UPC3225TB-E3-A [NEC]

5 V, SILICON GERMANIUM MMIC MEDIUM OUTPUT POWER AMPLIFIER; 5 V ,硅锗MMIC中等输出功率放大器
UPC3225TB-E3-A
型号: UPC3225TB-E3-A
厂家: NEC    NEC
描述:

5 V, SILICON GERMANIUM MMIC MEDIUM OUTPUT POWER AMPLIFIER
5 V ,硅锗MMIC中等输出功率放大器

放大器 功率放大器 输出元件
文件: 总17页 (文件大小:156K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
BIPOLAR ANALOG INTEGRATED CIRCUIT  
µ
PC3225TB  
5 V, SILICON GERMANIUM MMIC  
MEDIUM OUTPUT POWER AMPLIFIER  
DESCRIPTION  
The µPC3225TB is a silicon germanium (SiGe) monolithic integrated circuits designed as IF amplifier for DBS  
tuners. This IC is manufactured using our 50 GHz fmax UHS2 (Ultra High Speed Process) SiGe bipolar process.  
FEATURES  
Wideband response  
Low current  
: fu = 2.8 GHz TYP. @ 3 dB bandwidth  
: ICC = 24.5 mA TYP.  
Medium output power  
: PO (sat) = +15.5 dBm TYP. @ f = 0.95GHz  
: PO (sat) = +12.5 dBm TYP. @ f = 2.15 GHz  
: PO (1dB) = +9.0 dBm TYP. @ f = 0.95 GHz  
: PO (1dB) = +7.0 dBm TYP. @ f = 2.15 GHz  
: GP = 32.5 dB TYP. @ f = 0.95 GHz  
: GP = 33.5 dB TYP. @ f = 2.15 GHz  
: NF = 3.7 dB TYP. @ f = 0.95 GHz  
: NF = 3.7 dB TYP. @ f = 2.15 GHz  
: VCC = 4.5 to 5.5 V  
High linearity  
Power gain  
Noise Figure  
Supply voltage  
Port impedance  
: input/output 50 Ω  
APPLICATIONS  
IF amplifiers in LNB for DBS converters etc.  
ORDERING INFORMATION  
Part Number  
Order Number  
Package  
Marking  
C3M  
Supplying Form  
Embossed tape 8 mm wide.  
µPC3225TB-E3  
µPC3225TB-E3-A 6-pin super minimold  
(Pb-Free)Note  
1, 2, 3 pins face the perforation side of the tape.  
Qty 3 kpcs/reel.  
Note With regards to terminal solder (the solder contains lead) plated products (conventionally plated), contact  
your nearby sales office.  
Remark To order evaluation samples, please contact your nearby sales office  
Part number for sample order: µPC3225TB.  
Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.  
The information in this document is subject to change without notice. Before using this document, please confirm that  
this is the latest version.  
Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices  
representative for availability and additional information.  
Document No. PU10500EJ01V0DS (1st edition)  
Date Published December 2004 CP(K)  
Printed in Japan  
NEC Compound Semiconductor Devices, Ltd. 2004  
µPC3225TB  
PIN CONNECTIONS  
Pin No.  
Pin Name  
OUTPUT  
GND  
(Top View)  
(Bottom View)  
1
2
3
4
5
6
3
2
1
4
5
6
4
5
6
3
2
1
VCC  
INPUT  
GND  
GND  
PRODUCT LINE-UP OF 5 V-BIAS SILICON MMIC MEDIUM OUTPUT POWER AMPLIFIER  
(TA = +25°C, f = 1 GHz, VCC = Vout = 5.0 V, ZS = ZL = 50 )  
fu  
PO (sat)  
GP  
NF  
ICC  
Part No.  
Package  
Marking  
(GHz)  
(dBm)  
(dB)  
(dB)  
(mA)  
µPC2708TB  
µPC2709TB  
µPC2710TB  
µPC2776TB  
µPC3223TB  
µPC3225TB  
2.9  
2.3  
1.0  
2.7  
3.2  
2.8  
+10.0  
+11.5  
+13.5  
+8.5  
15  
23  
6.5  
5.0  
26  
25  
6-pin super minimold  
C1D  
C1E  
C1F  
C2L  
C3J  
C3M  
33  
3.5  
22  
23  
6.0  
25  
+12.0  
+15.5 Note  
23  
4.5  
19  
32.5 Note  
3.7 Note  
24.5  
Note f = 0.95 GHz  
Remark Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.  
2
Data Sheet PU10500EJ01V0DS  
µPC3225TB  
PIN EXPLANATION  
Applied  
Voltage  
(V)  
Pin  
Pin  
No.  
Pin  
Function and Applications  
Voltage  
(V)Note  
Name  
4
1
3
INPUT  
0.98  
Signal input pin.  
