UPD5740T6N-E2-A [NEC]

Analog Circuit, 1 Func, BICMOS, PDSO6, 1.50 X 1.50 MM, 0.37 MM HEIGHT, LEAD FREE, PLASTIC, TSON-6;
UPD5740T6N-E2-A
型号: UPD5740T6N-E2-A
厂家: NEC    NEC
描述:

Analog Circuit, 1 Func, BICMOS, PDSO6, 1.50 X 1.50 MM, 0.37 MM HEIGHT, LEAD FREE, PLASTIC, TSON-6

信息通信管理 光电二极管
文件: 总20页 (文件大小:180K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
SiGe BiCMOS INTEGRATED CIRCUIT  
μPD5740T6N  
LOW NOISE WIDEBAND AMPLIFIER IC WITH THROUGH FUNCTION  
DESCRIPTION  
The μPD5740T6N is a low noise wideband amplifier IC mainly designed for the portable digital TV application.  
This IC has achieved low noise figure and the wideband operation. The μPD5740T6N has an LNA pass-through  
function (bypass function) to prevent the degradation of the received signal quality at the strong electric field, and  
achieve the high reception sensitivity and low power consumption.  
The package is a 6-pin plastic TSON (Thin Small Out-line Non-leaded) (T6N) suitable for surface mount.  
This IC is manufactured using our latest SiGe BiCMOS process that shows superior high frequency characteristics.  
FEATURES  
Low voltage operation  
: VCC = 2.3 to 3.3 V (2.8 V TYP.)  
Low mode control voltage  
Low current consumption  
: Vcont (H) = 1.0 V to VCC, Vcont (L) = 0 to 0.5 V  
: ICC1 = 5.0 mA TYP. @ VCC = 2.8 V (LNA-mode)  
: ICC2 = 1 μA MAX. @ VCC = 2.8 V (Bypass-mode)  
: NF1 = 1.5 dB TYP. @ VCC = 2.8 V, f = 470 MHz  
: NF2 = 1.5 dB TYP. @ VCC = 2.8 V, f = 770 MHz  
: GP1 = 15.0 dB TYP. @ VCC = 2.8 V, f = 470 MHz  
: GP2 = 13.5 dB TYP. @ VCC = 2.8 V, f = 770 MHz  
: Lins1 = 1.1 dB TYP. @ VCC = 2.8 V, f = 470 MHz  
: Lins2 = 1.3 dB TYP. @ VCC = 2.8 V, f = 770 MHz  
: 6-pin plastic TSON (T6N) package (1.5 × 1.5 × 0.37 mm)  
Low noise (LNA-mode)  
High gain (LNA-mode)  
Low insertion loss (Bypass-mode)  
High-density surface mounting  
Included protection circuits for ESD  
APPLICATION  
Low noise amplifier for the portable and mobile digital TV system, etc.  
ORDERING INFORMATION  
Part Number  
Order Number  
Package  
Marking  
C3U  
Supplying Form  
μPD5740T6N-E2 μPD5740T6N-E2-A 6-pin plastic TSON  
8 mm wide embossed taping  
Pin 1, 6 face the perforation side of the tape  
Qty 3 kpcs/reel  
(T6N) (Pb-Free)  
Remark To order evaluation samples, please contact your nearby sales office.  
Part number for sample order: μPD5740T6N  
Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. PU10764EJ01V0DS (1st edition)  
Date Published June 2009 NS  
Printed in Japan  
2009  
μPD5740T6N  
PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM  
Pin No.  
Pin Name  
INPUT  
GND  
(Bottom View)  
(Top View)  
(Top View)  
1
2
3
4
5
6
1
2
3
6
5
4
1
2
3
6
5
4
6
5
4
1
2
3
Vcont  
VCC  
NC  
Bias  
Control  
OUTPUT  
Remark Exposed pad : GND  
TRUTH TABLE  
Vcont  
H
Gain  
High  
Low  
Mode  
LNA-mode  
L
Bypass-mode  
Remark “H” = Vcont (H), “L” = Vcont (L)  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Supply Voltage  
Symbol  
Test Conditions  
Ratings  
3.6  
Unit  
V
VCC  
Vcont  
Ptot  
TA  
TA = +25°C  
TA = +25°C  
Mode Control Voltage  
Total Power Dissipation  
Operating Ambient Temperature  
Storage Temperature  
Input Power  
3.6  
V
150  
mW  
