MP28311DQ-Z [MPS]

Switching Regulator, Current-mode, 6.3A, 380kHz Switching Freq-Max, 3 X 3 MM, MO-229VEED-5, QFN-10;
MP28311DQ-Z
型号: MP28311DQ-Z
厂家: MONOLITHIC POWER SYSTEMS    MONOLITHIC POWER SYSTEMS
描述:

Switching Regulator, Current-mode, 6.3A, 380kHz Switching Freq-Max, 3 X 3 MM, MO-229VEED-5, QFN-10

开关 输出元件
文件: 总14页 (文件大小:421K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MP28311  
3A, 28V, 340KHz Synchronous Rectified  
Step-Down Converter  
The Future of Analog IC Technology  
DESCRIPTION  
FEATURES  
The MP28311 is a monolithic synchronous buck  
regulator. The device integrates power  
MOSFETS that provide 3A continuous load  
current over a wide operating input voltage of  
4.75V to 28V. Current mode control provides  
fast transient response and cycle-by-cycle  
current limit.  
3A Output Current  
Wide 4.75V to 28V Operating Input Range  
Integrated Power MOSFET Switches  
Output Adjustable from 0.8V to 25V  
Up to 95% Efficiency  
Programmable Soft-Start  
Stable with Low ESR Ceramic Output Capacitors  
Fixed 340KHz Frequency  
Cycle-by-Cycle Over Current Protection  
Input Under Voltage Lockout  
Thermally Enhanced 8-Pin SOIC and  
3x3 QFN10 Packages  
An adjustable soft-start prevents inrush current  
at turn-on. In shutdown mode, the supply  
current drops to 1μA.  
This device, available in 8-pin SOIC and 3x3  
10-pin QFN packages, provides a very compact  
system solution with minimal reliance on  
external components.  
APPLICATIONS  
Distributed Power Systems  
Pre-Regulator for Linear Regulators  
Notebook Computers  
“MPS” and “The Future of Analog IC Technology” are Registered Trademarks of  
Monolithic Power Systems, Inc.  
TYPICAL APPLICATION  
Efficiency vs  
Load Current  
C5  
10nF  
100  
V
IN = 12V  
BS  
IN  
SS  
EN  
90  
80  
70  
60  
50  
VIN  
4.75V-28V  
MP28311  
SW  
V
IN = 24V  
COMP  
C3  
3.3nF  
GND  
FB  
V
OUT = 5V  
VOUT  
5V/3A  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
LOAD CURRENT (A)  
MP28311 Rev. 0.92  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
1
MP28311 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
PACKAGE REFERENCE  
TOP VIEW  
TOP VIEW  
IN  
SW  
1
2
3
4
5
10 SS  
9
8
7
6
BS  
BS  
IN  
1
2
3
4
8
7
6
5
SS  
GND  
GND  
GND  
EN  
EN  
COMP  
FB  
SW  
GND  
COMP  
FB  
EXPOSED PAD  
ON BACKSIDE  
Part Number*  
Package  
Temperature  
Part Number*  
Package  
Temperature  
3mm x 3mm  
QFN10  
SOIC8N  
(Exposed Pad)  
MP28311DQ  
–40°C to +85°C  
MP28311DN  
–40°C to +85°C  
For Tape & Reel, add suffix –Z (eg. MP28311DQ–Z)  
For RoHS compliant packaging, add suffix –LF (eg.  
MP28311DQ–LF–Z)  
For Tape & Reel, add suffix –Z (eg. MP28311DN–Z)  
For RoHS compliant packaging, add suffix –LF (eg.  
MP28311DN–LF–Z)  
*
*
Recommended Operating Conditions (2)  
Input Voltage VIN............................ 4.75V to 28V  
Output Voltage VOUT ........................ 0.8V to 25V  
Ambient Operating Temperature ... –40°C to +85°C  
ABSOLUTE MAXIMUM RATINGS (1)  
Supply Voltage VIN .......................–0.3V to +30V  
Switch Voltage VSW ................. –1V to VIN + 0.3V  
Boost Voltage VBS ..........VSW – 0.3V to VSW + 6V  
All Other Pins.................................–0.3V to +6V  
Junction Temperature...............................150°C  
Lead Temperature ....................................260°C  
Storage Temperature ............. –65°C to +150°C  
Thermal Resistance (3)  
θJA  
θJC  
SOIC8N ..................................50...... 10... °C/W  
3x3 QFN10 .............................50...... 12... °C/W  
Notes:  
1) Exceeding these ratings may damage the device.  
2) The device is not guaranteed to function outside of its  
operating conditions.  
3) Measured on approximately 1” square of 1 oz copper.  
ELECTRICAL CHARACTERISTICS (4)  
VIN = 12V, TA = +25°C, unless otherwise noted.  
Parameter  
Symbol Condition  
Min  
Typ (4)  
0.3  
Max  
3.0  
Units  
μA  
Shutdown Supply Current  
Supply Current  
VEN = 0V  
VEN = 2.7V, VFB = 1.0V  
1.3  
1.5  
mA  
4.75V VIN 28V,  
TA = +25°C  
0.780  
0.800  
0.820  
V
Feedback Voltage  
VFB  
0.772  
0.90  
0.828  
1.00  
V
V
–40°C TA +85°C  
ΔIC = ±10μA  
OVP Threshold Voltage  
0.95  
400  
820  
Error Amplifier Voltage Gain  
Error Amplifier Transconductance  
AEA  
GEA  
V/V  
μA/V  
550  
1100  
MP28311 Rev. 0.92  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
2
MP28311 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
ELECTRICAL CHARACTERISTICS (4) (continued)  
VIN = 12V, TA = +25°C, unless otherwise noted.  
Parameter  
Symbol Condition  
RDS(ON)1  
RDS(ON)2  
Min  
Typ (4)  
125  
125  
0
Max  
Units  
mΩ  
mΩ  
μA  
High-Side Switch-On Resistance  
Low-Side Switch-On Resistance  
High-Side Switch Leakage Current  
Upper-Switch Current Limit  
Lower-Switch Current Limit  
VEN = 0V, VSW = 0V  
10  
4.3  
6.3  
A
From Drain to Source  
1.25  
A
COMP to Current Sense  
Transconductance  
GCS  
9
A/V  
300  
270  
340  
380  
400  
KHz  
KHz  
KHz  
%
TA = +25°C  
Oscillation Frequency  
Fosc1  
Fosc2  
–40°C TA +85°C  
VFB = 0V  
Short Circuit Oscillation Frequency  
Maximum Duty Cycle  
110  
90  
DMAX VFB = 0.7V  
Minimum On-Time  
220  
1.5  
ns  
EN Shutdown Threshold Voltage  
VEN Rising  
1.1  
2.0  
V
EN Shutdown Threshold Voltage  
Hysteresis  
220  
2.5  
mV  
2.2  
2.1  
2.7  
2.8  
V
V
EN Lockout Threshold Voltage  
–40°C TA +85°C  
EN Lockout Hysteresis  
210  
mV  
V
3.8  
3.5  
4.05  
4.30  
4.70  
VIN rising, TA = +25°C  
Input Under Voltage Lockout  
Threshold  
UVLO  
V
–40°C TA +85°C  
Input Under Voltage Lockout  
Threshold Hysterisis  
210  
mV  
Soft-Start Current  
Thermal Shutdown  
Note:  
VSS = 0V  
6
μA  
160  
°C  
4) 100% production test at +25°C. Specifications over the temperature range are guaranteed by design and characterization.  
MP28311 Rev. 0.92  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
3
MP28311 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
PIN FUNCTIONS  
3x3  
SOIC8N  
Pin #  
QFN10 Name Description  
Pin #  
High-Side Gate Drive Boost Input. BS supplies the drive for the high-side N-  
1
2
9
BS  
Channel MOSFET switch. Connect a 0.01μF or greater capacitor from SW to BS  
to power the high side switch.  
Power Input. IN supplies the power to the IC, as well as the step-down converter  
switches. Drive IN with a 4.75V to 28V power source. Bypass IN to GND with a  
suitably large capacitor to eliminate noise on the input to the IC. See Input  
Capacitor.  
1
IN  
Power Switching Output. SW is the switching node that supplies power to the  
output. Connect the output LC filter from SW to the output load. Note that a  
capacitor is required from SW to BS to power the high-side switch.  
3
4
5
2
3, 4, 5  
6
SW  
GND  
FB  
Ground. SOIC8: Connect the exposed pad to pin 4. 3x3 QFN10: Connect to pins  
3, 4 and 5 and ensure that said pins are tied together.  
Feedback Input. FB senses the output voltage to regulate that voltage. Drive FB  
with a resistive voltage divider from the output voltage. The feedback reference  
voltage is 0.8V. See Setting the Output Voltage.  
Compensation Node. COMP is used to compensate the regulation control loop.  
Connect a series RC network from COMP to GND to compensate the regulation  
control loop. In some cases, an additional capacitor from COMP to GND is  
required. See Compensation Components.  
6
7
COMP  
Enable Input. EN is a digital input that turns the regulator on or off. Drive EN higher  
than 2.7V to turn on the regulator, drive it lower than 1.1V to turn it off. Pull up to  
the IN pin with 100kresistor for automatic startup.  
7
8
8
EN  
SS  
Soft-start Control Input. SS controls the soft-start period. Connect a capacitor from  
SS to GND to set the soft-start period. See Soft-Start Capacitor.  
10  
MP28311 Rev. 0.92  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
4
MP28311 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 12V, VO = 3.3V, L = 10µH, C1 = 10µF, C2 = 22µF x 2, TA = +25°C, unless otherwise noted.  
Feeback Voltage vs.  
Temperature  
Efficiency vs  
Load Current  
0.810  
0.805  
0.800  
0.795  
0.790  
0.7850  
0.780  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
IN = 12V  
V
V
IN = 12V  
IN = 28V  
V
IN = 24V  
V
IN = 4.75V  
VOUT = 2.5V  
1.5  
3.0  
0.5 1.0  
2.5  
0
2.0  
-20  
40  
0
20  
60  
80  
-40  
o
LOAD CURRENT (A)  
TEMPERATURE ( C)  
Oscillator Frequency  
UVLO Rising vs.  
Temperature  
Enable Lockout Threshold  
vs. Temperature  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
345  
340  
335  
330  
325  
2.70  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
-20  
40  
0
20  
60  
80  
-40  
-20  
40  
0
20  
60  
80  
-40  
-20  
40  
o
0
20  
60  
80  
-40  
o
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
MP28311 Rev. 0.92  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
5
MP28311 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
VIN = 12V, VO = 3.3V, L = 10µH, C1 = 10µF, C2 = 22µF x 2, TA = +25°C, unless otherwise noted.  
Power Off through Enable  
V
= 24V, V  
= 3.3V, I  
= 2A  
IN  
OUT  
OUT  
V
OUT  
1V/div.  
V
EN  
5V/div.  
V
OUT  
1V/div.  
I
L
1A/div.  
I
L
V
SW  
1A/div.  
10V/div.  
4ms/div.  
Steady State Test  
Load Transient Test  
Short Circuit Protection  
V
= 12V, V  
= 3.3V, I  
= 1A  
V
= 24V, V  
= 3.3V,  
V = 24V, V  
IN OUT  
= 3.3V, I = 0A  
OUT  
IN  
OUT  
OUT  
IN  
OUT  
= 0A-1A step with C = 470pF  
I
OUT  
FF  
V
COMP  
V
IN  
200mV/div.  
200mV/div.  
V
V
OUT  
OUT  
1V/div.  
100mV/div.  
V
COMP  
1V/div.  
I
L
500mA/div.  
I
V
L
OUT  
1A/div.  
AC Coupled  
10mV/div.  
I
L
2A/div.  
V
SW  
20V/div.  
MP28311 Rev. 0.92  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
6
MP28311 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
OPERATION  
+
CURRENT  
SENSE  
AMPLIFIER  
IN  
OVP  
+
--  
--  
+
0.95V  
0.3V  
0.8V  
5V  
RAMP  
CLK  
OSCILLATOR  
340KHz  
FB  
SS  
BS  
--  
S
Q
Q
--  
+
--  
+
+
SW  
R
CURRENT  
COMPARATOR  
ERROR  
AMPLIFIER  
COMP  
EN  
GND  
--  
EN OK  
OVP  
IN < 4.05V  
1.2V  
LOCKOUT  
COMPARATOR  
2.5V  
1.5V  
+
+
IN  
INTERNAL  
REGULATORS  
--  
SHUTDOWN  
COMPARATOR  
Figure 1—Functional Block Diagram  
The MP28311 is a synchronous rectified,  
current-mode, step-down regulator. It regulates  
input voltages from 4.75V to 28V down to an  
output voltage as low as 0.8V, and supplies up  
to 3A of load current.  
The converter uses internal N-Channel  
MOSFET switches to step-down the input  
voltage to the regulated output voltage. Since  
the high-side MOSFET requires a gate voltage  
greater than the input voltage, a boost capacitor  
connected between SW and BS is needed to  
drive the high-side gate. The boost capacitor is  
charged from the internal 5V rail when SW is low.  
The MP28311 uses current-mode control to  
regulate the output voltage. The output voltage  
is measured at FB through a resistive voltage  
divider and amplified through the internal  
transconductance error amplifier. The voltage at  
COMP pin is compared to the switch current  
measured internally to control the output  
voltage.  
When the MP28311 FB pin exceeds 20% of the  
nominal regulation voltage of 0.8V, the over  
voltage comparator is tripped; the COMP pin  
and the SS pin are discharged to GND, forcing  
the high-side switch off.  
MP28311 Rev. 0.92  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
7
MP28311 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
APPLICATIONS INFORMATION  
COMPONENT SELECTION  
Setting the Output Voltage  
Choose an inductor that will not saturate under  
the maximum inductor peak current. The peak  
inductor current can be calculated by:  
The output voltage is set using a resistive  
voltage divider from the output voltage to FB pin.  
The voltage divider divides the output voltage  
down to the feedback voltage by the ratio:  
VOUT  
VOUT  
VIN  
ILP = ILOAD  
+
× 1−  
2× fS ×L  
Where ILOAD is the load current.  
R2  
VFB = VOUT  
Optional Schottky Diode  
R1+ R2  
During the transition between high-side switch  
and low-side switch, the body diode of the low-  
side power MOSFET conducts the inductor  
current. The forward voltage of this body diode  
is high. An optional Schottky diode may be  
paralleled between the SW pin and GND pin to  
improve overall efficiency. Table 2 lists example  
Schottky diodes and their Manufacturers.  
Thus the output voltage is:  
R1+ R2  
VOUT = 0.8 ×  
R2  
Where VFB is the feedback voltage and VOUT is  
the output voltage.  
A typical value for R2 can be as high as 100k,  
but a typical value is 10k. Using that value, R1  
is determined by:  
Table 2—Diode Selection Guide  
Voltage/Current  
R1 = 12.5 × (VOUT 0.8)(kΩ)  
Part Number  
B130  
Rating  
30V, 1A  
30V, 1A  
Vendor  
Diodes, Inc.  
Diodes, Inc.  
International  
Rectifier  
For example, for a 3.3V output voltage, R2 is  
10k, and R1 is 31.3k.  
SK13  
MBRS130  
30V, 1A  
Inductor  
The inductor is required to supply constant  
current to the output load while being driven by  
the switched input voltage. A larger value  
inductor will result in less ripple current that will  
result in lower output ripple voltage. However,  
the larger value inductor will have a larger  
physical size, higher series resistance, and/or  
lower saturation current. A good rule for  
determining the inductance to use is to allow  
the peak-to-peak ripple current in the inductor  
to be approximately 30% of the maximum  
switch current limit. Also, make sure that the  
peak inductor current is below the maximum  
switch current limit. The inductance value can  
be calculated by:  
Input Capacitor  
The input current to the step-down converter is  
discontinuous, therefore a capacitor is required  
to supply the AC current to the step-down  
converter while maintaining the DC input  
voltage. Use low ESR capacitors for the best  
performance. Ceramic capacitors are preferred,  
but tantalum or low-ESR electrolytic capacitors  
may also suffice. Choose X5R or X7R  
dielectrics when using ceramic capacitors.  
Since the input capacitor (C1) absorbs the input  
switching current it requires an adequate ripple  
current rating. The RMS current in the input  
capacitor can be estimated by:  
VOUT  
VOUT  
VOUT  
VOUT  
L =  
× 1−  
IC1 = ILOAD  
×
× 1−  
V
V
fS × ΔI  
V
IN  
IN  
IN  
Where VIN is the input voltage, fS is the 340KHz  
switching frequency, and ΔIL is the peak-to-  
peak inductor ripple current.  
The worst-case condition occurs at VIN = 2VOUT  
where:  
,
ILOAD  
IC1  
=
2
MP28311 Rev. 0.92  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
8
MP28311 – 3A, 28V SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
For simplification, choose the input capacitor  
whose RMS current rating greater than half of  
the maximum load current.  
MP28311 can be optimized for a wide range of  
capacitance and ESR values.  
Compensation Components  
MP28311 employs current mode control for  
easy compensation and fast transient response.  
The system stability and transient response are  
controlled through the COMP pin. COMP pin is  
the output of the internal transconductance  
error amplifier. A series capacitor-resistor  
combination sets a pole-zero combination to  
control the characteristics of the control system.  
The input capacitor can be electrolytic, tantalum  
or ceramic. When using electrolytic or tantalum  
capacitors, a small, high quality ceramic  
capacitor, i.e. 0.1μF, should be placed as close  
to the IC as possible. When using ceramic  
capacitors, make sure that they have enough  
capacitance to provide sufficient charge to  
prevent excessive voltage ripple at input. The  
input voltage ripple caused by capacitance can  
be estimated by:  
The DC gain of the voltage feedback loop is  
given by:  
VFB  
AVDC = RLOAD × GCS × AVEA  
×
ILOAD  
VOUT  
VIN  
VOUT  
VIN  
VOUT  
Where AVEA is the error amplifier voltage gain,  
400V/V; GCS is the current sense  
ΔVIN  
=
×
× 1−  
fS × C1  
Output Capacitor  
transconductance, 7.0A/V; RLOAD is the load  
resistor value.  
The output capacitor is required to maintain the  
DC output voltage. Ceramic, tantalum, or low  
ESR electrolytic capacitors are recommended.  
Low ESR capacitors are preferred to keep the  
output voltage ripple low. The output voltage  
ripple can be estimated by:  
The system has 2 poles of importance. One is  
due to the compensation capacitor (C3) and the  
output resistor of error amplifier, and the other  
is due to the output capacitor and the load  
resistor. These poles are located at:  
GEA  
VOUT  
VOUT  
VIN  
1
ΔVOUT  
=
× 1−  
× RESR  
+
fP1  
=
fS × L  
8 × fS × C2  
2π× C3× AVEA  
Where C2 is the output capacitance value and  
RESR is the equivalent series resistance (ESR)  
value of the output capacitor.  
1
fP2  
GEA  
=
2π × C2× RLOAD  
Where,  
is  
the  
error  
amplifier  
In the case of ceramic capacitors, the  
impedance at the switching frequency is  
dominated by the capacitance. The output  
voltage ripple is mainly caused by the  
capacitance. For simplification, the output  
voltage ripple can be estimated by:  
transconductance, 820μA/V, and RLOAD is the load  
resistor value.  
The system has one zero of importance, due to the  
compensation  
capacitor  
(C3)  
and  
the  
compensation resistor (R3). This zero is located at:  
1
VOUT  
8 × fS2 × L × C2  
VOUT  
fZ1  
=
ΔVOUT  
=
× 1−  
2π × C3×R3  
V
IN  
The system may have another zero of  
importance, if the output capacitor has a large  
capacitance and/or a high ESR value. The zero,  
due to the ESR and capacitance of the output  
capacitor, is located at:  
In the case of tantalum or electrolytic capacitors,  
the ESR dominates the impedance at the  
switching frequency. For simplification, the  
output ripple can be approximated to:  
VOUT  
VOUT  
1
ΔVOUT  
=
× ⎜1−  
×RESR  
fESR  
=
fS ×L  
VIN  
2π × C2× RESR  
The characteristics of the output capacitor also  
affect the stability of the regulation system. The  
MP28311 Rev. 0.91  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
9
MP28311 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
In this case, a third pole set by the optional  
Table 3—Compensation Values for Typical  
Output Voltage/Capacitor Combinations  
compensation capacitor (C6) and the  
compensation resistor (R3) is used to  
compensate the effect of the ESR zero on the  
loop gain. This pole is located at:  
VOUT  
L
C2  
R3  
C3  
C6  
1.8V 4.7μH  
100μF  
5.6k5.6nF None  
Ceramic  
1
2.5V 4.7μH - 47μF Ceramic 3.65k8.2nF None  
6.8μH  
fP3  
=
2π× C6×R3  
3.3V 6.8μH -  
10μH  
22μFx2  
Ceramic  
4.42k4.7nF None  
6.98k3.3nF None  
16.5k1.8nF None  
8.4k2.2nF None  
5.6k3.3nF None  
6.8k2.2nF None  
10k2.2nF None  
The goal of compensation design is to shape  
the converter transfer function to get a desired  
loop gain. The system crossover frequency  
where the feedback loop has the unity gain is  
important.  
5V  
10μH -  
15μH  
22μFx2  
Ceramic  
12V 15μH -  
22μH  
22μFx2  
Ceramic  
1.8  
4.7μH 100μF/100mΩ  
Lower crossover frequencies result in slower  
line and load transient responses, while higher  
crossover frequencies could cause system  
instability. A good rule of thumb is to set the  
crossover frequency to approximately one-tenth  
of the switching frequency. Switching frequency  
for the MP28311 is 340KHz, so the desired  
crossover frequency is 34KHz.  
SP-CAP  
2.5V 4.7μH -  
6.8μH  
47μF  
SP-CAP  
3.3V 6.8μH -  
10μH  
47μF  
SP-CAP  
5V  
10μH -  
15μH  
47μF  
SP CAP  
2.5V 4.7μH -  
6.8μH  
560μF Al.  
30mESR  
10kΩ  
10kΩ  
12nF 1.8nF  
10nF 1.5nF  
Table 3 lists the typical values of compensation  
components for some standard output voltages  
with various output capacitors and inductors. The  
values of the compensation components have  
been optimized for fast transient responses and  
good stability at given conditions.  
3.3V 6.8μH -  
10μH  
560μF Al.  
30mESR  
5V  
10μH -  
15μH  
470μF Al.  
30mESR  
15k8.2nF  
1nF  
12V 15μH -  
22μH  
220μF Al.  
30mESR  
15k10nF 390pF  
MP28311 Rev. 0.92  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
10  
MP28311 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
To optimize the compensation components for  
Soft-Start Capacitor  
conditions not listed in Table 2, the following  
procedure can be used.  
To reduce input inrush current during startup, a  
programmable soft-start is provided by  
connecting a capacitor (C4) from pin SS to  
GND. The soft-start time is given by:  
1. Choose the compensation resistor (R3) to set  
the desired crossover frequency. Determine the  
R3 value by the following equation:  
0.8V  
tSS = C4 ×  
2π × C2× fC VOUT  
6μA  
R3 =  
×
GEA × GCS  
VFB  
To reduce the susceptibility to noise, do not  
leave SS pin open. Use a capacitor with small  
value if you do not need soft-start function.  
Where fC is the desired crossover frequency,  
34KHz.  
2. Choose the compensation capacitor (C3) to  
achieve the desired phase margin. For  
applications with typical inductor values, setting  
the compensation zero, fZ1, below one forth of  
the crossover frequency provides sufficient  
phase margin. Determine the C3 value by the  
following equation:  
External Bootstrap Diode  
It is recommended that an external bootstrap  
diode be added when the system has a 5V  
fixed input or the power supply generates a 5V  
output. This helps improve the efficiency of the  
regulator. The bootstrap diode can be a low  
cost one such as IN4148 or BAT54.  
5V  
4
C3 >  
2π × R3 × fC  
BS  
3. Determine if the second compensation  
capacitor (C6) is required. It is required if the  
ESR zero of the output capacitor is located at  
less than half of the 340KHz switching  
frequency, or the following relationship is valid:  
10nF  
MP28311  
SW  
Figure 2—External Bootstrap Diode  
fS  
2
1
<
This diode is also recommended for high duty  
VOUT  
2π × C2× RESR  
cycle operation (  
>65%) and high output  
VIN  
If this is the case, then add the optional  
compensation capacitor (C6) to set the pole fP3  
at the location of the ESR zero. Determine the  
C6 value by the equation:  
voltage (VOUT>12V) applications.  
C2 × RESR  
C6 =  
R3  
MP28311 Rev. 0.92  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
11  
MP28311 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
TYPICAL APPLICATION CIRCUITS  
C5  
10nF  
INPUT  
4.75V to 28V  
IN  
EN  
BS  
SW  
OUTPUT  
2.5V  
3A  
MP28311  
SS  
GND  
FB  
COMP  
D1  
B130  
(optional)  
C3  
8.2nF  
C6  
(optional)  
Figure 3—MP28311 with 2.5V Output, 47μF/6.3V Ceramic Output Capacitor  
D2  
INPUT  
4.75V to 28V  
C5  
10nF  
IN  
EN  
BS  
SW  
OUTPUT  
3.3V/3A  
MP28311  
SS  
GND  
FB  
COMP  
D1  
B130  
(optional)  
C3  
4.7nF  
C6  
(optional)  
Figure 4—MP28311 with 3.3V Output, 47μF/6.3V Ceramic Output Capacitor  
MP28311 Rev. 0.92  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
12  
MP28311 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
PACKAGE INFORMATION  
SOIC8N (EXPOSED PAD)  
0.189(4.80)  
0.197(5.00)  
0.124(3.15)  
0.136(3.45)  
8
5
0.150(3.80)  
0.157(4.00)  
0.228(5.80)  
0.244(6.20)  
0.089(2.26)  
0.101(2.56)  
PIN 1 ID  
1
4
TOP VIEW  
BOTTOM VIEW  
SEE DETAIL "A"  
0.051(1.30)  
0.067(1.70)  
SEATING PLANE  
0.000(0.00)  
0.006(0.15)  
0.0075(0.19)  
0.0098(0.25)  
0.013(0.33)  
0.020(0.51)  
SIDE VIEW  
0.050(1.27)  
BSC  
FRONT VIEW  
0.010(0.25)  
0.020(0.50)  
x 45o  
GAUGE PLANE  
0.010(0.25) BSC  
0.050(1.27)  
0.024(0.61)  
0.063(1.60)  
0.016(0.41)  
0.050(1.27)  
0o-8o  
DETAIL "A"  
0.103(2.62)  
0.213(5.40)  
NOTE:  
1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN  
BRACKET IS IN MILLIMETERS.  
2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH,  
PROTRUSIONS OR GATE BURRS.  
3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH  
OR PROTRUSIONS.  
0.138(3.51)  
4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING)  
SHALL BE 0.004" INCHES MAX.  
5) DRAWING CONFORMS TO JEDEC MS-012, VARIATION BA.  
6) DRAWING IS NOT TO SCALE.  
RECOMMENDED LAND PATTERN  
MP28311 Rev. 0.92  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
13  
MP28311 – 3A, 28V, 340KHz SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER  
3mm x 3mm QFN10  
2.90  
3.10  
0.30  
0.50  
1.45  
1.75  
PIN 1 ID  
SEE DETAIL A  
PIN 1 ID  
MARKING  
0.18  
0.30  
10  
1
5
2.25  
2.55  
2.90  
3.10  
PIN 1 ID  
INDEX AREA  
0.50  
BSC  
6
TOP VIEW  
BOTTOM VIEW  
PIN 1 ID OPTION A  
R0.20 TYP.  
PIN 1 ID OPTION B  
R0.20 TYP.  
0.80  
1.00  
0.20 REF  
0.00  
0.05  
SIDE VIEW  
DETAIL A  
NOTE:  
2.90  
1.70  
1) ALL DIMENSIONS ARE IN MILLIMETERS.  
0.70  
0.25  
2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.  
3) LEAD COPLANARITY SHALL BE 0.10 MILLIMETER MAX.  
4) DRAWING CONFORMS TO JEDEC MO-229, VARIATION VEED-5.  
5) DRAWING IS NOT TO SCALE.  
2.50  
0.50  
RECOMMENDED LAND PATTERN  
NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications.  
Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS  
products into any application. MPS will not assume any legal responsibility for any said applications.  
MP28311 Rev. 0.92  
12/13/2007  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2007 MPS. All Rights Reserved.  
14  

相关型号:

MP28313

2A, 16V, 340KHz Synchronous Rectified Step-Down Converter
MPS

MP28313CS

2A, 16V, 340KHz Synchronous Rectified Step-Down Converter
MPS

MP28313CS-LF

Switching Regulator, Current-mode, 3.4A, 340kHz Switching Freq-Max, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
MPS

MP28313CS-LF-Z

Switching Regulator, Current-mode, 3.4A, 340kHz Switching Freq-Max, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
MPS

MP28313DS

2A, 16V, 340KHz Synchronous Rectified Step-Down Converter
MPS

MP28313DS-LF

Switching Regulator, Current-mode, 340kHz Switching Freq-Max, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
MPS

MP28313DS-LF-Z

Switching Regulator, Current-mode, 340kHz Switching Freq-Max, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
MPS

MP28315

3A, 16V, 340KHz Synchronous Rectified Step-Down Converter
MPS

MP28315CN

3A, 16V, 340KHz Synchronous Rectified Step-Down Converter
MPS

MP28317DS

Switching Regulator, Current-mode, 2A, 340kHz Switching Freq-Max, PDSO8, MS-012AA, SOIC-8
MPS

MP28317DS-LF

Switching Regulator, Current-mode, 2A, 340kHz Switching Freq-Max, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
MPS

MP28317DS-LF-Z

Switching Regulator, Current-mode, 2A, 340kHz Switching Freq-Max, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
MPS