A internal matching circuit, configured with resistors, enables 50 Ω  
connection over a wide band.  
A multi-feedback circuit is designed to cancel the deviations of hFE and  
resistance.  
This pin must be coupled to signal source with capacitor for DC cut.  
OUTPUT  
Voltage  
as same  
as VCC  
Signal output pin.  
The inductor must be attached between VCC and output pins to supply  
current to the internal output transistors.  
through  
external  
inductor  
VCC  
4.5 to 5.5  
Power supply pin.  
Which biases the internal input transistor.  
This pin should be externally equipped with bypass capacitor to  
minimize its impedance.  
2
5
6
GND  
0
Ground pin.  
This pin should be connected to system ground with minimum  
inductance. Ground pattern on the board should be formed as wide as  
possible.  
All the ground pins must be connected together with wide ground  
pattern to decrease impedance defference.  
Note Pin voltage is measured at VCC = 5.0 V  
3
Data Sheet PU10500EJ01V0DS  
µPC3225TB  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Supply Voltage  
Symbol  
Conditions  
TA = +25°C, Pin 1 and 3  
TA = +25°C  
Ratings  
Unit  
V
VCC  
ICC  
PD  
6
Total Circuit Current  
Power Dissipation  
45  
270  
mA  
mW  
°C  
TA = +85°C  
Note  
Operating Ambient Temperature  
Storage Temperature  
Input Power  
TA  
40 to +85  
55 to +150  
0
Tstg  
Pin  
°C  
TA = +25°C  
dBm  
Note Mounted on double-sided copper-clad 50 × 50 × 1.6 mm epoxy glass PWB  
RECOMMENDED OPERATING RANGE  
Parameter  
Supply Voltage  
Symbol  
Conditions  
MIN.  
4.5  
TYP.  
5.0  
MAX.  
Unit  
V
VCC  
The same voltage should be applied  
to pin 1 and 3.  
5.5  
Operating Ambient Temperature  
TA  
40  
+25  
+85  
°C  
ELECTRICAL CHARACTERISTICS (TA = +25°C, VCC = Vout = 5.0 V, ZS = ZL = 50 )  
Parameter  
Circuit Current  
Symbol  
ICC  
Test Conditions  
No input signal  
MIN.  
20.0  
30.0  
30.5  
+13.5  
+10.5  
+7.0  
+5.0  
TYP.  
24.5  
32.5  
33.5  
+15.5  
+12.5  
+9.0  
+7.0  
3.7  
MAX.  
31.0  
35.0  
36.0  
Unit  
mA  
dB  
Power Gain  
GP  
f = 0.95 GHz, Pin = 35.0 dBm  
f = 2.15 GHz, Pin = 35.0 dBm  
f = 0.95 GHz, Pin = 5.0 dBm  
Saturated Output Power  
PO (sat)  
dBm  
dBm  
dB  
f = 2.15 GHz, Pin = 5.0 dBm  
Gain 1 dB Compression Output Power PO (1 dB)  
f = 0.95 GHz  
f = 2.15 GHz  
f = 0.95 GHz  
f = 2.15 GHz  
Noise Figure  
NF  
4.5  
4.5  
3.7  
Upper Limit Operating Frequency  
Isolation  
fu  
3 dB down below flat gain at f = 0.95  
GHz  
2.8  
GHz  
dB  
ISL  
f = 0.95 GHz, Pin = 35.0 dBm  
f = 2.15 GHz, Pin = 35.0 dBm  
f = 0.95 GHz, Pin = 35.0 dBm  
f = 2.15 GHz, Pin = 35.0 dBm  
f = 0.95 GHz, Pin = 35.0 dBm  
f = 2.15 GHz, Pin = 35.0 dBm  
f = 0.95 to 2.15 GHz  
36.0  
36.0  
7.0  
8.0  
7.0  
9.5  
41.0  
45.0  
8.5  
Input Return Loss  
Output Return Loss  
Gain Flatness  
RLin  
RLout  
GP  
dB  
dB  
dB  
11.0  
10.5  
13.0  
2.5  
4.0  
4
Data Sheet PU10500EJ01V0DS  
µPC3225TB  
OTHER CHARACTERISTICS, FOR REFERENCE PURPOSES ONLY  
(TA = +25°C, VCC = Vout = 5.0 V, ZS = ZL = 50 )  
Parameter  
Output intercept point  
Symbol  
OIP3  
Test Conditions  
f = 0.95 GHz  
Reference Value  
Unit  
21.0  
16.0  
dBm  
f = 2.15 GHz  
5
Data Sheet PU10500EJ01V0DS  
µPC3225TB  
TEST CIRCUIT  
C2  
6
1
100 pF  
GND  
OUT  
L1  
15 nH  
50 Ω  
5
2
C4  
1 000 pF  
GND  
GND  
C1  
330 pF  
4
3
IN  
V
CC  
C3  
1 000 pF  
V
CC  
The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.  
COMPONENTS OF TEST CIRCUIT FOR MEASURING  
ELECTRICAL CHARACTERISTICS  
Value  
330 pF  
100 pF  
1 000 pF  
1 000 pF  
15 nH  
Maker  
Murata  
Murata  
Murata  
Murata  
Susumu  
Type code  
GMR36CH  
GMR36CH  
GMR39CH  
GMR36B  
C1  
C2  
C3  
C4  
L1  
TFL0816  
INDUCTOR FOR THE OUTPUT PIN  
The internal output transistor of this IC consumes 24.5 mA, to output medium power. To supply current for output  
transistor, connect an inductor between the VCC pin (pin 3) and output pin (pin 1). Select inductance, as the value  
listed above.  
The inductor has both DC and AC effects. In terms of DC, the inductor biases the output transistor with minimum  
voltage drop to output enable high level. In terms of AC, the inductor makes output-port impedance higher to get  
enough gain. In this case, large inductance and Q is suitable.  
CAPACITORS FOR THE VCC, INPUT AND OUTPUT PINS  
Capacitors of 1 000 pF are recommendable as the bypass capacitor for the VCC pin. Capacitors of 330 pF for the  
input pin and 100 pF for the output pin are recommendable as the coupling capacitors.  
The bypass capacitor connected to the VCC pin is used to minimize ground impedance of VCC pin. So, stable bias  
can be supplied against VCC fluctuation.  
The coupling capacitors, connected to the input and output pins, are used to cut the DC and minimize RF serial  
impedance. Their capacitances are therefore selected as lower impedance against a 50 load. The capacitors thus  
perform as high pass filters, suppressing low frequencies to DC.  
6
Data Sheet PU10500EJ01V0DS  
µPC3225TB  
ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD  
6
5
4
C1  
C2  
1
2
3
C3  
COMPONENT LIST  
Notes  
Value  
1. 30 × 30 × 0.4 mm double sided copper clad polyimide board.  
2. Back side: GND pattern  
C1  
330 pF  
100 pF  
1 000 pF  
15 nH  
C2  
3. Solder plated on pattern  
C3, C4  
L1  
4.  
: Through holes  
7
Data Sheet PU10500EJ01V0DS  
µPC3225TB  
TYPICAL CHARACTERISTICS (VCC = 5.0 V, TA = +25°C, unless otherwise specified)  
CIRCUIT CURRENT  
CIRCUIT CURRENT vs. OPERATING  
vs. SUPPLY VOLTAGE  
AMBIENT TEMPERATURE  
35  
30  
25  
20  
15  
10  
5
26.0  
25.5  
25.5  
24.5  
24.5  
23.5  
23.0  
22.5  
VCC = 5.0 V  
VCC = 5.0 V  
TA = 40°C  
+25°C  
+85°C  
0
1
2
3
4
5
6
7
60 40 20  
0
20  
40  
60  
80 100  
Supply Voltage VCC (V)  
Operating Ambient Temperature TA (°C)  
POWER GAIN vs. FREQUENCY  
POWER GAIN vs. FREQUENCY  
36  
34  
32  
30  
28  
26  
36  
34  
32  
30  
28  
26  
TA = 40°C  
VCC = 4.5 V  
VCC = 5.0 V  
+25°C  
+85°C  
5.0 V  
5.5 V  
0
1.0  
2.0  
3.0  
4.0  
0
1.0  
2.0  
3.0  
4.0  
Frequency f (GHz)  
Frequency f (GHz)  
ISOLATION vs. FREQUENCY  
ISOLATION vs. FREQUENCY  
15  
25  
35  
45  
55  
65  
15  
25  
35  
45  
55  
65  
TA = 40°C  
VCC = 5.0 V  
+25°C  
+85°C  
VCC = 4.5 V  
5.0 V  
5.5 V  
0
1.0  
2.0  
3.0  
4.0  
0
1.0  
2.0  
3.0  
4.0  
Frequency f (GHz)  
Frequency f (GHz)  
Remark The graphs indicate nominal characteristics.  
8
Data Sheet PU10500EJ01V0DS  
µPC3225TB  
INPUT RETURN LOSS vs. FREQUENCY  
INPUT RETURN LOSS vs. FREQUENCY  
0
0
TA  
= 40°C  
+25°C  
V
CC = 4.5 V  
VCC = 5.0 V  
5.0 V  
+85°C  
5.5 V  
4  
8  
4  
8  
12  
16  
20  
12  
16  
20  
0
1.0  
2.0  
3.0  
4.0  
0
1.0  
2.0  
3.0  
4.0  
Frequency f (GHz)  
Frequency f (GHz)  
OUTPUT RETURN LOSS vs. FREQUENCY  
OUTPUT RETURN LOSS vs. FREQUENCY  
4  
4  
V
CC = 4.5 V  
TA  
= 40°C  
+25°C  
5.0 V  
5.5 V  
+85°C  
8  
12  
16  
20  
24  
8  
12  
16  
20  
24  
V
CC = 5.0 V  
0
1.0  
2.0  
3.0  
4.0  
0
1.0  
2.0  
3.0  
4.0  
Frequency f (GHz)  
Frequency f (GHz)  
POWER GAIN vs. INPUT POWER  
POWER GAIN vs. INPUT POWER  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
V
CC = 4.5 V  
V
CC = 4.5 V  
f = 950 MHz  
f = 1 500 MHz  
5.0 V  
5.0 V  
5.5 V  
5.5 V  
26  
28  
35  
20  
Input Power Pin (dBm)  
10  
35  
20  
Input Power Pin (dBm)  
10  
40  
30 25  
15  
5  
40  
30 25  
15  
5  
Remark The graphs indicate nominal characteristics.  
9
Data Sheet PU10500EJ01V0DS  
µPC3225TB  
POWER GAIN vs. FREQUENCY  
OUTPUT POWER vs. INPUT POWER  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
18  
12  
6
V
CC = 4.5 V  
V
CC = 5.0 V  
5.0 V  
5.5 V  
0
6  
12  
f = 950 MHz  
1 500 MHz  
2 150 MHz  
f = 2 150 MHz  
26  
35  
20  
10  
40  
30 25  
15  
5  
45  
35  
25  
15  
5  
Input Power Pin (dBm)  
Input Power Pin (dBm)  
OUTPUT POWER vs. INPUT POWER  
OUTPUT POWER vs. INPUT POWER  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
f = 950 MHz  
f = 950 MHz  
6
6
4
4
2
2
0
0
2  
4  
6  
8  
2  
4  
6  
8  
T
A
= 40°C  
+25°C  
V
CC = 4.5 V  
5.0 V  
+85°C  
5.5 V  
35  
20  
Input Power Pin (dBm)  
10  
40 35 30 25 20 15 10  
5  
40  
30 25  
15  
5  
Input Power Pin (dBm)  
OUTPUT POWER vs. INPUT POWER  
OUTPUT POWER vs. INPUT POWER  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
f = 1 500 MHz  
f = 1 500 MHz  
6
6
4
4
2
2
0
0
2  
4  
6  
8  
2  
4  
6  
8  
T
A
= 40°C  
+25°C  
V
CC = 4.5 V  
5.0 V  
+85°C  
5.5 V  
35  
20  
Input Power Pin (dBm)  
10  
40  
30 25  
15  
5  
40 35 30 25 20 15 10  
5  
Input Power Pin (dBm)  
Remark The graphs indicate nominal characteristics.  
10  
Data Sheet PU10500EJ01V0DS  
µPC3225TB  
OUTPUT POWER vs. INPUT POWER  
OUTPUT POWER vs. INPUT POWER  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
f = 2 150 MHz  
f = 2 150 MHz  
6
6
4
4
2
2
0
0
2  
4  
6  
8  
2  
4  
6  
8  
T
A
= 40°C  
+25°C  
V
CC = 4.5 V  
5.0 V  
+85°C  
5.5 V  
40 35 30 25 20 15 10  
5  
35  
20  
Input Power Pin (dBm)  
10  
40  
30 25  
15  
5  
Input Power Pin (dBm)  
OUTPUT POWER (2 TONES)  
vs. INPUT POWER  
20  
10  
V
CC = 5.0 V,  
f = 1 MHz  
: OIP  
f = 950/951 MHz  
3
3
3
= 21.0 dBm  
= 18.2 dBm  
= 16.0 dBm  
f = 1 500/1 501 MHz : OIP  
f = 2 150/2 151 MHz : OIP  
0
10  
20  
30  
40  
50  
60  
f = 950 MHz  
1 500 MHz  
2 150 MHz  
40  
25  
15  
45  
35 30  
20  
10  
Input Power Pin/tone (dBm)  
OUTPUT POWER (2 TONES)  
vs. INPUT POWER  
OUTPUT POWER (2 TONES)  
vs. INPUT POWER  
20  
10  
20  
10  
f = 950/951 MHz  
f = 950/951 MHz  
0
0
10  
20  
30  
40  
50  
60  
10  
20  
30  
40  
50  
60  
V
CC = 4.5 V  
T
A
= 40°C  
5.0 V  
+25°C  
+85°C  
5.5 V  
10 5  
40  
25  
15  
40  
25  
15  
45  
35 30  
20  
45  
35 30  
20  
10 5  
Input Power Pin/tone (dBm)  
Input Power Pin/tone (dBm)  
Remark The graphs indicate nominal characteristics.  
11  
Data Sheet PU10500EJ01V0DS  
µPC3225TB  
OUTPUT POWER (2 TONES)  
vs. INPUT POWER  
OUTPUT POWER (2 TONES)  
vs. INPUT POWER  
20  
10  
20  
10  
f = 1 500/1 501 MHz  
f = 1 500/1 501 MHz  
0
0
10  
20  
30  
40  
50  
60  
10  
20  
30  
40  
50  
60  
V
CC = 4.5 V  
T
A
= 40°C  
+25°C  
5.0 V  
5.5 V  
+85°C  
40  
25  
15  
40  
25  
15  
45  
35 30  
20  
10 5  
45  
35 30  
20  
10 5  
Input Power Pin/tone (dBm)  
Input Power Pin/tone (dBm)  
OUTPUT POWER (2 TONES)  
vs. INPUT POWER  
OUTPUT POWER (2 TONES)  
vs. INPUT POWER  
20  
10  
20  
10  
f = 2 150/2 151 MHz  
f = 2 150/2 151 MHz  
0
0
10  
20  
30  
40  
50  
60  
10  
20  
30  
40  
50  
60  
V
CC = 4.5 V  
T
A
= 40°C  
+25°C  
5.0 V  
5.5 V  
+85°C  
40  
25  
15  
10 5  
45  
35 30  
20  
40  
25  
15  
45  
35 30  
20  
10 5  
Input Power Pin/tone (dBm)  
Input Power Pin/tone (dBm)  
NOISE FIGURE vs. FREQUENCY  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
V
CC = 4.5 V  
5.0 V  
5.5 V  
0
500  
1 000  
1 500  
2 000  
2 500  
3 000  
Frequency f (GHz)  
Remark The graphs indicate nominal characteristics.  
12  
Data Sheet PU10500EJ01V0DS  
µPC3225TB  
S-PARAMETERS (TA = +25°C, VCC = Vout = 5.0 V)  
S11FREQUENCY  
START: 100.000 000 MHz  
STOP : 3 000.000 000 MHz  
1
3
2
1 : 950 MHz  
100.41 31.537 5.3124 pF  
2 : 1 600 MHz 58.686 47.725 2.0843 pF  
3 : 2 150 MHz 39.938 24.401 3.0338 pF  
S22FREQUENCY  
START: 100.000 000 MHz  
STOP : 3 000.000 000 MHz  
1
2
3
1 : 950 MHz  
60.637 32.730 Ω  
5.4835 nH  
2 : 1 600 MHz 70.195 20.405 4.8754 pF  
3 : 2 150 MHz 44.370 14.407 5.1383 pF  
13  
Data Sheet PU10500EJ01V0DS  
µPC3225TB  
PACKAGE DIMENSIONS  
6-PIN SUPER MINIMOLD (UNIT: mm)  
2.1 0.1  
1.25 0.1  
0.1 MIN.  
14  
Data Sheet PU10500EJ01V0DS  
µPC3225TB  
NOTES ON CORRECT USE  
(1) Observe precautions for handling because of electro-static sensitive devices.  
(2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).  
All the ground pins must be connected together with wide ground pattern to decrease impedance difference.  
(3) The bypass capacitor should be attached to the VCC pin.  
(4) The inductor (L) must be attached between VCC and output pins. The inductance value should be determined in  
accordance with desired frequency.  
(5) The DC cut capacitor must be attached to input and output pin.  
RECOMMENDED SOLDERING CONDITIONS  
This product should be soldered and mounted under the following recommended conditions. For soldering  
methods and conditions other than those recommended below, contact your nearby sales office.  
Soldering Method  
Infrared Reflow  
Soldering Conditions  
Condition Symbol  
IR260  
Peak temperature (package surface temperature)  
Time at peak temperature  
: 260°C or below  
: 10 seconds or less  
: 60 seconds or less  
: 120 30 seconds  
: 3 times  
Time at temperature of 220°C or higher  
Preheating time at 120 to 180°C  
Maximum number of reflow processes  
Maximum chlorine content of rosin flux (% mass)  
: 0.2%(Wt.) or below  
Wave Soldering  
Partial Heating  
Peak temperature (molten solder temperature)  
Time at peak temperature  
: 260°C or below  
: 10 seconds or less  
WS260  
HS350  
Preheating temperature (package surface temperature) : 120°C or below  
Maximum number of flow processes  
: 1 time  
Maximum chlorine content of rosin flux (% mass)  
: 0.2%(Wt.) or below  
Peak temperature (terminal temperature)  
Soldering time (per side of device)  
: 350°C or below  
: 3 seconds or less  
: 0.2%(Wt.) or below  
Maximum chlorine content of rosin flux (% mass)  
Caution Do not use different soldering methods together (except for partial heating).  
15  
Data Sheet PU10500EJ01V0DS  
µPC3225TB  
The information in this document is current as of December, 2004. The information is subject to  
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or  
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all  
products and/or types are available in every country. Please check with an NEC sales representative  
for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without prior  
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.  
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of  
third parties by or arising from the use of NEC semiconductor products listed in this document or any other  
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any  
patents, copyrights or other intellectual property rights of NEC or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of customer's equipment shall be done under the full  
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third  
parties arising from the use of these circuits, software and information.  
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers  
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize  
risks of damage to property or injury (including death) to persons arising from defects in NEC  
semiconductor products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment, and anti-failure features.  
NEC semiconductor products are classified into the following three quality grades:  
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products  
developed based on a customer-designated "quality assurance program" for a specific application. The  
recommended applications of a semiconductor product depend on its quality grade, as indicated below.  
Customers must check the quality grade of each semiconductor product before using it in a particular  
application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's  
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not  
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness  
to support a given application.  
(Note)  
(1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd.  
and also includes its majority-owned subsidiaries.  
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for  
NEC (as defined above).  
M8E 00. 4-0110  
16  
Data Sheet PU10500EJ01V0DS  
µPC3225TB  
For further information, please contact  
NEC Compound Semiconductor Devices, Ltd.  
http://www.ncsd.necel.com/  
E-mail: salesinfo@ml.ncsd.necel.com (sales and general)  
techinfo@ml.ncsd.necel.com (technical)  
Sales Division TEL: +81-44-435-1588 FAX: +81-44-435-1579  
NEC Compound Semiconductor Devices Hong Kong Limited  
E-mail: ncsd-hk@elhk.nec.com.hk (sales, technical and general)  
TEL: +852-3107-7303  
TEL: +886-2-8712-0478 FAX: +886-2-2545-3859  
TEL: +82-2-558-2120  
FAX: +82-2-558-5209  
FAX: +852-3107-7309  
Hong Kong Head Office  
Taipei Branch Office  
Korea Branch Office  
NEC Electronics (Europe) GmbH  
http://www.ee.nec.de/  
TEL: +49-211-6503-0 FAX: +49-211-6503-1327  
California Eastern Laboratories, Inc.  
TEL: +1-408-988-3500 FAX: +1-408-988-0279  
http://www.cel.com/  
0406  

相关型号:

UPC3226TB

BIPOLAR ANALOG INTEGRATED CIRCUIT
CEL

UPC3226TB

5 V, SILICON GERMANIUM MMIC MEDIUM OUTPUT POWER AMPLIFIER
NEC

UPC3226TB-E3

BIPOLAR ANALOG INTEGRATED CIRCUIT
CEL

UPC3226TB-E3

5 V, SILICON GERMANIUM MMIC MEDIUM OUTPUT POWER AMPLIFIER
NEC

UPC3226TB-E3-A

BIPOLAR ANALOG INTEGRATED CIRCUIT
CEL

UPC3226TB-E3-A

5 V, SILICON GERMANIUM MMIC MEDIUM OUTPUT POWER AMPLIFIER
NEC

UPC3227TB

BIPOLAR ANALOG INTEGRATED CIRCUIT
CEL

UPC3227TB

3.3 V, SILICON GERMANIUM MMIC WIDE BAND AMPLIFIER
RENESAS

UPC3227TB

5 V, SILICON GERMANIUM MMIC WIDEBAND AMPLIFIER
NEC

UPC3227TB-E3

BIPOLAR ANALOG INTEGRATED CIRCUIT
CEL

UPC3227TB-E3

5 V, SILICON GERMANIUM MMIC WIDEBAND AMPLIFIER
NEC

UPC3227TB-E3-A

BIPOLAR ANALOG INTEGRATED CIRCUIT
CEL