°C  
40 to +85  
55 to +150  
+33  
Tstg  
Pin  
°C  
dBm  
RECOMMENDED OPERATING RANGE  
Parameter  
Supply Voltage  
Symbol  
VCC  
MIN.  
2.3  
1.0  
0
TYP.  
2.8  
MAX.  
3.3  
Unit  
V
Mode Control Voltage (H)  
Mode Control Voltage (L)  
Operating Frequency  
Vcont (H)  
Vcont (L)  
f
VCC  
V
0.5  
V
50  
40  
1 800  
+85  
+7  
MHz  
°C  
Operating Ambient Temperature  
Input Power (LNA-mode)  
Input Power (Bypass-mode)  
TA  
+25  
Pin  
dBm  
dBm  
Pin  
+15  
2
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
ELECTRICAL CHARACTERISTICS 1 (DC Characteristics)  
(TA = +25°C, VCC = 2.8 V, unless otherwise specified)  
Parameter  
Circuit Current 1  
Symbol  
ICC1  
Test Conditions  
MIN.  
3.8  
TYP.  
5.0  
MAX.  
6.5  
1
Unit  
mA  
μA  
Vcont = 2.8 V, No Signal (LNA-mode)  
Vcont = 0 V, No Signal (Bypass-mode)  
Vcont = 2.8 V, No Signal (LNA-mode)  
Vcont = 0 V, No Signal (Bypass-mode)  
Circuit Current 2  
ICC2  
Mode Control Current 1  
Mode Control Current 2  
Icont1  
Icont2  
40  
100  
1
μA  
μA  
ELECTRICAL CHARACTERISTICS 2 (LNA-mode)  
(TA = +25°C, VCC = Vcont = 2.8 V, unless otherwise specified)  
Parameter  
Symbol  
GP1  
Test Conditions  
f = 470 MHz, Pin = 30 dBm  
f = 770 MHz, Pin = 30 dBm  
MIN.  
13.0  
11.5  
TYP.  
15.0  
13.5  
1.5  
MAX.  
17.0  
15.5  
2.0  
Unit  
dB  
Power Gain 1  
Power Gain 2  
GP2  
dB  
Noise Figure 1  
NF1  
f = 470 MHz, excluded PCB and  
connector losses  
dB  
Note  
Note  
Noise Figure 2  
NF2  
f = 770 MHz, excluded PCB and  
connector losses  
1.5  
2.0  
dB  
Input Return Loss 1  
RLin1  
RLin2  
RLout1  
RLout1  
IIP31  
f = 470 MHz, Pin = 30 dBm  
f = 770 MHz, Pin = 30 dBm  
f = 470 MHz, Pin = 30 dBm  
f = 770 MHz, Pin = 30 dBm  
7
7
12  
10  
dB  
dB  
Input Return Loss 2  
Output Return Loss 1  
Output Return Loss 2  
Input 3rd Order Intercept Point 1  
7
14  
dB  
7
11  
dB  
f1 = 470 MHz, f2 = 471 MHz,  
4.0  
1.0  
dBm  
Pin = 30 dBm  
Input 3rd Order Intercept Point 2  
IIP32  
f1 = 770 MHz, f2 = 771 MHz,  
1.0  
+2.0  
dBm  
Pin = 30 dBm  
Note Input PCB and connector losses: 0.05 dB (at 470 MHz), 0.08 dB (at 770 MHz)  
3
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
ELECTRICAL CHARACTERISTICS 3 (Bypass-mode)  
(TA = +25°C, VCC = 2.8 V, unless otherwise specified)  
Parameter  
Insertion Loss 1  
Symbol  
Test Conditions  
MIN.  
TYP.  
1.1  
MAX.  
2
Unit  
dB  
Lins1  
f = 470 MHz, Pin = 10 dBm, excluded  
PCB and connector losses  
Note  
Insertion Loss 2  
Lins2  
f = 770 MHz, Pin = 10 dBm, excluded  
1.3  
2
dB  
PCB and connector losses  
f = 470 MHz, Pin = 10 dBm  
f = 770 MHz, Pin = 10 dBm  
f = 470 MHz, Pin = 10 dBm  
f = 770 MHz, Pin = 10 dBm  
Note  
Input Return Loss 1  
RLin1  
RLin2  
RLout1  
RLout1  
IIP3  
10  
10  
20  
17  
dB  
dB  
Input Return Loss 2  
Output Return Loss 1  
Output Return Loss 2  
Input 3rd Order Intercept Point  
10  
20  
dB  
10  
17  
dB  
f1 = 770 MHz, f2 = 771 MHz,  
+20  
+30  
dBm  
Pin = 2.5 dBm  
Note Input-output PCB and connector losses: 0.10 dB (at 470 MHz), 0.16 dB (at 770 MHz)  
4
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
STANDARD CHARACTERISTICS FOR REFERENCE 1 (LNA-mode)  
(TA = +25°C, VCC = Vcont = 2.8 V, unless otherwise specified)  
Parameter  
Symbol  
ISL1  
Test Conditions  
f = 470 MHz, Pin = 30 dBm  
f = 770 MHz, Pin = 30 dBm  
Reference  
Unit  
dB  
Isolation 1  
Isolation 2  
20  
20  
ISL2  
dB  
Gain 1 dB Compression Output  
Power 1  
PO (1 dB) 1 f = 470 MHz  
5.5  
dBm  
Gain 1 dB Compression Output  
Power 2  
PO (1 dB) 2 f = 770 MHz  
5.0  
dBm  
STANDARD CHARACTERISTICS FOR REFERENCE 2 (Bypass-mode)  
(TA = +25°C, VCC = 2.8 V, Vcont = 0 V, unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
f = 770 MHz  
Reference  
+8  
Unit  
Gain 1 dB Compression Output  
Power  
PO (1 dB)  
dBm  
TEST CIRCUIT  
6
5
4
OUTPUT  
INPUT  
1
2
3
10 000 pF  
10 000 pF  
NC  
V
cont  
V
CC  
1 000 pF  
1 000 pF  
5
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
TYPICAL CHARACTERISTICS 1 (DC Characteristics) (TA = +25°C, unless otherwise specified)  
CIRCUIT CURRENT vs. OPERATING  
AMBIENT TEMPERATURE  
CIRCUIT CURRENT vs. SUPPLY VOLTAGE  
10  
10  
8
V
CC = 3.3 V  
8
6
6
T
A
= +85°C  
+25°C  
4
2
0
4
2.8 V  
–40°C  
2
V
CC = Vcont  
2.3 V  
0
V
CC = Vcont  
RF = off  
RF = off  
0
4
4
3
–25  
25  
50 75  
100  
0
1
2
3
–50  
Supply Voltage VCC (V)  
Operating Ambient Temperature T (°C)  
A
MODE CONTROL CURRENT vs.  
OPERATING AMBIENT TEMPERATURE  
MODE CONTROL CURRENT vs.  
SUPPLY VOLTAGE  
80  
60  
40  
20  
0
80  
μ
μ
60  
40  
20  
0
V
CC = 3.3 V  
T
A
= +85°C  
–40°C  
2.8 V  
2.3 V  
V
CC = Vcont  
V
CC = Vcont  
+25°C  
RF = off  
RF = off  
0
1
2
3
–25  
0
25  
50  
75  
–50  
100  
Operating Ambient Temperature T (°C)  
A
Supply Voltage VCC (V)  
CIRCUIT CURRENT vs.  
MODE CONTROL VOLTAGE  
MODE CONTROL CURRENT vs.  
MODE CONTROL VOLTAGE  
80  
60  
40  
20  
0
10  
8
V
CC = 2.8 V  
RF = off  
μ
TA = +85°C  
+25°C  
6
TA = +85°C  
4
+25°C  
–40°C  
2
–40°C  
VCC = 2.8 V  
RF = off  
0
0
1
2
0
1
2
3
Mode Control Voltage Vcont (V)  
Mode Control Voltage Vcont (V)  
Remark The graphs indicate nominal characteristics.  
6
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
TYPICAL CHARACTERISTICS 2 (LNA-mode) (TA = +25°C, unless otherwise specified)  
NOISE FIGURE vs. FREQUENCY  
NOISE FIGURE vs. FREQUENCY  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
TA  
= +85°C  
2.3 V  
+25°C  
2.8 V  
VCC = 3.3 V  
–40°C  
V
CC = Vcont = 2.8 V  
V
CC = Vcont  
0
600  
Frequency f (MHz)  
1 200  
0
600  
1 200  
200  
400  
800 1 000  
200  
400  
800 1 000  
Frequency f (MHz)  
NOISE FIGURE vs. OPERATING  
AMBIENT TEMPERATURE  
NOISE FIGURE vs. SUPPLY VOLTAGE  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
V
CC = Vcont  
470 MHz  
470 MHz  
f = 770 MHz  
f = 770 MHz  
170 MHz  
170 MHz  
V
CC = Vcont = 2.8 V  
2
3
4
–50  
25  
75  
(°C)  
100  
–25  
0
50  
Supply Voltage VCC (V)  
Operating Ambient Temperature T  
A
POWER GAIN vs. FREQUENCY  
POWER GAIN vs. FREQUENCY  
20  
15  
20  
V
CC = Vcont = 2.8 V  
V
CC = Vcont  
2.8 V  
+25°C  
15  
10  
5
V
CC = 3.3 V  
–40°C  
TA  
= +85°C  
10  
5
2.3 V  
1 000  
0
0
0
500  
1 500  
2 000  
0
500  
1 000  
1 500  
2 000  
Frequency f (MHz)  
Frequency f (MHz)  
Remark The graphs indicate nominal characteristics.  
7
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
POWER GAIN vs. OPERATING  
POWER GAIN vs. SUPPLY VOLTAGE  
AMBIENT TEMPERATURE  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
V
CC = Vcont  
170 MHz  
170 MHz  
470 MHz  
470 MHz  
f = 770 MHz  
f = 770 MHz  
V
CC = Vcont = 2.8 V  
6
6
2
3
Supply Voltage VCC (V)  
4
–50  
25  
75  
100  
–25  
0
50  
Operating Ambient Temperature T  
A
(°C)  
INPUT RETURN LOSS vs. FREQUENCY  
INPUT RETURN LOSS vs. FREQUENCY  
0
0
VCC = Vcont = 2.8 V  
V
CC = Vcont  
2.3 V  
–5  
–10  
–15  
–20  
–25  
–5  
–10  
–15  
–20  
–25  
TA = +85°C  
V
CC = 3.3 V  
+25°C  
–40°C  
2.8 V  
0
500  
1 000  
1 500  
2 000  
0
500  
1 000  
1 500  
2 000  
Frequency f (MHz)  
Frequency f (MHz)  
OUTPUT RETURN LOSS vs. FREQUENCY  
OUTPUT RETURN LOSS vs. FREQUENCY  
0
0
VCC = Vcont = 2.8 V  
V
CC = Vcont  
–5  
–10  
–15  
–20  
–25  
–5  
–10  
–15  
–20  
–25  
V
CC = 3.3 V  
2.3 V  
–40°C  
+25°C  
2.8 V  
500  
TA  
= +85°C  
0
1 000  
1 500  
2 000  
0
500  
1 000  
1 500  
2 000  
Frequency f (MHz)  
Frequency f (MHz)  
Remark The graphs indicate nominal characteristics.  
8
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
ISOLATION vs. FREQUENCY  
ISOLATION vs. FREQUENCY  
0
–5  
0
–5  
VCC = Vcont = 2.8 V  
V
CC = Vcont  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–20  
–25  
–30  
2.3 V  
TA  
= +85°C  
V
CC = 3.3 V  
–40°C  
2.8 V  
500  
+25°C  
0
1 000  
1 500  
2 000  
0
500  
1 000  
1 500  
2 000  
Frequency f (MHz)  
Frequency f (MHz)  
K FACTOR vs. FREQUENCY  
K FACTOR vs. FREQUENCY  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
CC = Vcont = 2.8 V  
V
CC = Vcont  
V
CC = 3.3 V  
TA  
= +85°C  
–40°C  
+25°C  
2.8 V  
2.3 V  
0
500  
1 000  
1 500  
2 000  
0
500  
1 000  
1 500  
2 000  
Frequency f (MHz)  
Frequency f (MHz)  
POWER GAIN, CIRCUIT CURRENT  
vs. INPUT POWER  
OUTPUT POWER vs. INPUT POWER  
10  
0
20  
10  
0
G
P
–10  
20  
–30  
ICC  
VCC = Vcont = 2.8 V  
V
CC = Vcont = 2.8 V  
f = 170 MHz  
f = 170 MHz  
–30  
20  
10  
0
–30  
20  
10  
0
–40  
–40  
Input Power Pin (dBm)  
Input Power Pin (dBm)  
Remark The graphs indicate nominal characteristics.  
9
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
POWER GAIN, CIRCUIT CURRENT  
vs. INPUT POWER  
OUTPUT POWER vs. INPUT POWER  
10  
0
20  
10  
0
G
P
–10  
20  
–30  
ICC  
V
CC = Vcont = 2.8 V  
V
CC = Vcont = 2.8 V  
f = 470 MHz  
f = 470 MHz  
–30  
20  
10  
0
–30  
20  
10  
0
–40  
–40  
Input Power Pin (dBm)  
Input Power Pin (dBm)  
POWER GAIN, CIRCUIT CURRENT  
vs. INPUT POWER  
OUTPUT POWER vs. INPUT POWER  
10  
0
20  
10  
0
G
P
–10  
20  
–30  
ICC  
V
CC = Vcont = 2.8 V  
V
CC = Vcont = 2.8 V  
f = 770 MHz  
f = 770 MHz  
–30  
20  
10  
0
–30  
20  
10  
0
–40  
–40  
Input Power Pin (dBm)  
Input Power Pin (dBm)  
GAIN 1 dB COMPRESSION OUTPUT POWER  
vs. OPERATING AMBIENT TEMPERATURE  
GAIN 1 dB COMPRESSION OUTPUT  
POWER vs. SUPPLY VOLTAGE  
0
5  
0
f = 770 MHz  
f = 770 MHz  
5  
470 MHz  
470 MHz  
10  
10  
VCC = Vcont  
V
CC = Vcont = 2.8 V  
–15  
–15  
–50  
100  
2
3
4
–25  
0
25  
50  
75  
Supply Voltage VCC (V)  
Operating Ambient Temperature T  
A
(°C)  
Remark The graphs indicate nominal characteristics.  
10  
