MRF6VP121KHSR5 [NXP]

RF POWER, FET;
MRF6VP121KHSR5
型号: MRF6VP121KHSR5
厂家: NXP    NXP
描述:

RF POWER, FET

文件: 总20页 (文件大小:1167K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MRF6VP121KH  
Rev. 3, 4/2010  
Freescale Semiconductor  
Technical Data  
RF Power Field Effect Transistors  
N--Channel Enhancement--Mode Lateral MOSFETs  
MRF6VP121KHR6  
MRF6VP121KHSR6  
RF Power transistors designed for applications operating at frequencies  
between 965 and 1215 MHz. These devices are suitable for use in pulsed  
applications.  
Typical Pulsed Performance: VDD = 50 Volts, IDQ = 150 mA, Pout =  
1000 Watts Peak (100 W Avg.), f = 1030 MHz, Pulse Width = 128 μsec,  
965--1215 MHz, 1000 W, 50 V  
LATERAL N--CHANNEL  
BROADBAND  
Duty Cycle = 10%  
Power Gain — 20 dB  
Drain Efficiency — 56%  
RF POWER MOSFETs  
Capable of Handling 5:1 VSWR, @ 50 Vdc, 1030 MHz, 1000 Watts Peak  
Power  
Features  
Characterized with Series Equivalent Large--Signal Impedance Parameters  
Internally Matched for Ease of Use  
Qualified Up to a Maximum of 50 VDD Operation  
Integrated ESD Protection  
Designed for Push--Pull Operation  
Greater Negative Gate--Source Voltage Range for Improved Class C  
Operation  
CASE 375D--05, STYLE 1  
NI--1230  
MRF6VP121KHR6  
RoHS Compliant  
In Tape and Reel. R6 Suffix = 150 Units per 56 mm, 13 inch Reel.  
CASE 375E--04, STYLE 1  
NI--1230S  
MRF6VP121KHSR6  
PARTS ARE PUSH--PULL  
RF /V  
RF /V  
outA DSA  
3
4
1
2
inA GSA  
RF /V  
inB GSB  
RF /V  
outB DSB  
(Top View)  
Figure 1. Pin Connections  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
--0.5, +110  
--6.0, +10  
-- 65 to +150  
150  
Unit  
Drain--Source Voltage  
V
Vdc  
Vdc  
°C  
DSS  
Gate--Source Voltage  
V
GS  
Storage Temperature Range  
Case Operating Temperature  
Operating Junction Temperature  
T
stg  
T
C
°C  
(1,2)  
T
J
225  
°C  
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access  
MTTF calculators by product.  
© Freescale Semiconductor, Inc., 2009--2010. All rights reserved.  
Table 2. Thermal Characteristics  
(1,2)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
Z
θ
°C/W  
JC  
Case Temperature 67°C, 1000 W Pulsed, 128 μsec Pulse Width, 10% Duty Cycle,  
0.02  
50 Vdc, I = 150 mA  
DQ  
Case Temperature 62°C, Mode--S Pulse Train, 80 Pulses of 32 μsec On, 18 μsec  
0.07  
Off, Repeated Every 40 msec, 6.4% Overall Duty Cycle, 50 Vdc, I = 150 mA  
DQ  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22--A114)  
Machine Model (per EIA/JESD22--A115)  
Charge Device Model (per JESD22--C101)  
1B (Minimum)  
B (Minimum)  
IV (Minimum)  
Table 4. Electrical Characteristics (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(3)  
Off Characteristics  
Gate--Source Leakage Current  
(V = 5 Vdc, V = 0 Vdc)  
I
110  
10  
μAdc  
Vdc  
GSS  
GS  
DS  
Drain--Source Breakdown Voltage  
(V = 0 Vdc, I = 165 mA)  
V
(BR)DSS  
GS  
D
Zero Gate Voltage Drain Leakage Current  
(V = 50 Vdc, V = 0 Vdc)  
I
I
10  
μAdc  
μAdc  
DSS  
DSS  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
100  
(V = 100 Vdc, V = 0 Vdc)  
DS  
GS  
On Characteristics  
(3)  
Gate Threshold Voltage  
(V = 10 Vdc, I = 1000 μAdc)  
V
0.9  
1.5  
1.6  
2.2  
2.4  
3
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
DS(on)  
DS  
D
(4)  
Gate Quiescent Voltage  
(V = 50 Vdc, I = 150 mAdc, Measured in Functional Test)  
V
DD  
D
(3)  
Drain--Source On--Voltage  
(V = 10 Vdc, I = 2.7 Adc)  
V
0.15  
GS  
D
(3)  
Dynamic Characteristics  
Reverse Transfer Capacitance  
(V = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
1.27  
86.7  
539  
pF  
pF  
pF  
rss  
GS  
Output Capacitance  
(V = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
oss  
GS  
Input Capacitance  
C
iss  
(V = 50 Vdc, V = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)  
DS  
GS  
(4)  
Functional Tests  
(In Freescale Test Fixture, 50 ohm system) V = 50 Vdc, I = 150 mA, P = 1000 W Peak (100 W Avg.),  
DD DQ out  
f = 1030 MHz, 128 μsec Pulse Width, 10% Duty Cycle  
Power Gain  
G
19  
20  
56  
22  
-- 9  
dB  
%
ps  
D
Drain Efficiency  
η
54  
Input Return Loss  
IRL  
-- 2 3  
dB  
1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes -- AN1955.  
3. Each side of device measured separately.  
4. Measurement made with device in push--pull configuration.  
(continued)  
MRF6VP121KHR6 MRF6VP121KHSR6  
RF Device Data  
Freescale Semiconductor  
2
Table 4. Electrical Characteristics (T = 25°C unless otherwise noted) (continued)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Pulsed RF Performance — 785 MHz (In Freescale 785 MHz Test Fixture, 50 ohm system) V = 50 Vdc, I = 150 mA, P = 1000 W  
DD  
DQ  
out  
Peak (100 W Avg.), f = 785 MHz, 128 μsec Pulse Width, 10% Duty Cycle  
Power Gain  
G
18.9  
57.8  
dB  
%
ps  
D
Drain Efficiency  
η
Input Return Loss  
IRL  
--16.6  
dB  
Pulsed RF Performance — 1030 MHz (In Freescale 1030 MHz Test Fixture, 50 ohm system) V = 50 Vdc, I = 150 mA, P = 1000 W  
DD  
DQ  
out  
Peak (100 W Avg.), f = 1030 MHz, Mode--S Pulse Train, 80 Pulses of 32 μsec On, 18 μsec Off, Repeated Every 40 msec, 6.4% Overall Duty  
Cycle  
Power Gain  
G
19.8  
59.0  
0.21  
dB  
%
ps  
D
Drain Efficiency  
Burst Droop  
η
BD  
dB  
rp  
Pulsed RF Performance — 1090 MHz (In Freescale 1090 MHz Test Fixture, 50 ohm system) V = 50 Vdc, I = 150 mA, P = 1000 W  
DD  
DQ  
out  
Peak (100 W Avg.), f = 1090 MHz, 128 μsec Pulse Width, 10% Duty Cycle  
Power Gain  
G
21.4  
dB  
%
ps  
D
Drain Efficiency  
η
56.3  
Input Return Loss  
IRL  
--25.3  
dB  
MRF6VP121KHR6 MRF6VP121KHSR6  
RF Device Data  
Freescale Semiconductor  
3
V
BIAS  
V
+
SUPPLY  
+
+
C1  
C2  
C3  
C4  
C21 C22  
C23 C24  
L1  
BALUN 1  
C13  
Z13  
R1  
C17  
C18  
Z11  
Z15 Z17 Z19 Z21  
Z3 Z5  
Z4 Z6  
Z7  
Z9  
RF  
RF  
OUTPUT  
INPUT  
C10  
Z1  
Z2  
Z23  
DUT  
C15  
C12  
Z10  
C16  
Z8  
C9  
C11  
Z12  
Z14  
C14  
Z16 Z18 Z20 Z22  
R2  
C19  
C20  
BALUN 2  
L2  
V
BIAS  
+
C5  
C6  
C7  
C8  
V
SUPPLY  
+
+
C25 C26 C27 C28  
Z1  
Z2  
Z3, Z4  
Z5, Z6  
Z7, Z8  
Z9, Z10  
0.140x 0.083″  
0.300x 0.083″  
0.746x 0.220″  
0.075x 0.631″  
0.329x 0.631″  
0.326x 0.631″  
0.240x 0.631″  
Z13, Z14  
Z15, Z16  
Z17, Z18  
Z19, Z20  
Z21, Z22  
Z23  
0.143x 0.631″  
0.135x 0.631″  
0.102x 0.632″  
0.130x 0.631″  
0.736x 0.215″  
0.410x 0.083″  
Z11, Z12  
PCB  
Arlon CuClad 250GX--0300--55--22, 0.030, ε = 2.55  
r
Figure 2. MRF6VP121KHR6(HSR6) Test Circuit Schematic  
Table 5. MRF6VP121KHR6(HSR6) Test Circuit Component Designations and Values  
Part  
Description  
Manufacturer  
Part Number  
Anaren  
Balun 1, 2  
C1, C5  
Balun Anaren  
3A412  
22 μF, 25 V Tantalum Capacitors  
2.2 μF, 50 V Chip Capacitors  
0.22 μF, 100 V Chip Capacitors  
36 pF Chip Capacitors  
TPSD226M025R  
AVX  
C2, C6  
C1825C225J5RAC  
C1210C224K1RAC  
ATC100B360JT500XT  
Kemet  
Kemet  
ATC  
C3, C7  
C4, C8, C10, C11, C17,  
C18, C19, C20, C21, C25  
C9  
1.0 pF Chip Capacitor  
ATC100B1R0CT500XT  
27291SL  
ATC  
C12, C16  
C13, C14, C15  
C22, C26  
C23, C24, C27, C28  
L1, L2  
0.8--8.0 pF Variable Capacitors  
5.1 pF Chip Capacitors  
Johanson  
ATC  
ATC100B5R1CT500XT  
C1825C223K1GAC  
MCGPR63V477M13X26--RH  
GA3094--AL  
0.022 μF, 100 V Chip Capacitors  
470 μF, 63 V Electrolytic Capacitors  
Inductors 3 Turn  
Kemet  
Multicomp  
Coilcraft  
Vishay  
R1, R2  
1000 , 1/4 W Chip Resistors  
CRCW12061001FKEA  
MRF6VP121KHR6 MRF6VP121KHSR6  
RF Device Data  
Freescale Semiconductor  
4
C24  
C23  
MRF6VP121KH  
Rev. 2  
C1  
C3  
C4  
--  
C22  
C2  
C21  
L1  
BALUN 1  
BALUN 2  
C13  
R1  
R2  
C12  
C17  
C18  
C10  
C11  
C16  
C15  
C19  
C20  
C9  
L2  
C14  
C8  
C7  
C26  
C6  
C25  
C5  
C27  
C28  
--  
Figure 3. MRF6VP121KHR6(HSR6) Test Circuit Component Layout  
MRF6VP121KHR6 MRF6VP121KHSR6  
RF Device Data  
Freescale Semiconductor  
5
TYPICAL CHARACTERISTICS  
1000  
100  
10  
22  
60  
50  
40  
30  
20  
10  
0
V
= 50 Vdc  
= 150 mA  
DD  
C
iss  
I
DQ  
21  
20  
19  
18  
f = 1030 MHz  
Pulse Width = 128 μsec  
Duty Cycle = 10%  
G
ps  
C
oss  
Measured with ±30 mV(rms)ac @ 1 MHz  
= 0 Vdc  
C
rss  
V
GS  
η
D
17  
16  
1
0
10  
20  
30  
40  
50  
1
10  
100  
1000  
10000  
V
, DRAIN--SOURCE VOLTAGE (VOLTS)  
P , OUTPUT POWER (WATTS) PULSED  
out  
DS  
Note: Each side of device measured separately.  
Figure 4. Capacitance versus Drain--Source Voltage  
Figure 5. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
25  
24  
22  
Ideal  
21.5  
21  
I
= 6000 mA  
DQ  
23  
22  
21  
20  
19  
18  
17  
16  
P1dB = 1065 W (60.3 dBm)  
20.5  
20  
3000 mA  
1500 mA  
P3dB = 1182 W (60.7 dBm)  
19.5  
19  
V
I
= 50 Vdc  
= 150 mA  
f = 1030 MHz  
Pulse Width = 128 μsec  
Duty Cycle = 10%  
750 mA  
