MRF6VP21KHR6_10 [FREESCALE]

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET; 射频功率场效应晶体管N - 沟道增强 - 模式横向MOSFET
MRF6VP21KHR6_10
型号: MRF6VP21KHR6_10
厂家: Freescale    Freescale
描述:

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET
射频功率场效应晶体管N - 沟道增强 - 模式横向MOSFET

晶体 晶体管 功率场效应晶体管 射频
文件: 总11页 (文件大小:703K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MRF6VP21KH  
Rev. 4, 4/2010  
Freescale Semiconductor  
Technical Data  
RF Power Field Effect Transistor  
N--Channel Enhancement--Mode Lateral MOSFET  
Designed primarily for pulsed wideband applications with frequencies up to  
235 MHz. Device is unmatched and is suitable for use in industrial, medical  
and scientific applications.  
MRF6VP21KHR6  
Typical Pulsed Performance at 225 MHz: VDD = 50 Volts, IDQ = 150 mA,  
P
out = 1000 Watts Peak (200 W Avg.), Pulse Width = 100 μsec,  
10--235 MHz, 1000 W, 50 V  
LATERAL N--CHANNEL  
BROADBAND  
Duty Cycle = 20%  
Power Gain — 24 dB  
Drain Efficiency — 67.5%  
RF POWER MOSFET  
Capable of Handling 10:1 VSWR, @ 50 Vdc, 225 MHz, 1000 Watts Peak  
Power  
Features  
Characterized with Series Equivalent Large--Signal Impedance Parameters  
CW Operation Capability with Adequate Cooling  
Qualified Up to a Maximum of 50 VDD Operation  
Integrated ESD Protection  
Designed for Push--Pull Operation  
Greater Negative Gate--Source Voltage Range for Improved Class C  
Operation  
CASE 375D--05, STYLE 1  
NI--1230  
RoHS Compliant  
In Tape and Reel. R6 Suffix = 150 Units per 56 mm, 13 inch Reel.  
PART IS PUSH--PULL  
RF /V  
RF /V  
outA DSA  
3
4
1
2
inA GSA  
RF /V  
inB GSB  
RF /V  
outB DSB  
(Top View)  
Figure 1. Pin Connections  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
--0.5, +110  
-- 6 , + 1 0  
-- 65 to +150  
150  
Unit  
Drain--Source Voltage  
V
Vdc  
Vdc  
°C  
DSS  
Gate--Source Voltage  
V
GS  
Storage Temperature Range  
Case Operating Temperature  
Operating Junction Temperature  
T
stg  
T
C
°C  
(1,2)  
T
J
225  
°C  
Table 2. Thermal Characteristics  
(2,3)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
Case Temperature 80°C, 1000 W Pulsed, 100 μsec Pulse Width, 20% Duty Cycle  
Z
θ
0.03  
°C/W  
JC  
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes -- AN1955.  
© Freescale Semiconductor, Inc., 2008, 2010. All rights reserved.  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22--A114)  
Machine Model (per EIA/JESD22--A115)  
Charge Device Model (per JESD22--C101)  
2 (Minimum)  
A (Minimum)  
IV (Minimum)  
Table 4. Electrical Characteristics (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(1)  
Off Characteristics  
Gate--Source Leakage Current  
I
110  
20  
μAdc  
Vdc  
GSS  
(V = 5 Vdc, V = 0 Vdc)  
GS  
DS  
Drain--Source Breakdown Voltage  
(I = 300 mA, V = 0 Vdc)  
V
(BR)DSS  
D
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 50 Vdc, V = 0 Vdc)  
I
I
100  
5
μAdc  
mA  
DSS  
DSS  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 100 Vdc, V = 0 Vdc)  
DS  
GS  
On Characteristics  
(1)  
Gate Threshold Voltage  
(V = 10 Vdc, I = 1600 μAdc)  
V
1
1.68  
2.2  
3
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
DS(on)  
DS  
D
(2)  
Gate Quiescent Voltage  
(V = 50 Vdc, I = 150 mAdc, Measured in Functional Test)  
V
1.5  
3.5  
DD  
D
(1)  
Drain--Source On--Voltage  
(V = 10 Vdc, I = 4 Adc)  
V
0.28  
GS  
D
(1)  
Dynamic Characteristics  
Reverse Transfer Capacitance  
(V = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
3.3  
147  
506  
pF  
pF  
pF  
rss  
GS  
Output Capacitance  
(V = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
oss  
GS  
Input Capacitance  
C
iss  
(V = 50 Vdc, V = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)  
DS  
GS  
(2)  
Functional Tests  
(In Freescale Test Fixture, 50 ohm system) V = 50 Vdc, I = 150 mA, P = 1000 W Peak (200 W Avg.), f = 225 MHz,  
DD DQ out  
100 μsec Pulse Width, 20% Duty Cycle  
Power Gain  
G
22  
65  
24  
26  
-- 9  
dB  
%
ps  
Drain Efficiency  
η
67.5  
-- 1 5  
D
Input Return Loss  
IRL  
dB  
1. Each side of device measured separately.  
2. Measurement made with device in push--pull configuration.  
MRF6VP21KHR6  
RF Device Data  
Freescale Semiconductor  
2
R2  
L4  
V
V
SUPPLY  
B1  
L1  
BIAS  
R1  
+
+
+
+
+
+
C1 C2 C3  
C4 C5 C6  
C7  
C8 C9 C10  
C11  
C13 C14  
C15 C16 C17 C18 C19 C20  
C21  
Z14  
Z10 Z12  
Z16  
Z4  
Z5  
Z6  
Z7  
Z8  
RF  
INPUT  
RF  
OUTPUT  
Z1  
Z2  
Z3  
J1  
Z18 Z19  
L3  
Z9  
DUT  
C23  
Z15  
C24  
Z17  
J2  
L2  
C25  
C12  
Z11 Z13  
T1  
T2  
C22  
Z1  
Z2*  
Z3*  
Z4, Z5  
Z6, Z7  
Z8, Z9  
Z10, Z11  
0.100x 0.082Microstrip  
1.557x 0.082Microstrip  
0.055x 0.082Microstrip  
0.133x 0.193Microstrip  
0.143x 0.518Microstrip  
0.357x 0.518Microstrip  
0.200x 0.518Microstrip  
Z12, Z13  
Z14, Z15  
Z16*, Z17*  
Z18  
Z19  
PCB  
0.599x 0.253Microstrip  
0.110x 0.253Microstrip  
0.055x 0.253Microstrip  
0.069x 0.082Microstrip  
1.050x 0.082Microstrip  
Arlon CuClad 250GX--0300--55--22, 0.030, ε = 2.55  
r
*Line length includes microstrip bends.  
Figure 2. MRF6VP21KHR6 Test Circuit Schematic  
Table 5. MRF6VP21KHR6 Test Circuit Component Designations and Values  
Part  
Description  
95 , 100 MHz Long Ferrite Bead  
47 μF, 50 V Electrolytic Capacitor  
22 μF, 35 V Tantalum Capacitor  
10 μF, 35 V Tantalum Capacitor  
10K pF Chip Capacitors  
20K pF Chip Capacitors  
0.1 μF, 50 V Chip Capacitors  
2.2 μF, 50 V Chip Capacitor  
0.22 μF, 100 V Chip Capacitor  
1000 pF Chip Capacitors  
27 pF Chip Capacitors  
Part Number  
Manufacturer  
Fair--Rite  
B1  
C1  
C2  
C3  
2743021447  
476KXM050M  
Illinois Cap  
Kemet  
Kemet  
ATC  
T491X226K035AT  
T491D106K035AT  
ATC200B103KT50XT  
ATC200B203KT50XT  
CDR33BX104AKYS  
C1825C225J5RAC  
C1825C223K1GAC  
ATC100B102JT50XT  
ATC100B270JT500XT  
EKME630ELL471MK25S  
ATC100B680JT500XT  
ATC100B4R7JT500XT  
Copper Foil  
C4, C9, C17  
C5, C16  
ATC  
C6, C15  
Kemet  
Kemet  
Kemet  
ATC  
C7  
C8  
C10, C11, C13, C14  
C12, C21, C22  
ATC  
C18, C19, C20  
470 μF, 63 V Electrolytic Capacitors  
68 pF Chip Capacitors  
Multicomp  
ATC  
C23, C24  
C25  
4.7 pF Chip Capacitor  
ATC  
J1, J2  
Jumpers from PCB to T1 and T2  
82 nH Inductor  
L1  
1812SMS--82NJC  
A03TKLC  
CoilCraft  
CoilCraft  
CoilCraft  
L2  
8 nH Inductor  
L3  
1 Turn Inductor, Red Coil  
10 Turn, #18 AWG Inductor, Hand Wound  
1 K, 1/4 W Axial Leaded Resistor  
20 , 3 W Chip Resistor  
Balun  
GA3092--AL  
L4*  
Copper Wire  
R1  
CMF601000R0FKEK  
CPF320R000FKE14  
TUI--9  
Vishay  
R2  
Vishay  
T1  
Comm Concepts  
Comm Concepts  
T2  
Balun  
TUO--4  
*L4 is wrapped around R2.  
MRF6VP21KHR6  
RF Device Data  
Freescale Semiconductor  
3
C1  
C19  
C4  
C5  
C6  
C17  
C16  
C15  
C18  
B1  
L1  
C20  
C2 C3  
C7  
C14  
C13  
L4, R2*  
R1  
C8  
C9  
C21  
C22  
C10  
T2  
C11  
T1  
C23  
J2  
J1  
C24  
L3  
L2  
C12  
C25  
MRF6VP21KH  
Rev. 1  
* L4 is wrapped around R2.  
Figure 3. MRF6VP21KHR6 Test Circuit Component Layout  
MRF6VP21KHR6  
RF Device Data  
Freescale Semiconductor  
4
TYPICAL CHARACTERISTICS  
1000  
100  
10  
100  
C
iss  
C
oss  
T = 200°C  
J
T = 175°C  
J
T = 150°C  
J
Measured with ±30 mV(rms)ac @ 1 MHz  
= 0 Vdc  
10  
V
GS  
C
rss  
T
= 25°C  
C
1
1
0
10  
20  
30  
40  
50  
1
10  
V , DRAIN--SOURCE VOLTAGE (VOLTS)  
DS  
100  
V
, DRAIN--SOURCE VOLTAGE (VOLTS)  
DS  
Note: Each side of device measured separately.  
Figure 4. Capacitance versus Drain--Source Voltage  
Note: Each side of device measured separately.  
Figure 5. DC Safe Operating Area  
26  
80  
70  
60  
50  
40  
65  
Ideal  
V
= 50 Vdc, I = 150 mA, f = 225 MHz  
DQ  
DD  
P3dB = 61.33 dBm (1358.31 W)  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
Pulse Width = 100 μsec, Duty Cycle = 20%  
25  
24  
23  
22  
21  
20  
19  
P1dB = 60.37 dBm (1088.93 W)  
G
ps  
Actual  
30  
20  
10  
η
D
V
= 50 Vdc, I = 150 mA, f = 225 MHz  
DQ  
Pulse Width = 100 μsec, Duty Cycle = 20%  
DD  
10  
100  
, OUTPUT POWER (WATTS) PULSED  
1000 2000  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
P
P , INPUT POWER (dBm) PULSED  
out  
in  
Figure 6. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
Figure 7. Pulsed Output Power versus  
Input Power  
28  
26  
24  
22  
20  
18  
28  
24  
20  
16  
I
= 6000 mA  
DQ  
3600 mA  
1500 mA  
750 mA  
50 V  
45 V  
375 mA  
40 V  
V
= 30 V  
DD  
35 V  
150 mA  
I
= 150 mA, f = 225 MHz  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
DQ  
V
= 50 Vdc, f = 225 MHz  
Pulse Width = 100 μsec, Duty Cycle = 20%  
DD  
12  
10  
100  
1000  
2000  
0
200  
400  
600  
800  
1000 1200 1400 1600  
P
, OUTPUT POWER (WATTS) PULSED  
P
, OUTPUT POWER (WATTS) PULSED  
out  
out  
Figure 9. Pulsed Power Gain versus  
Output Power  
Figure 8. Pulsed Power Gain versus  
Output Power  
MRF6VP21KHR6  
RF Device Data  
Freescale Semiconductor  
5
TYPICAL CHARACTERISTICS  
65  
60  
55  
50  
45  
40  
26  
90  
80  
70  
V
= 50 Vdc  
= 150 mA  
DD  
T
= --30_C  
T
= --30_C  
C
C
25  
24  
23  
22  
21  
20  
19  
18  
I
DQ  
f = 225 MHz  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
85_C  
85_C  
25_C  
60  
50  
40  
25_C  
V
I
= 50 Vdc  
DD  
= 150 mA  
DQ  
η
D
G
ps  
f = 225 MHz  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
30  
20  
10  
20  
25  
30  
35  
40  
45  
10  
100  
, OUTPUT POWER (WATTS) PULSED  
out  
1000 2000  
P , INPUT POWER (dBm) PULSED  
P
in  
Figure 10. Pulsed Output Power versus  
Input Power  
Figure 11. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
9
0.2  
0.18  
0.16  
10  
D = 0.7  
D = 0.5  
0.14  
0.12  
8
7
6
10  
10  
10  
0.1  
P
0.08  
D
t
1
t
0.06  
0.04  
2
D = Duty Factor = t /t  
1
2
t = Pulse Width  
1
D = 0.1  
t = Pulse Period  
2
0.02  
0
T = P * Z + T  
J
D
JC  
C
0.00001 0.0001  
0.001  
0.01  
0.1  
1
10  
90  
110  
130  
150  
170  
190  
210  
230  
250  
RECTANGULAR PULSE WIDTH (S)  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 12. Maximum Transient Thermal Impedance  
This above graph displays calculated MTTF in hours when the device  
is operated at V = 50 Vdc, P = 1000 W Peak, Pulse Width = 100 μsec,  
DD  
out  
Duty Cycle = 20%, and η = 67.5%.  
D
MTTF calculator available at http://www.freescale.com/rf. Select  
Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
Figure 13. MTTF versus Junction Temperature  
MRF6VP21KHR6  
RF Device Data  
Freescale Semiconductor  
6
f = 225 MHz  
Z
source  
Z = 5 Ω  
o
f = 225 MHz  
Z
load  
V
= 50 Vdc, I = 150 mA, P = 1000 W Peak  
DQ out  
DD  
f
Z
Z
load  
source  
MHz  
225  
1.16 + j4.06  
2.86 + j1.10  
Z
Z
=
=
Test circuit impedance as measured from  
gate to gate, balanced configuration.  
source  
Test circuit impedance as measured from  
drain to drain, balanced configuration.  
load  
Device  
Under  
Test  
Output  
Matching  
Network  
Input  
Matching  
Network  
+
--  
--  
+
Z
Z
source  
load  
Figure 14. Series Equivalent Source and Load Impedance  
MRF6VP21KHR6  
RF Device Data  
Freescale Semiconductor  
7
PACKAGE DIMENSIONS  
MRF6VP21KHR6  
RF Device Data  
Freescale Semiconductor  
8
MRF6VP21KHR6  
RF Device Data  
Freescale Semiconductor  
9
PRODUCT DOCUMENTATION AND SOFTWARE  
Refer to the following documents to aid your design process.  
Application Notes  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
Electromigration MTTF Calculator  
RF High Power Model  
For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software &  
Tools tab on the part’s Product Summary page to download the respective tool.  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
1
Jan. 2008  
Apr. 2008  
Initial Release of Data Sheet  
Corrected description and part number for the R1 resistor and updated R2 resistor to latest RoHS  
compliant part number in Table 5, Test Circuit Component Designations and Values, and updated the  
footnote to read “L4” versus “L3”, p. 3.  
Added Fig. 12, Maximum Transient Thermal Impedance, p. 6  
2
Sept. 2008  
Added Note to Fig. 4, Capacitance versus Drain--Source Voltage, to denote that each side of device is  
measured separately, p. 5  
Updated Fig. 5, DC Safe Operating Area, to clarify that measurement is on a per--side basis, p. 5  
Corrected Fig. 13, MTTF versus Junction Temperature, to reflect the correct die size and increased the  
MTTF factor accordingly, p. 6  
3
4
Dec. 2008  
Apr. 2010  
Fig. 14, Series Equivalent Source and Load Impedance, corrected Z  
impedance as measured from gate to gate, balanced configuration” and Z  
impedance as measured from drain to drain, balanced configuration”; replaced impedance diagram to  
show push--pull test conditions, p. 7  
copy to read “Test circuit  
source  
copy to read “Test circuit  
load  
Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related  
“Continuous use at maximum temperature will affect MTTF” footnote added, p. 1  
Reporting of pulsed thermal data now shown using the Z  
symbol, p. 1  
JC  
θ
Added Electromigration MTTF Calculator and RF High Power Model availability to Product Software,  
p. 10  
MRF6VP21KHR6  
RF Device Data  
Freescale Semiconductor  
10  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1--800--521--6274 or +1--480--768--2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1--8--1, Shimo--Meguro, Meguro--ku,  
Tokyo 153--0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1--800--441--2447 or +1--303--675--2140  
Fax: +1--303--675--2150  
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor, Inc. 2008, 2010. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MRF6VP21KH  
Rev.4, 4/2010

相关型号:

MRF6VP2600H

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET
FREESCALE

MRF6VP2600HR6

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET
FREESCALE

MRF6VP2600HR6_10

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET
FREESCALE

MRF6VP3091N

RF Power LDMOS Transistors Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF6VP3091NBR1

Broadband RF Power LDMOS Transistor, 470-860 MHz, 90 W, 50 V
NXP

MRF6VP3091NBR5

Broadband RF Power LDMOS Transistor, 470-860 MHz, 90 W, 50 V
NXP

MRF6VP3091NR5

2 CHANNEL, UHF BAND, Si, N-CHANNEL, RF POWER, MOSFET, TO-270, ROHS COMPLIANT, PLASTIC, CASE 1486-03, WB-4, 4 PIN
NXP

MRF6VP3450HR5

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF6VP3450HR6

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF6VP3450HR6_10

RF Power Field Effect Transistors
FREESCALE

MRF6VP3450HSR5

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF6VP3450HSR6

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE