MRF6VP2600HR6_10 [FREESCALE]

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET; 射频功率场效应晶体管N - 沟道增强 - 模式横向MOSFET
MRF6VP2600HR6_10
型号: MRF6VP2600HR6_10
厂家: Freescale    Freescale
描述:

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET
射频功率场效应晶体管N - 沟道增强 - 模式横向MOSFET

晶体 晶体管 功率场效应晶体管 射频
文件: 总19页 (文件大小:1439K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MRF6VP2600H  
Rev. 5.1, 7/2010  
Freescale Semiconductor  
Technical Data  
RF Power Field Effect Transistor  
N--Channel Enhancement--Mode Lateral MOSFET  
Designed primarily for wideband applications with frequencies up to 500 MHz.  
Device is unmatched and is suitable for use in broadcast applications.  
MRF6VP2600HR6  
Typical DVB--T OFDM Performance: VDD = 50 Volts, IDQ = 2600 mA,  
Pout = 125 Watts Avg., f = 225 MHz, Channel Bandwidth = 7.61 MHz,  
Input Signal PAR = 9.3 dB @ 0.01% Probability on CCDF.  
Power Gain — 25 dB  
2--500 MHz, 600 W, 50 V  
LATERAL N--CHANNEL  
BROADBAND  
Drain Efficiency — 28.5%  
RF POWER MOSFET  
ACPR @ 4 MHz Offset — --61 dBc @ 4 kHz Bandwidth  
Typical Pulsed Performance: VDD = 50 Volts, IDQ = 2600 mA,  
Pout = 600 Watts Peak, f = 225 MHz, Pulse Width = 100 μsec, Duty  
Cycle = 20%  
Power Gain — 25.3 dB  
Drain Efficiency — 59%  
Capable of Handling 10:1 VSWR, @ 50 Vdc, 225 MHz, 600 Watts Peak  
Power, Pulse Width = 100 μsec, Duty Cycle = 20%  
Features  
Characterized with Series Equivalent Large--Signal Impedance Parameters  
CASE 375D--05, STYLE 1  
NI--1230  
CW Operation Capability with Adequate Cooling  
Qualified Up to a Maximum of 50 VDD Operation  
Integrated ESD Protection  
Designed for Push--Pull Operation  
Greater Negative Gate--Source Voltage Range for Improved Class C  
Operation  
PART IS PUSH--PULL  
RoHS Compliant  
In Tape and Reel. R6 Suffix = 150 Units per 56 mm, 13 inch Reel.  
RF /V  
RF /V  
outA DSA  
3
4
1
2
inA GSA  
RF /V  
inB GSB  
RF /V  
outB DSB  
(Top View)  
Figure 1. Pin Connections  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
--0.5, +110  
--6.0, +10  
-- 65 to +150  
150  
Unit  
Drain--Source Voltage  
V
Vdc  
Vdc  
°C  
DSS  
Gate--Source Voltage  
V
GS  
Storage Temperature Range  
Case Operating Temperature  
Operating Junction Temperature  
T
stg  
T
C
°C  
(1,2)  
T
J
225  
°C  
Table 2. Thermal Characteristics  
(2,3)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
R
θ
°C/W  
JC  
Case Temperature 99°C, 125 W CW, 225 MHz, 50 Vdc, I = 2600 mA  
0.20  
0.14  
0.16  
DQ  
Case Temperature 64°C, 610 W CW, 352.2 MHz, 50 Vdc, I  
= 150 mA  
DQ  
Case Temperature 81°C, 610 W CW, 88--108 MHz, 50 Vdc, I  
= 150 mA  
DQ  
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes -- AN1955.  
© Freescale Semiconductor, Inc., 2008--2010. All rights reserved.  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22--A114)  
Machine Model (per EIA/JESD22--A115)  
Charge Device Model (per JESD22--C101)  
2 (Minimum)  
A (Minimum)  
IV (Minimum)  
Table 4. Electrical Characteristics (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(1)  
Off Characteristics  
Gate--Source Leakage Current  
I
110  
10  
μAdc  
Vdc  
GSS  
(V = 5 Vdc, V = 0 Vdc)  
GS  
DS  
Drain--Source Breakdown Voltage  
(I = 150 mA, V = 0 Vdc)  
V
(BR)DSS  
D
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 50 Vdc, V = 0 Vdc)  
I
I
50  
2.5  
μAdc  
mA  
DSS  
DSS  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 100 Vdc, V = 0 Vdc)  
DS  
GS  
On Characteristics  
(1)  
Gate Threshold Voltage  
(V = 10 Vdc, I = 800 μAdc)  
V
1
1.65  
2.7  
3
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
DS(on)  
DS  
D
(2)  
Gate Quiescent Voltage  
(V = 50 Vdc, I = 2600 mAdc, Measured in Functional Test)  
V
1.5  
3.5  
DD  
D
(1)  
Drain--Source On--Voltage  
(V = 10 Vdc, I = 2 Adc)  
V
0.25  
GS  
D
(1)  
Dynamic Characteristics  
Reverse Transfer Capacitance  
(V = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
1.7  
101  
287  
pF  
pF  
pF  
rss  
GS  
Output Capacitance  
(V = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
oss  
GS  
Input Capacitance  
C
iss  
(V = 50 Vdc, V = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)  
DS  
GS  
(2)  
Functional Tests  
(In Freescale Test Fixture, 50 ohm system) V = 50 Vdc, I = 2600 mA, P = 125 W Avg., f = 225 MHz, DVB--T  
DD DQ out  
OFDM Single Channel. ACPR measured in 7.61 MHz Channel Bandwidth @ ±4 MHz Offset.  
Power Gain  
G
24  
27  
25  
27  
dB  
%
ps  
D
Drain Efficiency  
η
28.5  
-- 6 1  
-- 1 8  
Adjacent Channel Power Ratio  
Input Return Loss  
ACPR  
IRL  
-- 5 9  
-- 9  
dBc  
dB  
Typical Performance — 352.2 MHz (In Freescale 352.2 MHz Test Fixture, 50 ohm system) V = 50 Vdc, I = 150 mA, P = 600 W CW  
DD  
DQ  
out  
Power Gain  
G
22  
dB  
%
ps  
D
Drain Efficiency  
Input Return Loss  
η
68  
IRL  
-- 1 5  
dB  
Typical Performance — 88--108 MHz (In Freescale 88--108 MHz Test Fixture, 50 ohm system) V = 50 Vdc, I = 150 mA, P = 600 W  
DD  
DQ  
out  
CW  
Power Gain  
G
24.5  
74  
dB  
%
ps  
D
Drain Efficiency  
η
Input Return Loss  
IRL  
-- 5  
dB  
1. Each side of device measured separately.  
2. Measurement made with device in push--pull configuration.  
MRF6VP2600HR6  
RF Device Data  
Freescale Semiconductor  
2
R1  
L4  
V
V
SUPPLY  
BIAS  
B1  
L3  
L2  
+
+
+
+
+
+
C16 C15 C14  
C13 C12 C11  
C9 C8 C7 C10  
C6  
C19 C17 C18  
C20 C21 C22 C23 C24 C25  
Z9 Z11 Z13  
Z15  
Z17  
Z5 Z7  
RF  
RF  
INPUT  
OUTPUT  
Z1  
Z2  
Z3  
Z4  
Z19 Z20  
L1  
DUT  
C3  
Z16  
C4  
Z18  
J2  
J1  
Z6 Z8  
C5  
C1  
C2  
Z10 Z12 Z14  
T1  
T2  
Z1  
1.049x 0.080Microstrip  
0.143x 0.080Microstrip  
0.188x 0.080Microstrip  
0.192x 0.133Microstrip  
0.418x 0.193Microstrip  
0.217x 0.518Microstrip  
0.200x 0.518Microstrip  
0.375x 0.214Microstrip  
Z13, Z14  
Z15*, Z16*  
Z17, Z18  
Z19  
Z20  
PCB  
0.224x 0.253Microstrip  
0.095x 0.253Microstrip  
0.052x 0.253Microstrip  
0.053x 0.080Microstrip  
1.062x 0.080Microstrip  
Z2*  
Z3*  
Z4  
Z5, Z6  
Z7, Z8  
Arlon CuClad 250GX--0300--55--22, 0.030, ε = 2.55  
r
Z9, Z10  
Z11, Z12  
* Line length includes microstrip bends  
Figure 2. MRF6VP2600HR6 Test Circuit Schematic  
Table 5. MRF6VP2600HR6 Test Circuit Component Designations and Values  
Part  
Description  
95 , 100 MHz Long Ferrite Bead  
47 pF Chip Capacitor  
Part Number  
Manufacturer  
Fair--Rite  
B1  
2743021447  
C1  
ATC100B470JT500XT  
ATC100B430JT500XT  
ATC100B101JT500XT  
ATC100B7R5CT500XT  
C1825C225J5RAC  
ATC200B103KT50XT  
C1812C224J5RAC  
ATC100B102JT50XT  
CDR33BX104AKYS  
ATC200B203KT50XT  
T491D106K035AT  
T491X226K035AT  
476KXM050M  
ATC  
C2, C4  
C3  
43 pF Chip Capacitors  
ATC  
100 pF Chip Capacitor  
ATC  
C5  
10 pF Chip Capacitor  
ATC  
C6, C9  
2.2 μF, 50 V Chip Capacitors  
10K pF Chip Capacitors  
Kemet  
ATC  
C7, C13, C20  
C8  
220 nF, 50 V Chip Capacitor  
1000 pF Chip Capacitors  
0.1 μF, 50 V Chip Capacitors  
20K pF Chip Capacitors  
Kemet  
ATC  
C10, C17, C18  
C11, C22  
Kemet  
ATC  
C12, C21  
C14  
10 μF, 35 V Tantalum Capacitor  
22 μF, 35 V Tantalum Capacitor  
47 μF, 50 V Electrolytic Capacitor  
2.2 μF, Chip Capacitor  
Kemet  
Kemet  
Illinois Cap  
ATC  
C15  
C16  
C19  
2225X7R225KT3AB  
MCGPR63V477M13X26--RH  
Copper Foil  
C23, C24, C25  
470 μF 63V Electrolytic Capacitors  
Jumpers from PCB to T1 & T2  
17.5 nH, 6 Turn Inductor  
Multicomp  
J1, J2  
L1  
B06T  
CoilCraft  
CoilCraft  
L2  
8 Turn, #20 AWG ID = 0.125Inductor, Hand Wound  
82 nH, Inductor  
Copper Wire  
L3  
1812SMS--82NJ  
Copper Wire  
L4*  
R1  
T1  
9 Turn, #18 AWG Inductor, Hand Wound  
20 , 3 W Axial Leaded Resistor  
Balun  
5093NW20R00J  
TUI--9  
Vishay  
Comm Concepts  
Comm Concepts  
T2  
Balun  
TUO--4  
*L4 is wrapped around R1.  
MRF6VP2600HR6  
RF Device Data  
Freescale Semiconductor  
3
- -  
B1  
C23  
C13  
C12  
C11  
C1+ 6  
C22  
C21  
C20  
C25 --  
C24  
L4, R1*  
C15  
C14  
L3  
L2  
--  
C18  
C17  
C9  
C19  
C8  
C7  
C10  
T2  
C6  
T1  
J1  
J2  
C4  
C1 L1  
C2  
C5  
C3 (on side)  
MRF6VP2600H  
225 MHz  
Rev. 3  
* L4 is wrapped around R1.  
Figure 3. MRF6VP2600HR6 Test Circuit Component Layout  
MRF6VP2600HR6  
RF Device Data  
Freescale Semiconductor  
4
TYPICAL CHARACTERISTICS  
1000  
100  
10  
100  
C
iss  
C
oss  
T = 200_C  
J
T = 175_C  
J
T = 150_C  
J
Measured with ±30 mV(rms)ac @ 1 MHz  
= 0 Vdc  
10  
V
GS  
C
rss  
T
= 25_C  
C
1
1
0
10  
20  
30  
40  
50  
1
10  
100  
V
, DRAIN--SOURCE VOLTAGE (VOLTS)  
V
, DRAIN--SOURCE VOLTAGE (VOLTS)  
DS  
DS  
Note: Each side of device measured separately.  
Figure 4. Capacitance versus Drain--Source Voltage  
Note: Each side of device measured separately.  
Figure 5. DC Safe Operating Area  
26.5  
64  
62  
60  
58  
56  
80  
Ideal  
G
P3dB = 59.7 dBm (938 W)  
ps  
26  
25.5  
25  
70  
60  
50  
40  
P2dB = 59.1 dBm (827 W)  
V
= 50 Vdc, I = 2600 mA  
DQ  
DD  
P1dB = 53.3 dBm (670 W)  
Actual  
f = 225 MHz  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
24.5  
24  
η
D
30  
20  
23.5  
54  
52  
V
= 50 Vdc, I = 2600 mA, f = 225 MHz  
DQ  
DD  
10  
0
23  
Pulse Width = 12 μsec, Duty Cycle = 1%  
22.5  
10  
100  
, OUTPUT POWER (WATTS) PULSED  
1000  
27 28 29 30 31 32 33 34 35 36 37 38  
P
P , INPUT POWER (dBm)  
in  
out  
Figure 6. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
Figure 7. Pulsed CW Output Power versus  
Input Power  
26  
25  
24  
23  
22  
21  
28  
27  
26  
25  
24  
23  
22  
80  
70  
60  
50  
40  
30  
20  
G
ps  
T
= --30_C  
C
50 V  
25_C  
85_C  
45 V  
40 V  
V
= 50 Vdc, I = 2600 mA  
DQ  
DD  
V
= 50 Vdc  
= 2600 mA  
η
D
DD  
f = 225 MHz  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
I
DQ  
35 V  
f = 225 MHz  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
V
= 30 V  
DD  
21  
10  
10  
1000  
0
100  
200  
300  
400  
500  
600  
700  
100  
, OUTPUT POWER (WATTS) PULSED  
P
, OUTPUT POWER (WATTS) PULSED  
P
out  
out  
Figure 9. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
Figure 8. Pulsed Power Gain versus  
Output Power  
MRF6VP2600HR6  
RF Device Data  
Freescale Semiconductor  
5
TYPICAL CHARACTERISTICS — TWO--TONE  
-- 20  
-- 30  
-- 40  
-- 50  
-- 60  
-- 7 0  
-- 10  
V
= 50 Vdc, I = 2600 mA, f1 = 222 MHz  
DQ  
V
= 50 Vdc, P = 500 W (PEP), I = 2600 mA  
out DQ  
DD  
DD  
f2 = 228 MHz, Two--Tone Measurements  
Two--Tone Measurements  
-- 20  
-- 30  
-- 40  
-- 50  
3rd Order  
3rd Order  
5th Order  
7th Order  
5th Order  
7th Order  
-- 60  
5
10  
100  
, OUTPUT POWER (WATTS) PEP  
700  
0.1  
1
10  
40  
P
TWO--TONE SPACING (MHz)  
out  
Figure 10. Intermodulation Distortion  
Products versus Output Power  
Figure 11. Intermodulation Distortion  
Products versus Tone Spacing  
26  
25.5  
25  
-- 20  
-- 25  
-- 30  
-- 35  
V
= 50 Vdc, f1 = 222 MHz, f2 = 228 MHz  
DD  
Two--Tone Measurements, 6 MHz Tone Spacing  
I
= 2600 mA  
DQ  
2300 mA  
2000 mA  
I
= 1300 mA  
2600 mA  
DQ  
24.5  
-- 40  
-- 45  
-- 50  
1800 mA  
1800 mA  
1300 mA  
24  
V
= 50 Vdc, f1 = 222 MHz, f2 = 228 MHz  
DD  
2000 mA  
Two--Tone Measurements, 6 MHz Tone Spacing  
2300 mA  
23.5  
20  
100  
700  
20  
100  
, OUTPUT POWER (WATTS) PEP  
700  
P
P
, OUTPUT POWER (WATTS) PEP  
out  
out  
Figure 13. Third Order Intermodulation  
Distortion versus Output Power  
Figure 12. Two--Tone Power Gain versus  
Output Power  
MRF6VP2600HR6  
RF Device Data  
Freescale Semiconductor  
6
TYPICAL CHARACTERISTICS — OFDM  
100  
10  
-- 20  
-- 30  
-- 40  
7.61 MHz  
1
-- 50  
4 kHz BW  
4 kHz BW  
-- 60  
-- 70  
-- 80  
-- 90  
0.1  
0.01  
ACPR Measured at 4 MHz Offset  
from Center Frequency  
8K Mode DVB--T OFDM  
64 QAM Data Carrier Modulation  
5 Symbols  
8K Mode DVB--T OFDM  
64 QAM Data Carrier Modulation, 5 Symbols  
0.001  
--100  
-- 11 0  
0.0001  
0
2
4
6
8
10  
12  
-- 5  
-- 4  
-- 3  
-- 2  
-- 1  
0
1
2
3
4
5
PEAK--TO--AVERAGE (dB)  
f, FREQUENCY (MHz)  
Figure 14. Single--Carrier DVB--T OFDM  
Figure 15. 8K Mode DVB--T OFDM Spectrum  
25.8  
-- 5 6  
-- 5 8  
-- 6 0  
-- 6 2  
V
= 50 Vdc, f = 225 MHz  
DD  
I
= 2600 mA  
DQ  
25.6  
25.4  
25.2  
25  
8K Mode OFDM, 64 QAM Data Carrier  
Modulation, 5 Symbols  
2300 mA  
2000 mA  
1800 mA  
1300 mA  
I
= 1300 mA  
DQ  
24.8  
24.6  
24.4  
24.2  
-- 6 4  
-- 6 6  
-- 6 8  
1800 mA  
2000 mA  
V
= 50 Vdc, f = 225 MHz  
DD  
8K Mode OFDM, 64 QAM Data Carrier  
Modulation, 5 Symbols  
2300 mA  
2600 mA  
30  
100  
200  
20  
100  
P , OUTPUT POWER (WATTS) AVG.  
out  
200  
P
, OUTPUT POWER (WATTS) AVG.  
out  
Figure 16. Single--Carrier DVB--T OFDM Power  
Gain versus Output Power  
Figure 17. Single--Carrier DVB--T OFDM ACPR  
versus Output Power  
45  
40  
35  
-- 5 6  
25_C  
-- 3 0 _C  
-- 5 8  
-- 6 0  
-- 6 2  
-- 6 4  
-- 6 6  
-- 6 8  
85_C  
ACPR  
η
D
30  
25_C  
T
= --30_C  
C
G
ps  
25  
85_C  
V
= 50 Vdc, I = 2600 MHz  
DQ  
DD  
f = 225 MHz, 8K Mode OFDM  
64 QAM Data Carrier Modulation  
5 Symbols  
20  
15  
30  
100  
, OUTPUT POWER (WATTS) AVG.  
400  
P
out  
Figure 18. Single--Carrier DVB--T OFDM ACPR Power  
Gain and Drain Efficiency versus Output Power  
MRF6VP2600HR6  
RF Device Data  
Freescale Semiconductor  
7
TYPICAL CHARACTERISTICS  
9
8
7
10  
10  
10  
6
10  
10  
5
90  
110  
130  
150  
170  
190  
210  
230  
250  
T , JUNCTION TEMPERATURE (°C)  
J
This above graph displays calculated MTTF in hours when the device  
is operated at V = 50 Vdc, P = 125 W Avg., and η = 28.5%.  
DD  
out  
D
MTTF calculator available at http://www.freescale.com/rf. Select  
Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
Figure 19. MTTF versus Junction Temperature -- CW  
MRF6VP2600HR6  
RF Device Data  
Freescale Semiconductor  
8
Z
source  
f = 225 MHz  
Z = 10 Ω  
o
Z
load  
f = 225 MHz  
V
= 50 Vdc, I = 2600 mA, P = 125 W Avg.  
DQ out  
DD  
f
Z
Z
load  
source  
MHz  
225  
1.42 + j8.09  
4.45 + j1.16  
Z
Z
=
=
Test circuit impedance as measured from  
gate to gate, balanced configuration.  
source  
Test circuit impedance as measured from  
drain to drain, balanced configuration.  
load  
Device  
Under  
Test  
Output  
Matching  
Network  
Input  
Matching  
Network  
+
--  
--  
+
Z
Z
source  
load  
Figure 20. Series Equivalent Source and Load Impedance  
MRF6VP2600HR6  
RF Device Data  
Freescale Semiconductor  
9
COAX1  
C15  
C16  
C17  
C18  
+
C14  
+
+
C1  
J1  
C3  
B1  
C5  
R1  
C7  
C8  
L3  
L4  
C4  
L1  
C9  
T1  
C10  
L2  
C2  
C6  
C11  
C12  
COAX3  
C13  
COAX2  
88--108 MHz  
MRF6VP2600KH Rev. 2  
Figure 21. MRF6VP2600HR6 Test Circuit Component Layout — 88--108 MHz  
Table 6. MRF6VP2600HR6 Test Circuit Component Designations and Values — 88--108 MHz  
Part  
Description  
95 , 100 MHz Long Ferrite Bead  
6.8 μF, 50 V Chip Capacitor  
30 pF Chip Capacitor  
Part Number  
Manufacturer  
Fair--Rite  
B1  
C1  
C2  
2743021447  
C4532X7R1H685K  
TDK  
ATC  
ATC100B300JT500XT  
ATC100B102JT50XT  
GRM31CR72A105KA01L  
ATC700B392JT50X  
C3, C13, C14  
C4, C5, C6  
1000 pF Chip Capacitors  
ATC  
1 μF, 100 V Chip Capacitors  
3900 pF Chip Capacitors  
Murata  
ATC  
C7, C8, C9, C10,  
C11, C12  
C15  
4.7 μF, 100 V Chip Capacitor  
GRM55ER72A475KA01B  
Murata  
C16, C17  
470 μF, 63 V Electrolytic Capacitors  
220 μF, 100 V Electrolytic Capacitor  
Jumper with Copper Tape  
MCGPR63V477M13X26--RH  
MCGPR100V227M16X26--RH  
Multicomp  
Multicomp  
C18  
J1  
L1  
82 nH Inductor  
1812SMS--82NJ  
Copper Wire  
CoilCraft  
L2  
8 Turn, #14 AWG ID=0.250Inductor, Hand Wound  
8 nH Inductors  
Freescale  
CoilCraft  
L3, L4  
R1  
A03TKLC  
15 , 1/4 W Chip Resistor  
CRCW120615R0FKEA  
TUI--LF--9  
Vishay  
T1  
Balun Transformer  
Comm Concepts  
Micro--Coax  
Micro--Coax  
Arlon  
Coax1, Coax2  
Coax3  
PCB  
25 , Semi Rigid RF Cable, 3 mm Line, 16 cm Length  
25 , Semi Rigid RF Cable, 3 mm Line, 15 cm Length  
UT--141C--25  
UT--141C--25  
GX0300--55--22  
0.030, ε = 2.55  
r
MRF6VP2600HR6  
RF Device Data  
Freescale Semiconductor  
10  
TYPICAL CHARACTERISTICS — 88--108 MHz  
30  
29  
28  
27  
26  
25  
85  
108 MHz  
V
= 50 Vdc, I = 150 mA  
DD  
DQ  
80  
75  
70  
65  
60  
55  
98 MHz  
88 MHz  
108 MHz  
G
ps  
98 MHz  
88 MHz  
24  
23  
50  
45  
40  
35  
η
D
22  
21  
20  
100  
200  
300  
400  
500 600 700 800  
P
, OUTPUT POWER (WATTS)  
out  
Figure 22. Broadband CW Power Gain and Drain  
Efficiency versus Output Power — 88--108 MHz  
27  
26.5  
26  
82  
81  
80  
79  
78  
77  
76  
75  
V
P
= 50 Vdc, I = 150 mA  
= 600 W, CW  
DD  
out  
DQ  
25.5  
25  
G
ps  
24.5  
24  
23.5  
23  
η
D
74  
73  
72  
22.5  
22  
86  
90  
94  
98  
102  
106  
110  
f, FREQUENCY (MHz)  
Figure 23. CW Power Gain and Drain Efficiency  
versus Frequency — 88--108 MHz  
MRF6VP2600HR6  
RF Device Data  
Freescale Semiconductor  
11  
f = 88 MHz  
f = 108 MHz  
Z
source  
Z = 25 Ω  
o
Z
load  
f = 108 MHz  
f = 88 MHz  
V
= 50 Vdc, I = 150 mA, P = 600 W Avg.  
DQ out  
DD  
f
Z
Z
load  
source  
MHz  
88  
3.20 + j14.50  
4.20 + j15.00  
4.00 + j15.00  
10.35 + j2.80  
9.50 + j3.00  
8.90 + j3.50  
98  
108  
Z
Z
=
=
Test circuit impedance as measured from  
gate to gate, balanced configuration.  
source  
Test circuit impedance as measured from  
drain to drain, balanced configuration.  
load  
Device  
Under  
Test  
Output  
Matching  
Network  
Input  
Matching  
Network  
+
--  
--  
+
Z
Z
source  
load  
Figure 24. Series Equivalent Source and Load Impedance — 88--108 MHz  
MRF6VP2600HR6  
RF Device Data  
Freescale Semiconductor  
12  
- - - -  
C9  
C11  
C20  
C22  
MRF6VP2600H  
352.2 MHz  
Rev. 1  
B1  
C7  
C5  
L3  
C18  
L1  
COAX1  
COAX3  
C14  
C17  
C3*  
C13  
C1  
C15  
C16  
C2  
C24*  
C4*  
COAX2  
COAX4  
L2  
C19  
L4  
C6  
C8  
C10  
B2  
C21  
C23  
-- --  
C12  
*Mounted on side  
Figure 25. MRF6VP2600HR6 Test Circuit Component Layout — 352.2 MHz  
Table 7. MRF6VP2600HR6 Test Circuit Component Designations and Values — 352.2 MHz  
Part  
Description  
47 , 100 MHz Short Ferrite Beads  
100 pF Chip Capacitors  
Part Number  
Manufacturer  
B1, B2  
C1, C2  
2743019447  
Fair--Rite  
ATC100B101JT500XT  
ATC100B221JT300XT  
ATC100B200JT500XT  
C1825C225J5RAC--TU  
C1812C224K5RAC--TU  
CDR33BX104AKWS  
476KXM050M  
ATC  
C3*, C24*  
C4*  
22 pF Chip Capacitors  
ATC  
20 pF Chip Capacitor  
ATC  
C5, C6  
C7, C8  
C9, C10  
C11, C12  
C13  
2.2 μF Chip Capacitors  
Kemet  
Kemet  
AVX  
220 nF Chip Capacitors  
0.1 μF Chip Capacitors  
47 μF, 50 V Electrolytic Capacitors  
39 pF, 500 V Chip Capacitor  
240 pF Chip Capacitors  
Illinois Cap  
CDE  
MCM01--009DD390J--F  
ATC100B241JT200XT  
C14, C15, C16,  
C17  
ATC  
C18, C19  
2.2 μF Chip Capacitors  
G2225X7R225KT3AB  
ATC  
C20, C21, C22,  
C23  
470 μF, 63 V Electrolytic Capacitors  
MCGPR63V477M13X26--RH  
Multicomp  
Coax1, 2, 3, 4  
L1, L2  
25 , Semi Rigid Coax, 2.2″  
UT141--25  
A01TKLC  
Precision Tube Company  
Coilcraft  
2.5 nH, 1 Turn Inductors  
L3, L4  
10 Turn, #16 AWG ID=0.160Inductors, Hand Wound  
Copper Wire  
Freescale  
*Mounted on side  
MRF6VP2600HR6  
RF Device Data  
Freescale Semiconductor  
13  
TYPICAL CHARACTERISTICS — 352.2 MHz  
23  
22  
21  
20  
19  
18  
17  
16  
15  
80  
70  
60  
50  
40  
G
ps  
V
= 50 Vdc  
= 150 mA  
DD  
I
DQ  
f = 352.2 MHz  
η
D
30  
20  
10  
0
10  
100  
, OUTPUT POWER (WATTS) CW  
1000  
P
out  
Figure 26. CW Power Gain and Drain Efficiency  
versus Output Power  
MRF6VP2600HR6  
RF Device Data  
Freescale Semiconductor  
14  
Z = 10 Ω  
o
f = 352.2 MHz  
Z
source  
f = 352.2 MHz  
Z
load  
V
= 50 Vdc, I = 150 mA, P = 600 W CW  
DQ out  
DD  
f
Z
Z
load  
source  
MHz  
352.2  
1.10 + j3.80  
2.26 + j3.57  
Z
Z
=
=
Test circuit impedance as measured from  
gate to gate, balanced configuration.  
source  
Test circuit impedance as measured from  
drain to drain, balanced configuration.  
load  
Device  
Under  
Test  
Output  
Matching  
Network  
Input  
Matching  
Network  
+
--  
--  
+
Z
Z
source  
load  
Figure 27. Series Equivalent Source and Load Impedance — 352.2 MHz  
MRF6VP2600HR6  
RF Device Data  
Freescale Semiconductor  
15  
PACKAGE DIMENSIONS  
MRF6VP2600HR6  
RF Device Data  
Freescale Semiconductor  
16  
MRF6VP2600HR6  
RF Device Data  
Freescale Semiconductor  
17  
PRODUCT DOCUMENTATION AND SOFTWARE  
Refer to the following documents to aid your design process.  
Application Notes  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
Electromigration MTTF Calculator  
RF High Power Model  
For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software &  
Tools tab on the part’s Product Summary page to download the respective tool.  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
1
Mar. 2008  
July 2008  
Initial Release of Data Sheet  
Removed Capable of Handling 5:1 VSWR bullet, p. 1  
Corrected Z and Z values from 1.58 + j6.47 to 1.42 + j8.09 and 4.60 + j1.85 to 4.45 + j1.16 and re-  
source  
load  
plotted data in Fig. 21, Series Equivalent Source and Load Impedance, p. 9  
2
Sept. 2008  
Added Note to Fig. 4, Capacitance versus Drain--Source Voltage and Fig. 5, DC Safe Operating Area to de-  
note that each side of device is measured separately, p. 5  
Updated Fig. 5, DC Safe Operating Area, to show one side of the device, p. 5  
Figs. 21 and 27, Series Equivalent Source and Load Impedance, corrected Z  
copy to read “Test circuit  
source  
impedance as measured from gate to gate, balanced configuration” and Z  
copy to read “Test circuit  
load  
impedance as measured from gate to gate, balanced configuration”, p. 9, 14  
2.1  
4
Nov. 2008  
May 2009  
Corrected Figs. 21 and 27 Revision History Z copy to read ”Test circuit impedance as measured from  
drain to drain, balanced configuration”, p. 9, 14  
load  
Updated bullets in Features section to reflect consistent listing across products, p. 1  
Added thermal data for 352.2 MHz application to Table 2, Thermal Characteristics, p. 1  
Added Typical Performances table for 352.2 MHz application, p. 2  
Added Fig. 28, Test Circuit Component Layout -- 352.2 MHz and Table 7, Test Circuit Component Designations  
and Values -- 352.2 MHz, p. 15  
Added Fig. 29, CW Power Gain and Drain Efficiency versus Output Power -- 352.2 MHz p. 16  
Added Fig. 30, Series Equivalent Source and Load Impedance -- 352.2 MHz, p. 17  
4.1  
June 2009  
May 2010  
Changed “EKME630ELL471MK25S” part number to “MCGPR63V477M13X26--RH”, Table 5, Test Circuit  
Component Designations and Values and Table 6, Test Circuit Component Designations and Values —  
88--108 MHz, p. 3, 11  
Added Electromigration MTTF Calculator and RF High Power Model availability to Product Documentation,  
Tools and Software, p. 20  
5
Changed 10--500 MHz to 2--500 MHz in Device Description box, p. 1  
Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related  
“Continuous use at maximum temperature will affect MTTF” footnote added, p. 1  
Added thermal data for 88--108 MHz application to Thermal Characteristics table, p. 1  
Added Typical Performance table for 88--108 MHz application, p. 2  
Removed Fig. 20, MTTF versus Junction Temperature -- Pulsed and renumbered accordingly, p. 8  
Replaced Fig. 22 Test Circuit Component Layout, Table 6. Test Circuit Component Designations and Values,  
the Typical Characteristic curves and Fig. 27 Series Impedance for 88--108 MHz with improved circuit  
performance figures. The 88--108 MHz application circuit is also now a more compact size., p. 10--12  
5.1  
July 2010  
Fig. 24, Series Impedance for 88--108 MHz, table and plot updated to reflect correct location of Z  
and  
source  
Z
load  
, p. 12  
MRF6VP2600HR6  
RF Device Data  
Freescale Semiconductor  
18  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1--800--521--6274 or +1--480--768--2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1--8--1, Shimo--Meguro, Meguro--ku,  
Tokyo 153--0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1--800--441--2447 or +1--303--675--2140  
Fax: +1--303--675--2150  
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor, Inc. 2008--2010. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MRF6VP2600H  
Rev. 5.1, 7/2010

相关型号:

MRF6VP3091N

RF Power LDMOS Transistors Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF6VP3091NBR1

Broadband RF Power LDMOS Transistor, 470-860 MHz, 90 W, 50 V
NXP

MRF6VP3091NBR5

Broadband RF Power LDMOS Transistor, 470-860 MHz, 90 W, 50 V
NXP

MRF6VP3091NR5

2 CHANNEL, UHF BAND, Si, N-CHANNEL, RF POWER, MOSFET, TO-270, ROHS COMPLIANT, PLASTIC, CASE 1486-03, WB-4, 4 PIN
NXP

MRF6VP3450HR5

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF6VP3450HR6

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF6VP3450HR6_10

RF Power Field Effect Transistors
FREESCALE

MRF6VP3450HSR5

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF6VP3450HSR6

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF6VP41KH

RF Power Field Effect Transistors
FREESCALE

MRF6VP41KHR5

Lateral N-Channel Broadband RF Power MOSFET, 10-500 MHz, 1000 W, 50 V
NXP

MRF6VP41KHR6

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE