MSK2541 [MSK]

DUAL HIGH POWER OP-AMP; 双路高功率运算放大器
MSK2541
型号: MSK2541
厂家: M.S. KENNEDY CORPORATION    M.S. KENNEDY CORPORATION
描述:

DUAL HIGH POWER OP-AMP
双路高功率运算放大器

运算放大器 局域网 高功率电源
文件: 总6页 (文件大小:235K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO 9001 CERTIFIED BY DSCC  
DUAL HIGH POWER  
OP-AMP  
2541  
M.S. KENNEDY CORP  
4707 Dey Road Liverpool, N.Y. 13088  
(315) 701-6751  
MIL-PRF-38534 CERTIFIED  
FEATURES:  
Available as SMD #5962-9083801 HX  
High Output Current - 10 Amps Peak  
Wide Power Supply Range - ±10V to ±40V  
On Board Current Limit  
FET Input  
Isolated Case  
Second Source for OMA 2541SKB  
DESCRIPTION:  
The MSK 2541 is a high power dual monolithic amplifier ideally suited for high power amplification and magnetic  
deflection applications. This amplifier is capable of operation at a supply voltage rating of 80 volts and can deliver  
guaranteed continuous output currents up to 5A per amplifier. The MSK 2541 has internal current limit circuitry to  
protect the amplifier and load from transients. The MSK 2541 is available in a hermetically sealed 8 pin TO3 package  
that is isolated from internal circuitry. This allows for convenient bolt down heat sinking when necessary.  
EQUIVALENT SCHEMATIC  
TYPICAL APPLICATIONS  
PIN-OUT INFORMATION  
Servo Amplifer  
Motor Driver  
Audio Amplifier  
Programmable Power Supply  
Bridge Amplifier  
1 Output B  
8
7
6
5
Inverting Input B  
2 Positive Power Supply  
3 Non-Inverting Input A  
4 Inverting Input A  
Non-Inverting Input B  
Negative Power Supply  
Output A  
Rev. B 8/00  
1
ABSOLUTE MAXIMUM RATINGS  
TST  
TLD  
Storage Temperature Range  
Lead Temperature Range  
(10 Seconds)  
Power Dissipation  
Junction Temperature  
-65° to +150°C  
300°C  
±VCC Voltage Supply  
±40V  
See S.O.A.  
IOUT  
VIN  
VIN  
TC  
Peak Output Current  
Differential Input Voltage  
Common Mode Input Voltage  
Case Operating Temperature Range  
MSK 2541B  
±VCC  
±VCC  
PD  
TJ  
125W  
150°C  
-55° to +125°C  
-40° to +85°C  
MSK 2541  
ELECTRICAL SPECIFICATIONS  
MSK 2541  
MSK 2541B  
5
Military  
Typ.  
Industrial  
Min. Typ. Max. Units  
Parameter  
Test Conditions  
Group A  
Subgroup Min.  
Max.  
STATIC  
4
±40  
±60  
Supply Voltage Range 2  
Quiescent Current  
-
±10 ±35  
±10 ±35 ±40  
V
mA  
Total - Both Amplifiers VIN = 0V  
1, 2, 3  
-
±40  
-
±40 ±60  
INPUT  
±1.0  
±30  
±50  
±50  
30  
20  
-
-
-
Input Offset Voltage  
Input Offset Voltage Drift  
VIN = 0V  
VIN = 0V  
VCM = 0V  
Either Input  
1
2, 3  
1
2, 3  
1
2, 3  
-
-
-
-
-
-
-
-
-
-
-
-
95  
-
±0.1  
±15  
±4  
±10  
2.0  
-
-
-
-
-
-
-
-
-
90  
-
±1.0 ±10  
mV  
µV/°C  
pA  
nA  
pA  
nA  
pF  
W
dB  
±15  
-
±4 ±100  
Input Bias Current  
±10  
2.0  
-
-
30  
-
VCM = 0V  
Input Bias Current  
Input Capacitance  
5
5
10  
-
-
Input Impedance  
F = DC  
F = DC VCM = ±22V  
1012  
113  
90  
12  
4
4
Common Mode Rejection Ratio  
113  
90  
-
-
-
Power Supply Rejection Ratio 4 VCC = ±10V to ±40V  
OUTPUT  
dB  
-
-
-
-
-
-
RL = 5.6F 10 KHz  
RL = 10F = 10 KHz  
RL = 5.6F 10 KHz  
RL = 10F = 10 KHz  
0.1% 2V step  
4
5, 6  
4
5, 6  
-
±28 ±29  
±30 ±31  
±28 ±29  
-
-
-
-
-
-
V
V
A
A
µS  
KHz  
Output Voltage Swing  
-
±5  
-
-
±8  
-
±5  
±3.0  
-
±8  
-
2
Output Current  
4
3
Settling Time  
Power Bandwidth  
-
2
RL = 10VO = 20 VRMS  
4
45  
55  
40  
50  
TRANSFER CHARACTERISTICS  
-
-
-
Slew Rate  
VOUT = ±10V RL = 10Ω  
4
4
5, 6  
6
95  
85  
10  
100  
-
6
90  
-
10  
100  
-
-
-
-
V/µS  
dB  
dB  
F = 10 Hz RL = 10 KΩ  
Open Loop Voltage Gain  
4
THERMAL RESISTANCE  
1.9  
1.5  
1.2  
1.0  
-
θJC (Junction to Case)  
One Amplifier, DC Output  
One Amplifier, AC Output F > 60 Hz  
Both Amplifiers, DC Output  
-
-
-
-
-
-
-
-
-
-
1.4  
1.25  
0.9  
0.8  
30  
-
-
-
-
-
1.4  
1.25 1.5  
0.9  
0.8  
30  
1.9  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJC  
θJC  
θJC  
1.2  
1.0  
-
Both Amplifiers, AC Output F > 60 Hz  
θJA (Junction to Ambient)  
No Heat Sink  
NOTES:  
1
2
3
4
5
6
7
8
Unless otherwise specified: RCL = 0, ±VCC = ±34 VDC, all specs are per amplifier.  
Electrical specifications are derated for power supply voltages other than ±34 VDC.  
AV = -1, measured in false summing junction circuit.  
Devices shall be capable of meeting the parameter, but need not be tested. Typical parameters are for reference only.  
Industrial grade devices shall be tested to subgroups 1 and 4 unless otherwise specified.  
Military grade devices ('B' suffix) shall be 100% tested to subgroups 1, 2, 3 and 4.  
Subgroup 5 and 6 testing available upon request.  
Subgroup 1, 4  
Subgroup 2, 5  
Subgroup 3, 6  
TA=TC=+25°C  
TA=TC=+125°C  
TA=TC=-55°C  
Rev. B 8/00  
2
APPLICATION NOTES  
HEAT SINKING  
POWER SUPPLY CONNECTIONS  
To select the correct heat sink for your application, refer to the  
thermal model and governing equation below.  
The MSK 2541 maximum supply voltage is specified as  
±40V. However, single sided or unbalanced power supply  
operation is permissible as long as the total power supply volt-  
age does not exceed 80V. Caution should be exercised when  
routing high current printed circuit paths. Generally, these  
paths should not be placed near low level, high impedance  
input circuitry to avoid oscillations.  
Thermal Model:  
During prototype evaluation, power supply current limiting  
is strongly advised to avoid damaging the device. See the  
application note entitled "Current Limit" for an explanation of  
the limitations of the MSK 2541 on board current limit.  
POWER SUPPLY BYPASSING  
Both the negative and the positive power supplies must be  
effectively decoupled with a high and low frequency bypass  
circuit to avoid power supply induced oscillation. An effective  
decoupling scheme consists of a 0.1 microfarad ceramic ca-  
pacitor in parallel with a 4.7 microfarad tantalum capacitor  
from each power supply pin to ground. It is also a good prac-  
tice with very high power op-amps, such as the MSK 2541, to  
place a 30-50 microfarad non-electrolytic capacitor with a low  
effective series resistance in parallel with the other two power  
supply decoupling capacitors. This capacitor will eliminate  
any peak output voltage clipping which may occur due to poor  
power supply load regulation. All power supply decoupling  
capacitors should be placed as close to the package power  
supply pins as possible (pins 3 and 6).  
Governing Equation:  
TJ = PD X (RθJC + RθCS + RθSA) + TA  
Where  
TJ  
PD  
= Junction Temperature  
= Total Power Dissipation  
RθJC = Junction to Case Thermal Resistance  
RθCS = Case to Heat Sink Thermal Resistance  
RθSA = Heat Sink to Ambient Thermal Resistance  
TC  
TA  
TS  
= Case Temperature  
= Ambient Temperature  
= Sink Temperature  
CURRENT LIMIT  
The internal current limit should not be used as a short cir-  
cuit protection scheme. When the output is directly shorted  
to ground, the power supply voltage is applied across the out-  
put transistor that is conducting. If the power supplies were  
set to ±40V and the output was shorted to ground, the tran-  
sistor that is conducting current would see 40V from its emit-  
ter to its collector. Referring to the safe operating area curve  
shows when [VCC-VOUT]=40V, the maximum safe output  
current (IO) at TC=25°C is 1.5A. In this case the amplifier  
would not be protected by the internal current limit and would  
probably be damaged. The internal current limit is provided as  
a protection against unintentional load conditions which may  
require larger amounts of load current than the amplifier is  
rated for.  
Example:  
In our example the amplifier application requires each output to  
drive a 20 volt peak sine wave across a 10 ohm load for 2 amps of  
output current. For a worst case analysis we will treat the 2 amps  
peak output current as a D.C. output current. The power supplies  
are ±35 VDC.  
1.) Find Power Dissipation  
PD = [(quiescent current) X (+VCC - (-VCC))] + [(VCC - VO) X IOUT]  
= (30 mA) X (70V) + (15V) X (2A)+(15V)x(2A)  
= 2.1W + 60W  
= 62.1W  
2.) For conservative design, set TJ = +150°C  
3.) For this example, worst case TA = +25°C  
4.) RθJC = 1.2°C/W typically  
5.) RθCS = 0.15°C/W for most thermal greases  
6.) Rearrange governing equation to solve for RθSA  
SAFE OPERATING AREA  
The safe operating area curve is a graphical representation  
of the power handling capability of the amplifier under various  
conditions. The wire bond current carrying capability, transis-  
tor junction temperature and secondary breakdown limitations  
are all incorporated into the safe operating area curves. All  
applications should be checked against the S.O.A. curves to  
ensure high M.T.T.F.  
RθSA  
= (TJ - TA) / PD - (RθJC) - (RθCS)  
= (150°C - 25°C) / (62.1W) - (1.2°C/W) - (.15°C/W)  
=
.66°C/W  
The heat sink in this example must have a thermal resistance of  
no more than .66°C/W to maintain a junction temperature of no  
more than +150°C. Since this value of thermal resistance may be  
difficult to find, other measures may have to be taken to decrease  
the overall power dissipation. Refer to the "Heat Sinking Options"  
application note offered by MSK.  
Rev. B 8/00  
3
TYPICAL PERFORMANCE CURVES  
4
Rev. B 8/00  
APPLICATION CIRCUITS  
CLAMPING OUTPUT FOR EMF-GENERATING LOADS  
ISOLATING CAPACITVE LOADS  
PROGRAMMABLE VOLTAGE SOURCE  
PARALLELED OPERATION, EXTENDED S.O.A.  
5
Rev. B 8/00  
MECHANICAL SPECIFICATIONS  
ALL DIMENSIONS ARE ±0.010 INCHES UNLESS OTHERWISE SPECIFIED.  
ORDERING INFORMATION  
Part  
Number  
Screening Level  
MSK2541  
Industrial  
Military-MIL-PRF-38534  
DSCC - SMD  
MSK2541B  
5962-9083801HX  
M.S. Kennedy Corp.  
4707 Dey Road, Liverpool, New York 13088  
Phone (315) 701-6751  
Fax (315) 701-6752  
www.mskennedy.com  
The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make  
changes to its products or specifications without notice, however and assumes no liability for the use of its products.  
Rev. B 8/00  
6

相关型号:

MSK2541B

DUAL HIGH POWER OP-AMP
MSK

MSK2541E

Operational Amplifier, 2 Func, 1500uV Offset-Max, BIPolar, MBFM8, HERMETIC SEALED, TO-3, 8 PIN
MSK

MSK3001

THREE PHASE BRIDGE MOSFET POWER MODULE
MSK

MSK3002

H-BRIDGE MOSFET POWER MODULE
ETC

MSK3003

THREE PHASE BRIDGE MOSFET POWER MODULE
ETC

MSK3004

H-BRIDGE MOSFET POWER MODULE
MSK

MSK3013

QUAD N-CHANNEL MOSFET POWER MODULE
MSK

MSK3014

H-BRIDGE MOSFET POWER MODULE
MSK

MSK3015

THREE PHASE BRIDGE MOSFET POWER MODULE
MSK

MSK3016

THREE PHASE BRIDGE MOSFET POWER MODULE
MSK

MSK3017

THREE PHASE BRIDGE MOSFET POWER MODULE
MSK

MSK3018

THREE PHASE BRIDGE MOSFET POWER MODULE
MSK