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
OUTPUT POWER, IM  
3
vs. INPUT POWER  
OUTPUT POWER, IM  
3
vs. INPUT POWER  
40  
40  
V
CC = Vcont = 2.8 V  
V
CC = Vcont = 2.8 V  
f1 = 470 MHz  
f2 = 471 MHz  
f1 = 170 MHz  
f2 = 171 MHz  
20  
0
20  
0
Pout  
P
out  
–20  
–40  
–60  
–80  
–100  
–20  
–40  
–60  
–80  
–100  
IM  
3
IM  
3
IIP3  
= –0.1 dBm  
IIP3 = –0.9 dBm  
–35 –30 –25 –20 –15 –10 –5  
0
5
10  
–35  
0
5
10  
–30 –25 –20 –15 –10 –5  
Input Power Pin (dBm)  
Input Power Pin (dBm)  
OUTPUT POWER, IM  
3
vs. INPUT POWER  
IIP  
3
, OIP vs. SUPPLY VOLTAGE  
3
40  
25  
20  
V
CC = Vcont = 2.8 V  
f1 = 770 MHz  
f2 = 771 MHz  
20  
0
OIP  
3
15 f = 770 MHz  
Pout  
470 MHz  
–20  
–40  
–60  
–80  
–100  
10  
f = 770 MHz  
5
0
IM  
3
IIP3  
–5  
V
CC = Vcont = 2.8 V  
IIP = 2.2 dBm  
3
470 MHz  
3
–10  
–35 –30 –25 –20 –15 –10 –5  
0
5
10  
2
4
Input Power Pin (dBm)  
Supply Voltage VCC (V)  
IIP  
3
, OIP vs. OPERATING AMBIENT  
3
TEMPERATURE  
25  
20  
15  
10  
5
V
CC = Vcont = 2.8 V  
f = 770 MHz  
OIP  
3
470 MHz  
f = 770 MHz  
IIP3  
0
470 MHz  
50  
Operating Ambient Temperature T  
–5  
–50  
–25  
0
25  
75  
(°C)  
100  
A
Remark The graphs indicate nominal characteristics.  
11  
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
S-PARAMETERS 1 (LNA-mode) (TA = +25°C, VCC = Vcont = 2.8 V, monitored at connector on board)  
S11FREQUENCY  
1 : 170 MHz 50.10 Ω –17.65 Ω  
2 : 470 MHz 32.00 Ω  
3 : 770 MHz 26.70 Ω  
–9.15 Ω  
5.50 Ω  
3
2
1
START: 100 MHz  
STOP  
: 2 000 MHz  
S22FREQUENCY  
1 : 170 MHz 41.80 Ω –6.80 Ω  
2 : 470 MHz 34.55 Ω –0.95 Ω  
3 : 770 MHz 31.65 Ω 8.75 Ω  
3
2
1
START: 100 MHz  
STOP  
: 2 000 MHz  
Remark The graphs indicate nominal characteristics.  
12  
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
TYPICAL CHARACTERISTICS 3 (Bypass-mode) (TA = +25°C, unless otherwise specified)  
INSERTION LOSS vs. FREQUENCY INSERTION LOSS vs. FREQUENCY  
0
–1  
–2  
–3  
–4  
–5  
0
–1  
–2  
–3  
–4  
–5  
V
CC = 3.3 V  
40°C  
2.8 V  
+25°C  
2.3 V  
T
V
A
= +85°C  
V
cont = 0 V  
CC = 2.8 V, Vcont = 0 V  
0
500  
1 000  
1 500  
2 000  
0
500  
1 000  
1 500  
2 000  
Frequency f (MHz)  
Frequency f (MHz)  
INPUT RETURN LOSS vs. FREQUENCY  
INPUT RETURN LOSS vs. FREQUENCY  
0
0
Vcont = 0 V  
VCC = 2.8 V, Vcont = 0 V  
–5  
–10  
–15  
–20  
–25  
–30  
–5  
–10  
–15  
–20  
–25  
–30  
T
A
= +85°C  
2.3 V  
–40°C  
2.8 V  
+25°C  
V
CC = 3.3 V  
500  
0
1 000  
1 500  
2 000  
0
500  
1 000  
1 500  
2 000  
Frequency f (MHz)  
Frequency f (MHz)  
OUTPUT RETURN LOSS vs. FREQUENCY  
OUTPUT RETURN LOSS vs. FREQUENCY  
0
0
VCC = 2.8 V, Vcont = 0 V  
Vcont = 0 V  
–5  
–10  
–15  
–20  
–25  
–30  
–5  
–10  
–15  
–20  
–25  
–30  
T = +85°C  
A
2.3 V  
+25°C  
–40°C  
500  
2.8 V  
V
CC = 3.3 V  
500  
0
1 000  
1 500  
2 000  
0
1 000  
1 500  
2 000  
Frequency f (MHz)  
Frequency f (MHz)  
Remark The graphs indicate nominal characteristics.  
13  
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
K FACTOR vs. FREQUENCY  
K FACTOR vs. FREQUENCY  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
CC = 2.8 V, Vcont = 0 V  
V
cont = 0 V  
V
CC = 2.3, 2.8, 3.3 V  
T = +85°C  
A
–40°C  
+25°C  
0
500  
1 000  
1 500  
2 000  
0
500  
1 000  
1 500  
2 000  
Frequency f (MHz)  
Frequency f (MHz)  
INSERTION LOSS, CIRCUIT CURRENT  
vs. INPUT POWER  
OUTPUT POWER vs. INPUT POWER  
0
–2  
–4  
–6  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
20  
10  
L
ins  
μ
0
–10  
–20  
–30  
V
V
CC = 2.8 V,  
cont = 0 V  
V
CC = 2.8 V, Vcont = 0 V  
f = 170 MHz  
f = 170 MHz  
I
CC  
–8  
–20  
–10  
0
10  
20  
–20  
–10  
0
10  
20  
Input Power Pin (dBm)  
Input Power Pin (dBm)  
INSERTION LOSS, CIRCUIT CURRENT  
vs. INPUT POWER  
OUTPUT POWER vs. INPUT POWER  
0
–2  
–4  
–6  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
20  
10  
L
ins  
μ
0
–10  
–20  
–30  
V
V
CC = 2.8 V,  
cont = 0 V  
V
CC = 2.8 V, Vcont = 0 V  
f = 470 MHz  
I
CC  
f = 470 MHz  
–8  
–20  
–10  
0
10  
20  
–20  
–10  
0
10  
20  
Input Power Pin (dBm)  
Input Power Pin (dBm)  
Remark The graphs indicate nominal characteristics.  
14  
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
INSERTION LOSS, CIRCUIT CURRENT  
vs. INPUT POWER  
OUTPUT POWER vs. INPUT POWER  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
20  
10  
Lins  
–2  
–4  
–6  
μ
0
–10  
–20  
–30  
V
V
CC = 2.8 V,  
cont = 0 V  
V
CC = 2.8 V, Vcont = 0 V  
f = 770 MHz  
I
CC  
f = 770 MHz  
–8  
–20  
–10  
0
10  
20  
–20  
–10  
0
10  
20  
Input Power Pin (dBm)  
Input Power Pin (dBm)  
GAIN 1 dB COMPRESSION OUTPUT POWER  
vs. OPERATING AMBIENT TEMPERATURE  
GAIN 1 dB COMPRESSION OUTPUT  
POWER vs. SUPPLY VOLTAGE  
15  
10  
5
15  
470 MHz  
10  
470 MHz  
f = 770 MHz  
5
f = 770 MHz  
Vcont = 0 V  
V
25  
CC = 2.8 V, Vcont = 0 V  
0
0
–50  
–25  
0
50  
75  
100  
2
3
4
Supply Voltage VCC (V)  
Operating Ambient Temperature T  
A
(°C)  
OUTPUT POWER, IM  
3
vs. INPUT POWER  
OUTPUT POWER, IM vs. INPUT POWER  
3
40  
40  
V
CC = 2.8 V, Vcont = 0 V  
V
CC = 2.8 V, Vcont = 0 V  
f1 = 170 MHz  
f2 = 171 MHz  
f1 = 470 MHz  
f2 = 471 MHz  
20  
0
20  
0
Pout  
Pout  
–20  
–40  
–60  
–80  
–20  
–40  
–60  
–80  
IM  
3
IM  
3
IIP  
3
= 28.9 dBm  
IIP  
3
= 32.9 dBm  
–10 –5  
0
5
10 15 20 25 30 35  
–10 –5  
0
5
10 15 20 25 30 35  
Input Power Pin (dBm)  
Input Power Pin (dBm)  
Remark The graphs indicate nominal characteristics.  
15  
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
OUTPUT POWER, IM vs. INPUT POWER  
3
IIP vs. SUPPLY VOLTAGE  
3
40  
40  
35  
30  
25  
20  
15  
V
CC = 2.8 V, Vcont = 0 V  
f1 = 770 MHz  
f2 = 771 MHz  
20  
0
470 MHz  
P
out  
–20  
–40  
–60  
–80  
f = 770 MHz  
IM3  
IIP  
10 15 20 25 30 35  
Input Power Pin (dBm)  
3
= 30.7 dBm  
Vcont = 0 V  
2
3
4
–10 –5  
0
5
Supply Voltage VCC (V)  
IIP  
3
vs. OPERATING AMBIENT  
TEMPERATURE  
40  
35  
30  
25  
20  
V
CC = 2.8 V, Vcont = 0 V  
470 MHz  
f = 770 MHz  
15  
–50  
–25  
0
25  
50  
75  
(°C)  
100  
Operating Ambient Temperature T  
A
Remark The graphs indicate nominal characteristics.  
16  
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
S-PARAMETERS 2 (Bypass-mode)  
(TA = +25°C, VCC = 2.8 V, Vcont = 0 V, monitored at connector on board)  
S11FREQUENCY  
1 : 170 MHz 53.50 Ω –5.20 Ω  
2 : 470 MHz 45.80 Ω –7.65 Ω  
3 : 770 MHz 26.70 Ω –3.75 Ω  
3
1
2
START: 100 MHz  
STOP  
: 2 000 MHz  
S22FREQUENCY  
1 : 170 MHz 53.25 Ω –5.50 Ω  
2 : 470 MHz 34.55 Ω –7.40 Ω  
3 : 770 MHz 31.65 Ω –2.70 Ω  
3
1
2
START: 100 MHz  
STOP  
: 2 000 MHz  
Remark The graphs indicate nominal characteristics.  
17  
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
PACKAGE DIMENSIONS  
6-PIN PLASTIC TSON (T6N) (UNIT: mm)  
(Top View)  
(Side View)  
(Bottom View)  
0.3 0.07  
1.5 0.1  
(0.24)  
+0.03  
0.37  
0.2 0.1  
0.7 0.1  
–0.05  
Remark A>0  
( ) : Reference value  
18  
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
NOTES ON CORRECT USE  
(1) Observe precautions for handling because of electro-static sensitive devices.  
(2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).  
All the ground terminals must be connected together with wide ground pattern to decrease impedance  
difference.  
(3) The bypass capacitor should be attached to VCC line.  
(4) Do not supply DC voltage to INPUT pin.  
(5) Pin 5 (NC) should be connected to the ground pattern.  
RECOMMENDED SOLDERING CONDITIONS  
This product should be soldered and mounted under the following recommended conditions. For soldering  
methods and conditions other than those recommended below, contact your nearby sales office.  
Soldering Method  
Infrared Reflow  
Soldering Conditions  
Condition Symbol  
IR260  
Peak temperature (package surface temperature)  
Time at peak temperature  
: 260°C or below  
: 10 seconds or less  
: 60 seconds or less  
: 120 30 seconds  
: 3 times  
Time at temperature of 220°C or higher  
Preheating time at 120 to 180°C  
Maximum number of reflow processes  
Maximum chlorine content of rosin flux (% mass)  
: 0.2%(Wt.) or below  
Partial Heating  
Peak temperature (terminal temperature)  
Soldering time (per side of device)  
: 350°C or below  
: 3 seconds or less  
: 0.2%(Wt.) or below  
HS350  
Maximum chlorine content of rosin flux (% mass)  
Caution Do not use different soldering methods together (except for partial heating).  
19  
Data Sheet PU10764EJ01V0DS  
μPD5740T6N  
The information in this document is current as of June, 2009. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets,  
etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or  
types are available in every country. Please check with an NEC Electronics sales representative for  
availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality and safety of NEC Electronics products, customers  
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. In addition, NEC  
Electronics products are not taken measures to prevent radioactive rays in the product design. When customers  
use NEC Electronics products with their products, customers shall, on their own responsibility, incorporate  
sufficient safety measures such as redundancy, fire-containment and anti-failure features to their products in  
order to avoid risks of the damages to property (including public or social property) or injury (including death) to  
persons, as the result of defects of NEC Electronics products.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1)  
"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2)  
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E0904E  

相关型号:

UPD5741T6J-E4-A

UPD5741T6J-E4-A
RENESAS

UPD5741T6J-E4-A

Narrow Band Medium Power Amplifier, 1.20 X 1 MM, 0.33 MM HEIGHT, LEAD FREE, LEADLESS, MINIMOLD, 3 PIN
NEC

UPD5742T6J-E4-A

UPD5742T6J-E4-A
RENESAS

UPD5742T6J-E4-A

Narrow Band Medium Power Amplifier, 1.20 X 1 MM, 0.33 MM HEIGHT, LEAD FREE, LEADLESS, MINIMOLD, 3 PIN
NEC

UPD5747T6J

LOW NOISE AND HIGH GAIN AMPLIFIER FOR IMPEDANCE CONVERTER OF MICROPHONE
NEC

UPD5747T6J-E4

LOW NOISE AND HIGH GAIN AMPLIFIER FOR IMPEDANCE CONVERTER OF MICROPHONE
NEC

UPD5747T6J-E4-A

LOW NOISE AND HIGH GAIN AMPLIFIER FOR IMPEDANCE CONVERTER OF MICROPHONE
NEC

UPD5750T7D

SiGe BiCMOS Integrated Circuit Wide Band LNA IC with Through Function
RENESAS

UPD5750T7D-E4A

SiGe BiCMOS Integrated Circuit Wide Band LNA IC with Through Function
RENESAS

UPD5750T7D-E4A-A

SiGe BiCMOS Integrated Circuit Wide Band LNA IC with Through Function
RENESAS

UPD5753T7G

SiGe/CMOS Integrated Circuit
RENESAS

UPD5753T7G-E1

SiGe/CMOS Integrated Circuit
RENESAS