIMENSIONS: MILLIMETERS  
CONSTRUCTIONS  
CONSTRUCTION  
CONSTRUCTION  
Intel is a registered trademark of Intel Corporation.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,  
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. SCILLC  
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications  
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC  
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture  
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NB3N1200K/D  

相关型号:

NB3W1200LMNTXG

Differential 1:12 HCSL or Push-Pull Clock ZDB/Fanout Buffer for PCle
ONSEMI

NB3W1900L

Differential 1:19 HCSL-Compatible Push‐Pull Clock ZDB/Fanout Buffer
ONSEMI

NB3W1900LMNG

Differential 1:19 HCSL-Compatible Push‐Pull Clock ZDB/Fanout Buffer
ONSEMI

NB3W1900LMNTXG

Differential 1:19 HCSL-Compatible Push‐Pull Clock ZDB/Fanout Buffer
ONSEMI

NB3W1900L_16

3.3 V 100/133 MHz Differential 1:19 HCSL-Compatible Push‐Pull Clock ZDB/Fanout Buffer
ONSEMI

NB3W1900L_18

Differential 1:19 HCSL-Compatible Push‐Pull Clock ZDB/Fanout Buffer
ONSEMI

NB3W800L

Differential 1:8 HCSLCompatible Push-Pull Clock
ONSEMI

NB3W800LMNG

Differential 1:8 HCSLCompatible Push-Pull Clock
ONSEMI

NB3W800LMNTWG

Differential 1:8 HCSLCompatible Push-Pull Clock
ONSEMI

NB3W800LMNTXG

Differential 1:8 HCSLCompatible Push-Pull Clock
ONSEMI

NB3W800L_16

Differential 1:8 HCSLCompatible Push-Pull Clock
ONSEMI

NB3W800L_17

Differential 1:8 HCSLCompatible Push-Pull Clock
ONSEMI