375 mA  
DD  
V
= 50 Vdc  
DD  
DQ  
f = 1030 MHz  
Pulse Width = 128 μsec  
Duty Cycle = 10%  
18.5  
18  
Actual  
150 mA  
500  
600  
700  
800  
900  
1000 1100 1200 1300  
1
10  
100  
1000  
10000  
P
, OUTPUT POWER (WATTS) PULSED  
P
, OUTPUT POWER (WATTS) PULSED  
out  
out  
Figure 7. Pulsed Power Gain versus  
Output Power  
Figure 6. Pulsed Power Gain versus  
Output Power  
23  
22  
21  
20  
19  
65  
I
= 150 mA, f = 1030 MHz  
DQ  
Pulse Width = 128 μsec  
Duty Cycle = 10%  
60  
55  
50  
45  
40  
T
= --30_C  
C
25_C  
V
= 50 Vdc  
DD  
18  
17  
16  
I
= 150 mA  
DQ  
45 V  
1000  
V
= 30 V  
400  
40 V  
800  
50 V  
1200  
35 V  
600  
f = 1030 MHz  
Pulse Width = 128 μsec  
Duty Cycle = 10%  
DD  
85_C  
0
200  
1400  
20  
25  
30  
35  
40  
45  
P , INPUT POWER (dBm) PULSED  
in  
P
, OUTPUT POWER (WATTS) PULSED  
out  
Figure 8. Pulsed Power Gain versus  
Output Power  
Figure 9. Pulsed Output Power versus  
Input Power  
MRF6VP121KHR6 MRF6VP121KHSR6  
RF Device Data  
Freescale Semiconductor  
6
TYPICAL CHARACTERISTICS  
23  
22  
21  
20  
19  
18  
17  
16  
70  
60  
50  
40  
30  
V
I
= 50 Vdc  
= 150 mA  
DD  
DQ  
f = 1030 MHz  
Pulse Width = 128 μsec  
Duty Cycle = 10%  
G
ps  
T
= --30_C  
C
20  
10  
0
25_C  
85_C  
η
D
1
10  
100  
1000  
10000  
P
, OUTPUT POWER (WATTS) PULSED  
out  
Figure 10. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
9
8
7
9
10  
10  
10  
10  
8
10  
7
10  
6
6
10  
10  
10  
5
5
10  
4
4
10  
10  
90  
110  
130  
150  
170  
190  
210  
230  
250  
90  
110  
130  
150  
170  
190  
210  
230  
250  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
This above graph displays calculated MTTF in hours when the device  
is operated at V = 50 Vdc, P = 1000 W Peak, Pulse Width = 128 μsec,  
This above graph displays calculated MTTF in hours when the device  
is operated at V = 50 Vdc, P = 1000 W Peak, Mode--S Pulse Train,  
DD  
out  
DD  
out  
Duty Cycle = 10%, and η = 56%.  
Pulse Width = 32 μsec, Duty Cycle = 6.4%, and η = 59%.  
D
D
MTTF calculator available at http://www.freescale.com/rf. Select  
Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
MTTF calculator available at http://www.freescale.com/rf. Select  
Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
Figure 11. MTTF versus Junction Temperature --  
Figure 12. MTTF versus Junction Temperature --  
Mode--S  
128 μsec, 10% Duty Cycle  
MRF6VP121KHR6 MRF6VP121KHSR6  
RF Device Data  
Freescale Semiconductor  
7
Z = 5 Ω  
o
f = 1030 MHz  
Z
load  
f = 1030 MHz  
Z
source  
V
= 50 Vdc, I = 150 mA, P = 1000 W Peak  
DQ out  
DD  
f
Z
Z
load  
source  
MHz  
1030  
3.93 + j0.09  
1.54 + j1.42  
Z
Z
=
Test circuit impedance as measured from  
gate to gate, balanced configuration.  
source  
=
Test circuit impedance as measured from  
drain to drain, balanced configuration.  
load  
Device  
Under  
Test  
Output  
Matching  
Network  
Input  
Matching  
Network  
+
--  
--  
+
Z
Z
source  
load  
Figure 13. Series Equivalent Source and Load Impedance  
MRF6VP121KHR6 MRF6VP121KHSR6  
RF Device Data  
Freescale Semiconductor  
8
C26  
C25  
MRF6VP121KH  
Rev. 2  
C1  
C3  
C4  
C24  
L1  
C2  
C23  
BALUN 1  
BALUN 2  
R1  
C9  
C13  
C17 C18  
C19  
C20  
C10  
C11  
C14  
C12  
C21  
C22  
C15  
C16  
L2  
R2  
C8  
C7  
C28  
C6  
C27  
- -  
C29  
C30  
C5  
Figure 14. MRF6VP121KHR6(HSR6) Test Circuit Component Layout — 785 MHz  
Table 6. MRF6VP121KHR6(HSR6) Test Circuit Component Designations and Values — 785 MHz  
Part  
Description  
Manufacturer  
Part Number  
Balun 1, 2  
C1, C5  
Balun Anaren  
3A412  
Anaren  
22 μF, 25 V Tantalum Capacitors  
2.2 μF, 50 V Chip Capacitors  
0.22 μF, 100 V Chip Capacitors  
36 pF Chip Capacitors  
TPSD226M025R0200  
C1825C225J5RAC--TU  
C1210C224K1RAC--TU  
ATC100B360JT500XT  
AVX  
C2, C6  
Kemet  
Kemet  
ATC  
C3, C7  
C4, C8, C10, C11, C19,  
C20, C21, C22, C23, C27  
C9  
8.2 pF Chip Capacitor  
ATC100B8R2CT500XT  
27271SL  
ATC  
C12  
0.6--4.5 pF Variable Capacitor  
3.6 pF Chip Capacitor  
Johanson  
ATC  
C13  
ATC100B3R6CT500XT  
ATC100B100JT500XT  
ATC100B5R1CT500XT  
C1825C223K1GAC  
MCGPR63V477M13X26--RH  
GA3094--ALC  
C14  
10 pF Chip Capacitor  
ATC  
C15, C16, C17, C18  
C24, C28  
C25, C26, C29, C30  
L1, L2  
5.1 pF Chip Capacitors  
ATC  
0.022 μF, 100 V Chip Capacitors  
470 μF, 63 V Electrolytic Capacitors  
Inductors 3 Turn  
Kemet  
Multicomp  
Coilcraft  
Vishay  
Arlon  
R1, R2  
1000 , 1/4 W Chip Resistors  
CRCW12061K00FKEA  
250GX--0300--55--22  
PCB  
CuClad, 0.030, ε = 2.55  
r
MRF6VP121KHR6 MRF6VP121KHSR6  
RF Device Data  
Freescale Semiconductor  
9
TYPICAL CHARACTERISTICS — 785 MHZ  
20.5  
60  
V
= 50 Vdc  
= 150 mA  
DD  
20  
19.5  
19  
55  
50  
45  
40  
35  
30  
25  
I
DQ  
f = 785 MHz  
Pulse Width = 128 μsec  
Duty Cycle = 10%  
18.5  
G
ps  
18  
17.5  
17  
η
D
20  
15  
10  
16.5  
16  
15.5  
10  
100  
1000  
3000  
P
, OUTPUT POWER (WATTS) PULSED  
out  
Figure 15. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
MRF6VP121KHR6 MRF6VP121KHSR6  
10  
RF Device Data  
Freescale Semiconductor  
Z = 5 Ω  
o
Z
f = 785 MHz  
load  
f = 785 MHz  
Z
source  
V
= 50 Vdc, I = 150 mA, P = 1000 W Peak  
DQ out  
DD  
f
Z
Z
load  
source  
MHz  
785  
1.54 -- j0.46  
2.79 + j1.10  
Z
Z
=
=
Test circuit impedance as measured from  
gate to gate, balanced configuration.  
source  
Test circuit impedance as measured from  
drain to drain, balanced configuration.  
load  
Device  
Under  
Test  
Output  
Matching  
Network  
Input  
Matching  
Network  
+
--  
--  
+
Z
Z
source  
load  
Figure 16. Series Equivalent Source and Load Impedance — 785 MHz  
MRF6VP121KHR6 MRF6VP121KHSR6  
11  
RF Device Data  
Freescale Semiconductor  
- -  
C24  
MRF6VP121KH  
Rev. 2  
C23  
C1  
C3  
C4  
C22  
C2  
C21  
BALUN 1  
BALUN 2  
C13  
C15  
R1  
L1  
C16  
C12  
C17  
C10  
C11  
C29  
C18  
C19  
C20  
C9  
L2  
R2  
C14  
C8  
C7  
C26  
C6  
C25  
- -  
C5  
C27  
C28  
Figure 17. MRF6VP121KHR6(HSR6) Test Circuit Component Layout — 1090 MHz  
Table 7. MRF6VP121KHR6(HSR6) Test Circuit Component Designations and Values — 1090 MHz  
Part  
Description  
Manufacturer  
Part Number  
Balun 1, 2  
C1, C5  
Balun Anaren  
3A412  
Anaren  
22 μF, 25 V Tantalum Capacitors  
2.2 μF, 50 V 1825 Chip Capacitors  
0.22 μF, 100 V Chip Capacitors  
36 pF Chip Capacitors  
TPSD226M025R0200  
C1825C225J5RAC--TU  
C1210C224K1RAC--TU  
ATC100B360JT500XT  
AVX  
C2, C6  
Kemet  
Kemet  
ATC  
C3, C7  
C4, C8, C17, C18, C19,  
C20, C21, C25  
C9  
1.0 pF Chip Capacitor  
ATC100B1R0BT500XT  
27291SL  
ATC  
C12, C16  
0.8--8.0 pF Variable Capacitors  
5.1 pF Chip Capacitors  
Johanson  
ATC  
C10, C11, C13, C14, C15,  
C29  
ATC100B5R1CT500XT  
C22, C26  
C23, C24, C27, C28  
L1, L2  
0.022 μF, 100 V Chip Capacitors  
470 μF, 63 V Electrolytic Capacitors  
Inductors 3 Turn  
C1825C223K1GAC  
MCGPR63V477M13X26--RH  
GA3094--ALC  
Kemet  
Multicomp  
Coilcraft  
Vishay  
Arlon  
R1, R2  
1000 , 1/4 W Chip Resistors  
CRCW12061K00FKEA  
250GX--0300--55--22  
PCB  
CuClad, 0.030, ε = 2.55  
r
MRF6VP121KHR6 MRF6VP121KHSR6  
RF Device Data  
Freescale Semiconductor  
12  
TYPICAL CHARACTERISTICS — 1090 MHZ  
22  
21  
20  
19  
18  
17  
16  
60  
50  
V
= 50 Vdc  
= 150 mA  
DD  
I
DQ  
f = 1090 MHz  
Pulse Width = 128 μsec  
Duty Cycle = 10%  
40  
30  
20  
10  
0
G
ps  
η
D
10  
100  
1000  
3000  
P
, OUTPUT POWER (WATTS) PULSED  
out  
Figure 18. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
MRF6VP121KHR6 MRF6VP121KHSR6  
13  
RF Device Data  
Freescale Semiconductor  
Z = 5 Ω  
o
f = 1090 MHz  
f = 1090 MHz  
Z
source  
Z
load  
V
= 50 Vdc, I = 150 mA, P = 1000 W Peak  
DQ out  
DD  
f
Z
Z
load  
source  
MHz  
1090  
2.98 + j3.68  
1.51 + j2.02  
Z
Z
=
Test circuit impedance as measured from  
gate to gate, balanced configuration.  
source  
=
Test circuit impedance as measured from  
drain to drain, balanced configuration.  
load  
Device  
Under  
Test  
Output  
Matching  
Network  
Input  
Matching  
Network  
+
--  
--  
+
Z
Z
source  
load  
Figure 19. Series Equivalent Source and Load Impedance — 1090 MHz  
MRF6VP121KHR6 MRF6VP121KHSR6  
14  
RF Device Data  
Freescale Semiconductor  
PACKAGE DIMENSIONS  
MRF6VP121KHR6 MRF6VP121KHSR6  
RF Device Data  
Freescale Semiconductor  
15  
MRF6VP121KHR6 MRF6VP121KHSR6  
RF Device Data  
Freescale Semiconductor  
16  
MRF6VP121KHR6 MRF6VP121KHSR6  
RF Device Data  
Freescale Semiconductor  
17  
MRF6VP121KHR6 MRF6VP121KHSR6  
RF Device Data  
Freescale Semiconductor  
18  
PRODUCT DOCUMENTATION AND SOFTWARE  
Refer to the following documents to aid your design process.  
Application Notes  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
Electromigration MTTF Calculator  
For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software &  
Tools tab on the part’s Product Summary page to download the respective tool.  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
1
June 2009  
June 2009  
Initial Release of Data Sheet  
Added Pulsed RF Performance tables for 785 MHz and 1090 MHz applications, p. 3  
Added Figs. 13 and 16, Test Circuit Component Layout -- 785 MHz and 1090 MHz, and Tables 6 and 7, Test  
Circuit Component Designations and Values -- 785 MHz and 1090 MHz, p. 9, 12  
Added Figs. 14 and 17, Pulsed Power Gain and Drain Efficiency versus Output Power -- 785 MHz and  
1090 MHz, p. 10, 13  
Added Figs. 15 and 18, Series Equivalent Source and Load Impedance -- 785 MHz and 1090 MHz, p. 11, 14  
2
3
Dec. 2009  
Apr. 2010  
Added thermal data for 1030 MHz Mode--S application to Table 2, Thermal Characteristics, reporting of  
pulsed thermal data now shown using the Z  
symbol, p. 2  
θ
JC  
Added Typical Performances table for 1030 MHz Mode--S application, p. 3  
Added Fig. 12, MTTF versus Junction Temperature -- 1030 MHz Mode--S, p. 7  
Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related  
“Continuous use at maximum temperature will affect MTTF” footnote added, p. 1  
MRF6VP121KHR6 MRF6VP121KHSR6  
RF Device Data  
Freescale Semiconductor  
19  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1--800--521--6274 or +1--480--768--2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1--8--1, Shimo--Meguro, Meguro--ku,  
Tokyo 153--0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1--800--441--2447 or +1--303--675--2140  
Fax: +1--303--675--2150  
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor, Inc. 2009--2010. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MRF6VP121KH  
Rev. 3, 4/2010  

相关型号:

MRF6VP121KHSR6

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF6VP21KHR6

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET
FREESCALE

MRF6VP21KHR6

VHF BAND, Si, N-CHANNEL, RF POWER, MOSFET, ROHS COMPLIANT, CASE 375D-05, NI-1230, 4 PIN
NXP

MRF6VP21KHR6_10

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET
FREESCALE

MRF6VP2600H

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET
FREESCALE

MRF6VP2600HR6

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET
FREESCALE

MRF6VP2600HR6_10

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET
FREESCALE

MRF6VP3091N

RF Power LDMOS Transistors Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF6VP3091NBR1

Broadband RF Power LDMOS Transistor, 470-860 MHz, 90 W, 50 V
NXP

MRF6VP3091NBR5

Broadband RF Power LDMOS Transistor, 470-860 MHz, 90 W, 50 V
NXP

MRF6VP3091NR5

2 CHANNEL, UHF BAND, Si, N-CHANNEL, RF POWER, MOSFET, TO-270, ROHS COMPLIANT, PLASTIC, CASE 1486-03, WB-4, 4 PIN
NXP

MRF6VP3450HR5

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE